The Microsoft® Visual Basic®
Language Specification

Version 8.0

Paul Vick
Microsoft Corporation

Copyright © Microsoft Corporation 2005. All righteserved.

The information contained in this document represtre current view of Microsoft Corporation on
the issues discussed as of the date of publicaBatause Microsoft must respond to changing
market conditions, it should not be interpretedéca commitment on the part of Microsoft, and
Microsoft cannot guarantee the accuracy of anyrimédion presented after the date of publication.

This Language Specification is for informationatgases only. MICROSOFT MAKES NO
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO BHNFORMATION IN THIS
DOCUMENT.

Complying with all applicable copyright laws is thesponsibility of the user. Without limiting the
rights under copyright, no part of this documenyrba reproduced, stored in or introduced into a
retrieval system, or transmitted in any form oraoy means (electronic, mechanical, photocopying,
recording, or otherwise), or for any purpose, withiie express written permission of Microsoft
Corporation.

Microsoft may have patents, patent applicatiorzglémarks, copyrights, or other intellectual
property rights covering subject matter in thiswloent. Except as expressly provided in any
written license agreement from Microsoft, the fahiing of this document does not give you any
license to these patents, trademarks, copyrightsther intellectual property.

Unless otherwise noted, the example companiesnia#ons, products, domain names, e-mail
addresses, logos, people, places and events depextein are fictitious, and no association witl an
real company, organization, product, domain namejleaddress, logo, person, place or event is
intended or should be inferred.

© 2005 Microsoft Corporation. All rights reserved.

Microsoft, MS-DOS, Visual Basic, Windows 2000, Waves 95, Windows 98, Windows ME,
Windows NT, Windows XP, and Windows are either segjied trademarks or trademarks of
Microsoft Corporation in the United States andAbreo countries.

The names of actual companies and products medtioerein may be the trademarks of their
respective owners.

Copyright © Microsoft Corporation 2005. All righteserved.

Table of Contents

Table of Contents

I [Yo [o 1o] o S 1
1.1 Grammar NOTALIONceiiiiiieiieee et et ettt et e ettt e ittt teeeetaee et ettt et e e eeeeeeeeeeeeeeeeeeeeeeesnessnsssnnsnnnnsnnnnnnen 1
2 @0 21 0= LT o1 1 2SR 2

1.2.1 Kinds of compatibility Dreakso e 2
O 1] oI ot A O 1 (=] = TP P PP PP PP 3
2GR - o To [UE=To T= R0 L=Y o] £ Tor=1 1o) o 1 3

A Wy (o= I €1 = 1y 110 0T PP PRSP PPPPP 5

P R O g - = Tox = (== g o I = 5
P I [T =T g 1 = Lo £ PP PPPPRTR PP 5.
2.1.2 LiNE CONUINUATIONettiiieeeeesset sttt e e e e e e e sttt e e e e s sannr e e e e e e e e e e e nabbbbe e e e e e e e e e s annnbenees 5.
2. 1.3 WHITE SPBCE.. ... eieieeiiiieee e e e 44ttt e e e e e e e s e et e e e eeae s e e e et e e e e e e e nnnrr e e e e e e e e e e nnnnnrnnees] 6
P R O] 1110 1 1= £ T U PP PUP PP 6

P (o 1= 11 T=T £ PRPP PP 6
A R Y/ oL O T = (e (=] = PP PP 7.

2.3 KBYWOITS ...ttt ettt e 444 ettt a4 e 4444 e e mRe e e e e e e e e e b e et e et e e e e e e e e e e e e e e e e e enne e 8

P I (=T = PP PP PPPRUPPR 10
2.4.1 BOOIEAN LITEIAIS. ..ottt oommm ettt e e e sttt et e e e e e e s e eeaee s 10.
A Y (=To =T gl IR == 3R 10
2.4.3 FIOAtING-POINT LILEIAUScciiiiieeeee ettt e e e e e e eeeeas 11
P S] o T (=T = PP 12
R O g =T = Tox (= gl 1 (=T = PR 21
R I =Y = I (= =L 13
2 A [0 011 o P 14

TS T =] = = 0] £ T 14

2.6 OPEratOr ChAlACLEISo e e e e e e e e e e e e e e e aaaeaens 14

3. Preprocessing DIrECHVES.........cooo o, 15

3.1 Conditional ComMPIlatioN............ooiiiiieeeeee e 51
3.1.1 Conditional CONSIANT DIFECHIVES. cieeiiiiiiiiiiieiteee e aee e eeeebeeeeeeenneenneennnennnnnnnns 16
3.1.2 Conditional Compilation DIrECLIVEScccaauuuruiuiiieii e e e seeeeee e nneeennnennnnnnnnnnns 17

3.2 EXtErnal SOUICE DIFECTIVEScoiiiiiiiceeeerieieet ettt e e e s st e e e e s s e et e e e e e e e e e bbb beeeeeeaeeeaans 18

3.3 REGION DIMBCLIVES ... 18

3.4 External CheCKSUM DIFECHIVES. e e e e a e e e e e e e e e e e e seeeeen e a e e e e e e eas 19

T oI = U @] g Tt =] o] £ 21
D L= Tor P T = 11 L PP UPP S PPPPPPPPPPRNS 21

4.1.1 Overloading and SIgNALUIESttt et e et e e et e e e e e e e e e e e e e e e eeeeeeeeeeeeeees 21

s Yo o] o L= PR 23

G [o] g [T] ¢= g (o RO EPPPPRPPI 24
4.3.1 Mustinherit and NotInheritable ClaSSEScc..eiiiiiiiiiiiiiiiiiiiiiiiiiii e eeeeeeeeeeeeeeeeeeeeennne 25
4.3.2 Interfaces and Multiple INNEMTANCEccc et eeeeeeneenenes 26
e T T = To [1Y/ o T P 29

Copyright © Microsoft Corporation 2005. All righteserved. i

Visual Basic Language Specification

g 0T] L= 1= = o P 35
4.4.1 Implementing METNOGS.ui e e e e e e s 39
N 0] Y7 60 o] 1= o o 41
T R @ V=T T LT o 1Y =1 o o £ 43
4.6 ACCESSIDINY....ccce e, 47
T R o 151 11 U= o Y o= R 50
4.7 Type and NAmMESPACE NAMIESiiceccmmmeeeeereesteerteeetearerreranea—.——————————.ssessreesrersrerrrrrrrrrrnnnn.. 50
4.7.1 Qualified NameE RESOIULIONcoceii ettt eee e e e e e e e e et e e e e e e e e er bt e e aeeees 52
4.7.2 Unqualified Name RESOIULIONttt emeeeeeeseeeseeeeeeenneeeneennnennne 52
Y= U= o] = 53
4.9 Generic Types and MethOUSoooo oo, 53
4.9.1 TYPE PAraMELEISttt eeee ettt oo e ettt oo e e e e ettt bb e e e et e e e e eeebba e e e aeeeeebbaaaeaeeaeennans 55
e B V] o T I 00] 1 1 =11 £ 7.5
T] 01U (=P PPURTPPPTRPRPP 63
5.1 AUIDULE ClASSESeeeeiiiiiee ittt e ettt e e e sttt et e e e e e aar et e e e e e e e s e bbbt bttt e e e e e e e e e nnnababeeeeanas 64
LA N1 1] o 18 (= =] (o o] SR 66
A A N1] o 10 1 (=N V= V0 =TT 1.6
A AN 11] o 10 (=AY o (U T8 0= o1 68
6. SOUICE FileS ANU NAMESPACES.uuuuutmmmmmmeeeeeeeeeteetneeneneanneeaneennesaanennnnnmnnsessesesesssnnnnnsennnssnnssnnnnnnnnnnnnnnns 71
6.1 Program Startup and TeIrMINATION.cceuiaaiiiiiiiiiieeeeee e e e e e e e r e e e e e e e e annnnee s 71
(o322 070 o] o1 =11 o] 0 I @] o] o] o 1= 72
LI R @ o] 1 To] g T o] o A0S = 1 (=1 1 =] g A 72
6.2.2 OPLON SIHCE STALEMENT ...t e e e e e e e e e e e e e 73
6.2.3 OptionN COMPArE SLALEIMENT cmmmmmreeeeeeeeernnrenneeanneaaeaae....... .. a—————esrrerrrrrrrrerarrnnnrnnnnnannaan. 73
I N a1 (=To T=T g @Y= T i [1V A O =T od 74
6.3 IMPOITS STALEIMENT.......eiiiiiiiiiiieees et e e e et e e ettt ettt ettt ettt e e e e e e e e e e e e e e e e e e eeaaaaaaaaaaaeaaaeaaeaeaaeennns 74
LSRG 700 1 o o] g A = T =SSP 5.
6.3.2 NAMESPACE IMPOITS ..ieiiiiiiiiie e eeeemcme ettt e e e e e e e e e e e et e rraa s s e e e aeeeatta s s eeeaeeesssnnneeeaaeenes 77
oI N2 T TS TS] 0 T2 Lol TSP 79
6.4.1 Namespace DECIAratiONSuiceeeee et e e e e e e r e e e e e e e annnes 80
6.4.2 NAMESPACE MEMIDELS. iei s ieeeeeeeee ettt e aae e s anaaasssessssssssssssssssssnnnennnennnnnnnes 81
A Y =2 OO PP P PP UPPTPPPPPPPP 83
7.1 Value Types and REErENCE TYPESuuuiiiieieeiiiiii et e e e e e e e e e e e e e e e e e e 83
7.2 Interface Implementation..............cccccee i A8
G T o 1] 1101 I8/ 01T PSSR 86
A = 1W] 1= =V 0] o L3RR 87
A R =t 18 g L= T Vi) o I\ =T 0] = PP 87
7.4.2 ENUMETALION VAIUESouviiiiiiiiis s sttt e e e e e e s sttt et e e e e s st e e e e e e e e s bbbt e e e e e e e e e e annbbnenees 88
A O = 1= =SSR 89
7.5.1 Class Base SPECITICALION.uuuiieieeieiiiiiiiie ettt e s n e e e e e e e e e e e e e s s e 92
7.5.2 ClaSS MEMDEIS ...ttt et e ettt e e e e e s seaaee et e e e e e e s bt bbb et e e e e e e e e e e nsnbbbeeeeeeas 92
7.6 SHUCLUIES ... e 93
7.6.1 SEIUCIUIE MEMDEIS ... e ettt mee et e e et eeeeeeseesseessenssennnnsnnnnnnnnes 93
A= = 1o F= 100 1Y, o T U] =3RRI 94
7.7.1 Standard MOAUIE MEMDEISooiiiieeee ettt e e e e e e e e bbb e e e e e e e e e aanes 95
A= T L1 (= =T =2 PSSP 96
A= T R () (=T = Yot o] =T =V g o 97
7.8.2 INEITACE IMEIMDEIS ...ttt ettt e e e e e e e ee e e e e e e e sttt e e e e e e e e e s ans bbb e e e eeeeas 98

ii Copyright © Microsoft Corporation 2005. All righteserved.

Table of Contents

e 2 £ - £ TSR 99
0 0 I T =T = (= 101
00 I = 1 1= LN =23 102
0 A 0T 1 U T 1= 0 I I/ = 051
7.12.1 Open TYPES and ClOSEA TYPESiiiieeeeeeeeiiiiiee e eee s e et e e e e s ee e e ee s e e e e e e e e e e e 105
7.13 SPECIAI TYPES ... itieiieeeee e e e et s 44ttt e 4444 e ettt e e e e e e e et e e e e e e e r e e e e e e e e e e eees 106
ST O0] 0177 €] [0 L TP EPPPRIP 107
8.1 Implicit and EXPIICIt CONVEISIONScooieiiiiiiiiieiiteiiieireeerearerer e —asaseeesssesssesessesressrrrsnrrnrnrrnnnes 107
8.2 B0O0IEan CONVEISIONSceiiiiiiiiietaeiaeee e eeeeeeeeeeeeeeeeeeeeeeeeeeeeesssessesennneeeeeeeeesseeeeeeeeeeeeeseeeeseesssesssssssnsd LO
RGN V[0 a 1T ¢ Tol @0 T 1Y/ €] o] o 108
8.4 RETEIENCE CONMVEISIONS ...ttt emmcmm ettt et e e e e e e e ettt e e e e e e s s smneeae e e e e s e st bbbt e e e e e e e e e e s nnbbbeeeeeaeeas 109
IR N4 = |V @0 8 V=T = (o L, 109
8.6 ValUe TYPE CONVEISIONS.....cceiiiiieee e e e s e e e e s 1 e e e e e e e e e e e e e e e eaa e e ennn eeaeeens 111
TS] o @01)Y /=T] o] o PP 114
8.8 WiIdENING CONVEISIONS......uiuiiiiiiiiiiiiemmrneeeeeeeeeeaeeaaeeaaaetaaete ettt ettt ettt taaaaaaaaaaaaaaaaaaaaaaaeeaaeeereerrerrtreerreees 114
IS I A=Y g 01T o To T O 0T 017 €] o] o 115
8.10 Type Parameter CONVEISIONSo ceeeeeeeieeieeeieetteaeteeeeeeaeneeeeeeeeaee e aeammneeeeseeeseeessessssnsnsesnnsnnnsnnnnen 116
8.11 USEr-defiN@d CONVEISIONS.cciiiiiieetie ettt ettt e e e e e e e e e e e e e s sttt et e e e e e e e s e s sbbbbeeeeaaaeeas 117
8.11.1 Most SPeCific WIAENING CONVEISIONceeerriiiiiiiieiiieee e e e e e e e e e e eeeeaeeeeas 118
8.11.2 Most SPECIfIC NAITOWING CONVEISION. .. cccmmriiiiiiiieiitteeeeeaaairr e e e e e e e s ssmmnr e e e e e e e s s e e eeeeaeeaaas 118
LS T 7 o T Y =T 0] o= 121
9.1 Interface Method IMPIEMENTALION.........ccoooiiii et eeeeaaees 121
LS B2 1V = 1 T o 124
9.2.1 Regular Method DECIArationS...........ceceeeeruuriimmmiee e e s 126
9.2.2 External Method DECIArationS.......... e eeeeiiiiitiiiiiiiee e es s eesseeteee e e e e e e s s s sanareeeeeeeeeeas 128
9.2.3 Overridable MethodSuueee e 129
o I B g F= T =To Y/ =7 g oo P 130
9.2.5 MEthOd Par@mMeLEIS........oiiiiiiiii ettt e e e e e e st e e s s s bbbt e e e e e e e e s s annnbbbeneeeeeeeeeaaans 130
S I T R L= 1D Lol =T = 1 01 (=T 130
9.2.5.2 ReferenCe ParameEterS. o i oot 130
9.2.5.3 OptioNal PAr@mMeterS........ccviviiiieeeeieee et ee e e 130
9.2.5.4 ParamAITay ParamMeterSuuuuii e eiiiiiee e eeee ettt s s e e e e e e ee bt sreee s s e e e e e e eeata e e e e eeeesnennnas 130
9.2.6 EVENE HANAING ...t oeemee e e e e e e e e e e e e e r e e e e e e e 130
S RGN 0] 4 1511 £ U [o1 (0] £ NN PP PP PP UTPPPPPPRP 130
9.3.1 INStANCE CONSIIUCLONSoeiiiiiiiiiiieee ittt e e e e e e et e e et e e e et e e et e et ee et eeeeeeeeeeeeeeees 130
1SRG T2 g F= 1 =0 B @ 0] 1= 1 0T 0] £ 130
18 B V=T o | £ ST TSURPPRR 130
O.4.1 CUSEOM EVEBNES ... ettt e e e e e e e e e e e e e et e e et e e e et e e e e e e e e e et e e e eeeeeeees 130
1S R T O0] 0151 = 1 | E TS UP P PUPTRRR 130
9.6 Instance and Shared Variables ... 130
9.6.1 Read-Only VariabIesuuuuiiiiieeee e 130
9.6.2 WItNEVENTS VATADIESeeiiiiiiii et 130
9.6.3 Variable INIIALIZELSeeeiiiiit ettt ettt ee e 130
9.6.3.1 ReQUIAT INITIANZETSceeiiiiii oottt e e e e e e e e e e e aannes 130
9.6.3.2 ODJECE INIIAIIZEISeviiieeiieeeit ettt eeeaeees 130
9.6.3.3 Array-Size INIANZEIS ... e e s 130
9.6.3.4 Array-Element INIIAIIZEIS. ... 130
9.6.4 System.MarshalByRefOb]ECt CIASSESccceeueiiiiiiiiiiiiiiiiiiiiiiiiiieriiee i enaeaeeeeereeserrrrrrrar. 130
0.7 PrOPEIIES ..., 130

Copyright © Microsoft Corporation 2005. All righteserved. ili

Visual Basic Language Specification

9.7.1 Get ACCESSOI DECIAIALIONS.cii it ieeeeee ettt e st e e e e e e s s s bbb areeeeeeeeeans 130
9.7.2 Set ACCESSOr DECIAratIONS ... ieeeeeeeiiiiii ittt ettt 130
O.7.3 DEfaUIt PrOPEITIESttt et e e e e e e e e e e e e e e s b e e e e e e e e e aaaaa 130
LS IS T O] =T -1 (o] £ 130
Lo IR T L aF= VA @ o L] = | o] = 130
9.8.2 BINAIY OPEIALOISeeeeiiiieeiiiieeeeeee et et e e e e e e s e e ettt e e e eaannr et e e e e e e e e e en e e e e e e e e s e s nnnrnenees 130
R R 0101 1V =T ETTo] W @] o= T = (] £ PP 130
L0, SEALEIMENTS ... iiiiiiiiiieiiiietitet ittt 4444+ o4 oo e e e e e e e e et e e et e e e et ettt et ettt e aaaaeaeeeeaaaaaaaaaaaaataaaaaaetaaaeatetaeeeeaaaaaeans 130
0 = T Yo S 3= UL I = o1 130
10.1.1 Local Variables and Parameters ... 130
10.2 Local Declaration StAtEMENTSuuuiiiiieeeeiiiiiiie et e e e s s st a e e e e e s s ssnbbe e e eeeaeeeasanes 130
10.2.1 Implicit LOCAl DECIArAtIONSceiiiiiiiiiiiiiiie it e e e e e e e e e e annreees 130
O V11 g TS = (T a1 o | 130
O S Y Tod 0Tl Q] = =] 1] | RSP 130
10.5 EVENE STAIEMENTS. ... e e 130
10.5.1 RAISEEVENt STAtEMENT........ oot ettt et e e eeeeeseeeseesseesetessnnnenneennne 130
10.5.2 AddHandler and RemoveHandler StatemMentS............ooovviiieeiiiiiiiiiiieeeeeeeeeeeee e 130
O NS o] =T 0 AR €= U= 1= £ 130
10.6.1 Regular ASSIgNMENT SEAIEMENTSciiiiiiiiiiiiiie e e e eeeeeas 130
10.6.2 Compound ASSIGNMENTt StAtEMENTS......ccceeeeereeieiee e e e e e e e e e e 130
10.6.3 Mid AsSIgNMENt STALEMENT ... 130
10.7 INVOCALION STATEIMENTSiiiiiie it eeeeeee ettt e et e e e e s s et e e e e e s e e bbbt e e e e e e e e e e s snnbbeeeees m3
O S @] g o 1o] gz IS F= U= 0 0T o1 130
10.8.1 If...TheN...EISE StAtEMENTS......iii i e e e e e e e eeaaeeeas 130
10.8.2 SeleCt...CaSE SLAEMIENTS et e e eeesasnittteeteeeaeeesssaabbeeeeeasaaaabteeereeeaeessaannanbseeeeaaaees 130
10.9 LOOP SEALEIMENTS ... e e s 130
10.9.1 While...End While and D0...LOOP Statements...........ccuvviiiiiieeiiiiiiiiiee e 130
10.9.2 FOr...NEXt STAIEIMENTSuiiii e e e e e e e e eas 130
10.9.3 FOr Each...NeXt StateMENLTS ceceaameeiieeee e e e e e e e 130
10.10 Exception-Handling STatemMENTS. e 130
10.10.1 Structured Exception-Handling StatemMeENtS...........uuuvivuriiiiiiiiiiiiiieenaaeesrererrreeren. 130
10.10.1.1 FINAIY BIOCKScciiiii e et e s e s nn e e annssnnsnannnnnnnas 130
10.10.1.2 CaAtCh BIOCKSoiiiiee e ettt 130
10.20.1.3 TRIOW SEAEIMENTuuiiiiiiiiie et cmmreee et e e e e e e e et e e e e e e e e s st e e e e e s s ab bbb e e e e e e e e e e s e nnnbeeeeees 130
10.10.2 Unstructured Exception-Handling StatementS...........uuuvuriueriimiiiniiiiiiee s svinesenennnennnennnns 130
10.20.2.1 ErrOr STAEMENT ...ttt e et reee e e e e e e e e et bt e e e e e e e eerenna e eeaaas 130
10.10.2.2 ON Error StAtEMENTottt e e e e e e e e e e e e e e e e eebb e e e e 130
10.10.2.3 RESUME SEAEIMENT......cciiiiiiiiieii ettt e e e e et et e e et et e e et e et eeeeeeeeeeeenees 130
O A T T IR = 1= 1 1= 0 SRS a3
10.12 Array-Handling STALEMENTS v e eeiitite e e e et e e e e s e e e e e e e s s reeeeeeeeeaannes 130
10.12.1 REDIM SEAIEIMENT. ...ciiiiiiiiiiiiiit ettt e st e e e e e e e s ranree e e e e e e s bbb et e e e e e e e e aanabneeees 130
10.12.2 Erase SEAEIMENTottt ettt ettt bttt bbbt b b beeeeee e ettt ettt et eeeeeeestessseesbaenbesennee 130
10.13 USING STAIEIMENT.eeeiiieiiiiiititeeeee ettt e e e e e e e e e e e eeasas e e et e e e e e e e s n s e e e e e e e e e e e nannnnneees 130
3 o1 (2511 o] o PP P PP RPP P PPPPPRRRP 130
11.1 EXPression ClasSIfiCAtIONScommmeeeeeeerereerriruuererierrrerere.. . ———————eseeeerreerrmr.r.———————————————. 130
11.1.1 Expression RecClassSifiCation ... 130
I O o1 o T T o] (=151 (o] LSS a3
11.3 Late-BOUNA EXPIrESSIONSuuuiiiiciieeeeeee ettt e aaes 130

11.4 Simple Expressions

iv Copyright © Microsoft Corporation 2005. All righteserved.

Table of Contents

0 I I (=T o T e o] 111 [LS PPPP 130
11.4.2 ParentNeSiZed EXPIrESSIONS.ciiimcceestiieeiee e e ettt e e e e e mn e e e e e s e et e e e e e e e eannnnees 130
11.4.3 INSLANCE EXPIESSIONS ...ttt ettt e e e e et e e e e e e e e s smmmn et e e e e e e e e s bbb e e e e e e e e e e e e aannnnnnees 130
11.4.4 SIMPIE NAME EXPIrESSIONSuueutt s eeeeeeevesssasssssssssssssssssssssssresenseessssssssssssersrmrrmrr. 130
11.4.5 AAAreSSOf EXPIrESSIONScccoeiiiei e e e 130
11.5 TYPE EXPIESSIONScciiiiiiitiiiee e e mmmmn ettt e e et e ettt e e e e e e e e e e e e ee e s s s e e et e e e e e e e e nnnn e e e e aeeean 130
I A 1= I/ o L= bt o] 1SS [1S 130
11.5.2 TYPEOS...IS EXPIrESSIONScoiii i ettt ettt e e e e et e e e e e e e e eeteeeeeeeeeeeeeeeeeeeeeeees 130
B R B g o o 11 [0 LSRR PPRRPRRRR m3
11.6 Member ACCESS EXPIESSIONS ... e 130
11.6.1 Identical Type and MemBDer NGAMES..... e errrruuririiiniiiiuee e anaareerrrrrrrr—————. 130
11.6.2 Default INSTANCEScooiiiiiei e s 130
11.6.2.1 Default Instances and TYPe NAIMES ...coccriiiiiiiiiie e 130
G €1 0T U o =T o 130
11.7 DictioNary MeEMDEE ACCESS.ccii i i i ieeeeeeetietieeet e e aaa—e e s a—aansssesssssssssssessssnrssrennnennnnnnnns 130
11.8 INVOCALION EXPIESSIONSccceeiiieeet o ettt et e e e e e sttt e e e e e s s s mmmeee e e e e s s bbb e et e et e e e e e e e annnnn e eeeeeeas 130
11.8.1 Overloaded Method ReSOIULION..........cooiiiiiiiiiiiiiiiii et eeeeeeeeeeeennnes 130
11.8.2 Applicable METNOUS. ... e 130
11.8.3 PASSING PArBMETEISeiiiiiiiieiememe ittt e e e e e e e e e et e e e e e e e e nnnnees 130
11.8.4 Conditional MethOAS ...t eeeeeeeeeeeeeeeeeeseeesnenenneennne 130
11.8.5 Type ArgumeENt INFEIENCE........... ..o e e e et eee e e s e e aa e e e e e e 130
B I 1T oG bt o] £ =TS 1] 1 130
11.010 NEW EXPIESSIONS.ceiiiiiiiieiiieeit et et ettt ettt ettt ettt et eeteeeteeeeeesameeeeeeeeeeaeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeees 3
11.10.1 ObjecCt-Creation EXPrESSIONSu et i i e ee e e e e e e e e e a e e e e aaaaaaaaeas 130
11.10.2 Array-Creation EXPre@SSIONScci e 130
11.10.3 Delegate-Creation EXPrESSIONS.couuiuar ittt e s st e e e e e e e s 130
11,10 CaASt EXPIESSIONSueeeiiiieeieiiiiereeeeessee et e et e e e e e s e e et e e e e e e s s s neeeee e s e s e sb e s ae e et e e e e e e s e nnnnnnreeeaeeenn 130
B I @ o 1= oY o] gl = d o (=S T] 0] RSP 130
11.12.1 Operator Precedence and ASSOCIALIVITY.ueiiieeeiiiiiiiiiiiiieee e e e e e e e e e 130
0 2 @] o] [Tt A @ 1= =Yg o R 130
I R A @] o T=T o (o] gl =TS 1)1] o 130
0 AN 41 {0 = o @ =T = 0] =R 130
11.23.2 UNAIY PIUS OPEIALOTceeeiiieiiimmmmeeeieeeeeeeaaaeiisse ettt e e e e e e s s e e e e s bs e e e e e e e e e s e e nnnnnneeeeaaeeens 130
11.13.2 UNArY MiNUS OPEIALOT........uvveeeiiieeeeeeiee s iee s e et e e e s e aaa e e s s s s s s s s e e s e s e s e e e s e e e aaeaaaaeaaaens 130
B R Vo o [0 g N @ 01T =1 (o] P 130
11.13.4 SUDIrACION OPEIALONeeeiiieeiiceeeeee et ee e e e ettt e e e e e e s e e e e e r et e e e e e e e s reeeeaeeens 130
11.13.5 MUIIPICAION OPEIALON ...ttt e e e e e e e e e e e e e e e e e e eeeans 130
I R O D)Y][0 N @ =T = (] TP 130
11.23.7 MOO OPEIALONcceiiiiiiiiieee et eeeeee ettt e e e e e s e e e e e e e e e e s e e e e e s s s bbb e e e e et e e e e e e e e s nnreeeeeeeas 130
11.13.8 EXPONENtIAtioN OPEIALONetceemmm et eeeeeeaiist et e e e e e e e s e e s s ess e e e e e e e e e s s nnnnnneeeeaaeeas 130
11.14 REIAtIONAI OPEIALOISuuuiee i cmmmmmm et e ettt e e e e e e e e e e e e e e e e e e e aaaaaaeaaaaaaaaaaaaaeaaaeeess a3
I R I ST @] o= = 1 (o PP 130
i L o) g Toro N =T Fo Ui (o] @ 01T = 1o PR 130
0 A o T o= TR @ 01T =1 0] = PP 3
11.17.1 Short-circuiting LOQICal OPEIatOrS....ccueeueivverrierirriiiiriiiiiurerrrraneeeeee enanneeeeerrerrrr————. 130
11.18 St OPEIALOIS.....coiiiiiitieee ettt et e e e e e s e e e e e e s e s e et e e e e e e e e s nnnbnnnneeeeeeeesaans 130
R S ToTo] [T Lo @] o 1] = 1o] £ P m3
12. DOCUMENTAtION COMMENTSiiiiiiiiiiiitit et e e ettt et e e e e e s s s bbb e ettt e s s ssss bbb ettt e e e e e e s sannbbeeeeeaeeeeeeaanns 130
12.1 Documentation COMMENT FOMMAL..........iceeaaareeee ittt e s et e e e e e e e s s e eeeeeas 130
12.2 RECOMMENUEU TGS ..o e ittt s cmmmmmm ettt e e e e et et e et e e e e e e s mm e e e e e e e e s e s bbb n e e e et e e e e e e e e nnnn e e e e eeeas 130

Copyright © Microsoft Corporation 2005. All righteserved. \'

Visual Basic Language Specification

D R o PP PP PPOPPUPPPPPPPN 130
12.2.2 KCOUB> ... e 130
R B = = 1 0] 0] L= >SS SRR m3
= (ol = o] 10 DR a3
12.2.5 KINCIUOESooiiiiiiieiiiitie e+ttt et e e e e e et b ettt e e e ees bbbttt e e e e e e e e e ann bt abeeeeeeeeeesanne 130
D ST 1] USSP PRERPRN 130
A (S o - - b SR PPRRRS 130
S T o = -1 DS PPPRT 130
e I o = = 0 11 =) USRS SRR m3
12.2.00 SPEIMISSIONuiieiiiiieeit it eeeeaaat bt e et e e e e e e e e s e e e e et e e e e s s s nneeee e e s e e s s b be e e e e e e e e e e e e e nnnnnnreeeeeeeas 130
D B R =1 0 F= 14 PP P PP PPPPPR a3
D2.2.02 SIEUUIMIS S ...ttt e ettt e e e ettt et b e e e e et e et bbb s oaaaaaeeeeeesesba e e e eeeeenebbannaaeaaaeeesnnns 3aL
i R IS =T > TSP PRSPPI 130
12.2.04 KSERAISOSeiiiieiiiiie ettt e e ettt e e e e et e et e e e e e e reeaeas 30aL
A RS TR S 0 1=V PR 130
12.2.16 SEYPEPAIAIMIiiiiii oo s 141 e s 130
L2.2.07 QUAIUEScoiiie ettt et e e et e e ettt e e e e e e e e e ate et e e e eaaaaasssssaeeeaaeeeeesannssaneaaaeaeeeesannnns 130
T | I 1 1T 130
12.3.1 1D SrNG EXAMPIES. ...t e e e e e e e e e e e s s e e et e e e e e e e e e eeeas 130
12.4 Documentation COMMENLS EXAMPIE i e e 130
13, GramMAr SUMIMATY . ..ieeeuuuue it eeeeeeeeaauummmm e eeseeeeaeas i eeaeeeeeesta e aaeteeetssaaaaaeaeteensstanaaeeteeenssnnnaseeeaaeenes a3
131 LeXICAl GIAMMA ...ccciiiiiiiiiiiei et eeeeee ettt e e e e e ettt e e e e e e s s e bbbt e e e e e sb bbb e et et e e e e e e e aanbbbeneeeeeaeeeaaans 30aL
R I I O g P = o (T 3= T T I = 130
R B0 2 [0 =T o1 1= P EP TP 130
R I T =Y 110 {0 30
R 0 = > R, 130
13.2 PreproCeSsSINg DIFECHIVES.coi ittt e e e e e e e r et e e e e e e s eeeaeeas 130
13.2.1 Conditional COMPIIALIONuueimmmme e 130
13.2.2 EXErnal SOUICE DIFECHIVESe e e e eeeeeeeee aaa e s e s e e e s e e s e e e e e e e e e e e e e aaaaeeaaeens 130
13.2.3 REQION DIFECLIVESciiiiieiii ettt e et e e e e s e et e e e e e e e nn e e e e eeeeeas 130
13.2.4 External ChecCkSUM DIFECHIVESccceeeeiieiiiiiiiiiieice ettt e st e e e e s 130
13.3 SYNLACHC GIaMMATccciiiiieei e e e e e e ettt e aaaaaaaaaaaaaeaaeeees a3
RS R 0 N 11] o 1) =2 130
13.3.2 Source Files and NamMESPACES........uccciieeei i 130
G T J0C B I8/ o T2 SRR 130
13.3.4 TYPE MEIMDEIS. ..ottt e ettt ettt et e e e e e e e e e e e e s e e e et e e e e e e e e n e e e e e eeeeas 130
TR IR SRS =1 =11 01T o T PP PP PPPPTTTR 130
RS R L G T o (=11 (o] 1 30
L4, CRANGE LISt ...t e ettt e e e e et ettt et e e e eemr et e e e e e e e e nn e et e e e e e e e e nnnrn e e e e e aannn 130
I I = o o] F= g o =2 PRSP 130
0 Y/] s o g o] = 1 o = PP 130
14.3 ClarifiCAtIONS/EITALA. ..ottt ieeee ettt e e e e e e ettt e e e e e ees et e e e e e e e e e e bbb b e e e e e e e e e e e e nnnnaeeees 130
I LS T ot = | = g =T oL PRSP 130

Vi

Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

1. Introduction

The Microsof® Visual Basi® programming language is a high-level programmamgliage for the Microsoft
.NET Framework. Although it is designed to be aprapchable and easy-to-learn language, it is algagul
enough to satisfy the needs of experienced progeamihe Visual Basic programming language hasitagy
that is similar to English, which promotes the ityaand readability of Visual Basic code. Wherepessible,
meaningful words or phrases are used instead aéaialtions, acronyms, or special characters. Egtvas or
unneeded syntax is generally allowed but not regluir

The Visual Basic programming language can be edlstrongly typed or a loosely typed language. Boos
typing defers much of the burden of type checkingl @ program is already running. This includes oy
type checking of conversions but also of methotscaleaning that the binding of a method call canléferred
until run-time. This is useful when building protpes or other programs in which speed of developisen
more important than execution speed. The VisuaidBa®gramming language also provides strongly dype
semantics that performs all type checking at coenfithe and disallows run-time binding of methodsarhis
guarantees maximum performance and helps ensurgypeaconversions are correct. This is useful when
building production applications in which speedegécution and execution correctness is important.

This document describes the Visual Basic langukigemeant to be a complete language descripttrer
than a language tutorial or a user's reference atanu

1.1 Grammar Notation

This specification describes two grammars: a léxjcammar and a syntactic grammar. The lexical gnam
defines how characters can be combined to forrmtkhe syntactic grammar defines how the tokensdea
combined to form Visual Basic programs. There &8e several secondary grammars used for preprocessi
operations like conditional compilation.

Note The grammars in this specification are desigodae human readable, not formal (that is, usaple b
LEX or YACC).

All of the grammars use a modified BNF notationjakihconsists of a set of productions made up ofiteal
and non-terminal names. A terminal name represergor more Unicode characters. Each nontermimagéria
defined by one or more productions. In a productimmterminal names are showritiaic type, and terminal
names are shown infa xed-width type. Textin normal type and surrounded by angle-tetoketasymbols
are informal terminals (for example, "< all Unicodearacters >"). Each grammar starts with the monitel
Sart.

Case is unimportant in Visual Basic programs. fopBcity, all terminals will be given in standacasing, but
any casing will match them. Terminals that aretpbie elements of the ASCII character set are semted by
their corresponding ASCII characters. Visual Basialso width insensitive when matching terminalkwing
full-width Unicode characters to match their halfith Unicode equivalents, but only on a whole-tokesis. A
token will not match if it contains mixed half-widand full-width characters.

A set of productions begins with the name of a eoninal, followed by two colons and an equal sifime right
side contains a terminal or nonterminal product®monterminal may have multiple productions that a
separated by the vertical-bar metasymbol (]). Itewisided in square-bracket metasymbols ([]) artsoopl. A
plus metasymbol (+) following an item means theniteay occur one or more times.

Line breaks and indentation may be added for rebiyadind are not part of the production.

Copyright © Microsoft Corporation 2005. All righteserved. 1

Visual Basic Language Specification

1.2 Compatibility

An important feature of a programming languageoi®gatibility between different versions of the laage. If
a newer version of a language does not acceptthe sode as a previous version of the languagetesprets
it differently than the previous version, then adan can be placed on a programmer when upgradrgpte
from one version of the language to another. A& scempatibility between versions must be preseesapt
when the benefit to language consumers is of a aled overwhelming nature.

The following policy governs changes to the VisBakic language between versions. The term langudgms
used in this context, refers only to the syntaatid semantic aspects of the Visual Basic languagh and
does not include any .NET Framework classes indwdea part of theicrosoft.visualBasic namespace
(and sub-namespaces). All classes in the .NET Fwamkeare covered by a separate versioning and
compatibility policy outside the scope of this domnt.

1.2.1 Kinds of compatibility breaks

In an ideal world, compatibility would be 100% beem the existing version of Visual Basic and allife
versions of Visual Basic. However, there may beagibns where the need for a compatibility brealy ma
outweigh the cost it may impose on programmershSitoations are:

* New warnings. Introducing a new warning is not, g&ra compatibility break. However, because many
developers compile with “treat warnings as errousiied on, extra care must be taken when introducin
warnings.

* New keywords. Introducing new keywords may be nemgswhen introducing new language features.
Reasonable efforts will be made to choose keywiratsminimize the possibility of collision with usé
identifiers and to use existing keywords whereakes sense. Help will be provided to upgrade ptejec
from previous versions and escape any new keywords.

» Compiler bugs. When the compiler’s behavior isddowith a documented behavior in the language
specification, fixing the compiler behavior to matbe documented behavior may be necessary.

» Specification bug. When the compiler is consisteitlh the language specification but the language
specification is clearly wrong, changing the larggiapecification and the compiler behavior may be
necessary. The phrase “clearly wrong” means tleatitftumented behavior runs counter to what a alagr
unambiguous majority of users would expect and yced highly undesirable behavior for users.

» Specification ambiguity. When the language spediion should spell out what happens in a particular
situation but doesn’t, and the compiler handlessthetion in a way that is either inconsistentlearly
wrong (using the same definition from the previpomt), clarifying the specification and correctitinge
compiler behavior may be necessary. In other wavtien the specification covers cases a, b, d ahdte,
omits any mention of what happens in case c, anddmpiler behaves incorrectly in case c, it may be
necessary to document what happens in case ¢ andelthe behavior of the compiler to match. (Noé t
if the specification was ambiguous as to what happe a situation and the compiler behaves in angan
that is not clearly wrong, the compiler behaviocdraes the de facto specification.)

» Making run-time errors into compile-time errors.drituation where code is 100% guaranteed t@fail
runtime (i.e. the user code has an unambiguousnbitly it may be desirable to add a compile-timee
that catches the situation.

» Specification omission. When the language spetifinadoes not specifically allow or disallow a peutar
situation and the compiler handles the situatioa way that is undesirable (if the compiler behawas
clearly wrong, it would a specification bug, nat@ecification omission), it may be necessary tafglghe
specification and change the compiler behavioaddition to the usual impact analysis, changehisf t
kind are further restricted to cases where the @hphthe change is considered to be extremelymanhi
and the benefit to developers is very high.

2 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

New features. In general, introducing new featstesuld not change existing parts of the language
specification or the existing behavior of the cdepiln the situation where introducing a new featu
requires changing the existing language speciinaguch a compatibility break is reasonable dnilya
impact would be extremely minimal and the bendfihe feature is high.

Security. In extraordinary situations, security o@ams may necessitate a compatibility break, sach a
removing or modifying a feature that is inherentlyecure and poses a clear security risk for users.

The following situations are not acceptable reagonmtroducing compatibility breaks:

Undesirable or regrettable behavior. Language desmigompiler behavior which is reasonable but
considered undesirable or regrettable in retrogpauit a justification for breaking backward cortilpisity.
The language deprecation process, covered belogt, Imuwised instead.

Anything else. Otherwise, compiler behavior remdiaskwards compatible.

1.2.2 Impact Criteria

When considering whether a compatibility break rigg acceptable, several criteria are used tordeter
what the impact of the change might be. The greagemmpact, the higher the bar for accepting the
compatibility breaks.

The criteria are:

What is the scope of the change? In other words,rhany programs are likely to be affected? How many
users are likely to be affected? How common witlgtto write code that is affected by the change?

Do any workarounds exist to get the same behavior o the change?

How obvious is the change? Will users get immedigteback that something has changed, or will their
programs just execute differently?

Can the change be reasonably addressed duringde®gisit possible to write a tool that can find th
situation in which the change occurs with perfettuaacy and change the code to work around thegetfan

What is the community feedback on the change?

1.2.3 Language deprecation

Over time, parts of the language or compiler mayob®e deprecated. As discussed previously, it is not
acceptable to break compatibility to remove sugtreleated features. Instead, the following step4 fneis
followed:

Given a feature that exists in versidof Visual Studio, feedback must be solicited fribma user
community on deprecation of the feature and futlagogiven before any final deprecation decisioméde.
The deprecation process may be reversed or abash@baay point based on user community feedback.

A full version (i.e. not a point releasB)of Visual Studio must be released with compilermags that
warn of deprecated usage. The warnings must bg default and can be turned off. The deprecationstm
be clearly documented in the product documentatr@hon the web.

A full versionC of Visual Studio must be released with compilernirags that cannot be turned off.

A full versionD of Visual Studio must subsequently be releasel thi¢ deprecated compiler warnings
converted into compiler errors. The releas® ahust occur after the end of the Mainstream Supploaise
(5 years as of this writing) of release

Finally, a versiorkE of Visual Studio may be released that removestimepiler errors.

Copyright © Microsoft Corporation 2005. All righteserved. 3

Visual Basic Language Specification

Changes that cannot be handled within this depmecitamework will not be allowed.

4 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

2. Lexical Grammar

Compilation of a Visual Basic program first invodsganslating the raw stream of Unicode charadtéosan
ordered set of lexical tokens. Because the VisaaiBlanguage is not free-format, the set of toketisen
further divided into a series of logical linesla@gical line spans from either the start of the stream orea lin
terminator through to the next line terminator tisatot preceded by a line continuation or throtathe end of
the stream.

Sart ::= [LogicalLine+]

LogicalLine ::= [LogicalLineElement+] [Comment] LineTerminator
LogicalLineElement ::= WhiteSpace | LineContinuation | Token

Token ::= Identifier | Keyword | Literal | Separator | Operator

2.1 Characters and Lines
Visual Basic programs are composed of charactens the Unicode character set.

Character ::= < any Unicode character exceptiaeTerminator >

2.1.1 Line Terminators
Unicode line break characters separate logicasline
LineTerminator ::=
< Unicode carriage return character (0x000D) > |
< Unicode linefeed character (Ox000A) > |
< Unicode carriage return character > < Unicadeféed character > |

< Unicode line separator character (0x2028) > |
< Unicode paragraph separator character (0x2029) >

2.1.2 Line Continuation

A line continuation consists of at least one white-space charactemtimediately precedes a single underscore
character as the last character (other than wpiteey in a text line. A line continuation allowkogical line to
span more than one physical line. Line continuatiare treated as if they were white space, evargththey
are not.
The following program shows some line continuations
Module Test
Function Func(_
Byval Paraml As Integer

Byval Param2 As Integer)

If (Paraml < Param2) Or _
(Paraml > Param2) Then
console.writeLine("Not equal™)
End If

Copyright © Microsoft Corporation 2005. All righteserved. 5

Visual Basic Language Specification

End Function
End Module

LineContinuation ::= WhiteSpace _ [WhiteSpacet+] LineTerminator

2.1.3 White Space
White space serves only to separate tokens and is otherwiswegl. Logical lines containing only white space
are ignored.

Note Line terminators are not considered white space.

WhiteSpace ::=
< Unicode blank characters (class Zs) > |
< Unicode tab character (0x0009) >

2.1.4 Comments

A comment begins with a single-quote character or the kegvg@M. A single-quote character is either an
ASCII single-quote character, a Unicode left singl®te character, or a Unicode right single-qubtracter.
Comments can begin anywhere on a source line fenertd of the physical line ends the comment. The
compiler ignores the characters between the beggrofithe comment and the line terminator. Consetiye
comments cannot extend across multiple lines lbygugie continuations.

Comment ::= CommentMarker [Character+ |
CommentMarker ::= SingleQuoteCharacter | REM

SngleQuoteCharacter ::=
"

< Unicode left single-quote character (0x2018) >
< Unicode right single-quote character (0x2019) >

2.2 ldentifiers

An identifier is a name. Visual Basic identifiers conform to thdécode Standard Annex 15 with one exception:
identifiers may begin with an underscore (conngatbaracter. If an identifier begins with an unders, it
must contain at least one other valid identifiesreleter to disambiguate it from a line continuation

Regular identifiers may not match keywords, buapsd identifiers or identifiers with a type chaesiatan. An
escaped identifier is an identifier delimited by square brackets.dpsd identifiers follow the same rules as
regular identifiers except that they may match kexgls and may not have type characters.

This example defines a class nane@dss with a shared method namshlared that takes a parameter named
boolean and then calls the method.

Class [class]
Shared sub [shared](Byval [boolean] As Boolean)
If [boolean] Then
console.writeLine("true™)
Else
console.writeLine("false")
End If
End Sub
End Class

6 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

Module [module]
Sub Main(Q)
[class].[shared] (True)
End Sub
End Module

Identifiers are case insensitive, so two identfigre considered to be the same identifier if thiffgr only in
case.

Note The Unicode Standard one-to-one case mappirgssaéd when comparing identifiers, and any
locale-specific case mappings are ignored.

Identifier ::=
NonEscapedidentifier [TypeCharacter | |

Keyword TypeCharacter |
Escaped| dentifier

NonEscapedidentifier ::= <IdentifierName but notKeyword >
Escapedidentifier ::= [ldentifierName]

IdentifierName ::= IdentifierSart [IdentifierCharacter+ |
IdentifierSart ::=

AlphaCharacter |
UnderscoreCharacter |dentifier Character

Identifier Character ::=
UnderscoreCharacter |
AlphaCharacter |
NumericCharacter |
CombiningCharacter |
FormattingCharacter

AlphaCharacter ::=
< Unicode alphabetic character (classes Lu, LILht, Lo, NI) >

NumericCharacter ::= < Unicode decimal digit character (class Nd)

CombiningCharacter ::= < Unicode combining character (classes Mn) M
FormattingCharacter ::= < Unicode formatting character (class Cf) >
UnderscoreCharacter ::= < Unicode connection character (class Pc) >

IdentifierOrKeyword ::= Identifier | Keyword

2.2.1 Type Characters

A type character denotes the type of the preceding identifier. iyjpe character is not considered part of the
identifier. If a declaration includes a type ch&eacthe type character must agree with the typeipd in the
declaration itself; otherwise, a compile-time emocurs. If the declaration omits the type (forrapéte, if it
does not specify ans clause), the type character is implicitly substitlias the type of the declaration.

No white space may come between an identifier ype character. There are no type charactemsy/fos,
SByte, UShort, Short, UInteger oruULong, due to a lack of suitable characters.

Copyright © Microsoft Corporation 2005. All righteserved. 7

Visual Basic Language Specification

Appending a type character to an identifier thatogptually does not have a type (for example, aaispace
name) or to an identifier whose type disagrees thightype of the type character causes a compile-@rror.

The following example shows the use of type charact
" The follow 1line will cause an error: standard modules have no type.
Module Testl#

End Module

Module Test2
' This function takes a Long parameter and returns a String.
Function Func$(Byval Param&)
' The following Tine causes an error because the type character
' conflicts with the declared type of StringFunc and LongParam.
Func# = CStr(Param@)
' The following Tine 1is valid.
Func$ = cstr(Param&)
End Function

End Module

The type character presents a special problem in that it can be be#uas a type character and as a separator
in the language. To remove ambiguity, aharacter is a type character as long as the cieatthat follows it
cannot start an identifier. If it can, then theharacter is a separator, not a type character.

TypeCharacter ::=
Integer TypeCharacter |
LongTypeCharacter |
Decimal TypeCharacter |
SngleTypeCharacter |
DoubleTypeCharacter |
StringTypeCharacter

Integer TypeCharacter ::= %
LongTypeCharacter ::= &
Decimal TypeCharacter ::= @
SngleTypeCharacter ::= !
DoubleTypeCharacter ::= #
SringTypeCharacter ::= $

2.3 Keywords

A keyword is a word that has special meaning in a languagstauct. All keywords are reserved by the
language and may not be used as identifiers utllesslentifiers are escaped.

Note EndIf, GoSub, Let, variant, andwend are retained as keywords, although they are ngelonsed
in Visual Basic.

Keyword ::= < member of keyword table >

8 Copyright © Microsoft Corporation 2005. All righteserved.

AddHandler
AndAlso
Byte

Catch
CDate

CInt

Const

cSng

cuLng
Declare
DirectCast
Else

Enum

Exit
Friend
Global

If
Inherits
IsNot

Long
Module
MyClass
Next
NotOverridable
Operator
OrElse
ParamArray
Protected
ReDim
Return
Shadows
Static
Structure
Throw
TryCast
usShort
when
withEvents

Copyright © Microsoft Corporation 2005. All righteserved.

Addressof
As

Byval
CBool
CDb1
Class
Continue
Ccstr
Cushort
Default
Do

Elself
Erase
False
Function
GoSub
Implements
Integer
Let

Loop
MustInherit
Namespace
Not
Object
Option
Ooverloads
Partial
Public
REM

SByte
Shared
Step

Sub

To

Typeof
Using
whiTe
writeonly

Alias
Boolean
call

CByte

CDhec

CLng
CSByte
CType

Date
Delegate
DoubTle

End

Error
Finally
Get

GoTo
Imports
Interface
Lib

Me
Mustoverride
Narrowing
Nothing

of
Ooptional
overridabTle
Private
RaiseEvent
RemoveHandTer
Select
Short

Stop
SyncLock
True
UInteger
variant
widening
Xor

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

And
ByRef
Case
CChar
Char
CObj
CShort
CUInt
Decimal
Dim

Each
EndIf
Event
For
GetType
Handles
In

Is

Like

Mod
MyBase
New
NotInheritable
on

or
overrides
Property
Readonly
Resume
Set
Single
String
Then

Try
uLong
wend
with

Visual Basic Language Specification

2.4 Literals

A literal is a textual representation of a particular valfia type. Literal types include Boolean, intedlerating
point, string, character, and date.

Literal ::=
BooleanLiteral |
IntegerLiteral |
FloatingPointLiteral |
SringLiteral |
CharacterLiteral |
Dateliteral |
Nothing

2.4.1 Boolean Literals
True andFalse are literals of th@oolean type that map to the true and false state, reispdct
BooleanLiteral ::= True | False

2.4.2 Integer Literals

Integer literals can be decimal (base 10), hexat#dibase 16), or octal (base 8). A decimal intdiggnal is a
string of decimal digits (0-9). A hexadecimal laeis&H followed by a string of hexadecimal digits (0-9FA
An octal literal is&0 followed by a string of octal digits (0-7). Decihti¢erals directly represent the decimal
value of the integral literal, whereas octal andduecimal literals represent the binary value efititeger
literal (thus&H8000s is —32768, not an overflow error).

The type of a literal is determined by its valuéwgrthe following type character. If no type chaesags
specified, values in the range of theteger type are typed aenteger; values outside the range fomteger
are typed asong. If an integer literal's type is of insufficierize to hold the integer literal, a compile-time
error results.

Annotation

There isn't a type character fByte because the most natural character woulsl, lwghich is a legal character
in a hexadecimal literal.

IntegerLiteral ::= IntegralLiteralValue [Integral TypeCharacter |
IntegralLiteralValue ::= IntLiteral | HexLiteral | OctalLiteral

Integral TypeCharacter ::=
ShortCharacter |
UnsignedShortCharacter |
IntegerCharacter |
Unsignedi nteger Character
LongCharacter |
UnsignedLongCharacter |
Integer TypeCharacter |
LongTypeCharacter

ShortCharacter ::= s
UnsignedShortCharacter ::= US
IntegerCharacter ::= I

10 Copyright © Microsoft Corporation 2005. All righteserved.

Unsignedinteger Character ::= UI
LongCharacter ::= L
UnsignedLongCharacter ::= UL
IntLiteral ::= Digit+

HexLiteral ::= & H HexDigit+
OctalLiteral ::= & 0 OctalDigit+

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

Digit ==0 |1 |23]4]5]6]7]8]9
HexDigit :=0 |1]2 |3 |4]5]6|7|8|9|A|B|C]|D]|E]|F
OctalDigit 5= 0 [1 |2 |3 4|56 |7

2.4.3 Floating-Point Literals

A floating-point literal is an integer literal falved by an optional decimal point (the ASCII perabdiracter)
and mantissa, and an optional base 10 exponerteRyilt, a floating-point literal is of tygmuble. If the
Single, Double, orbecimal type character is specified, the literal is ofttiype. If a floating-point literal's
type is of insufficient size to hold the floatingipt literal, a compile-time error results.

Annotation:

It is worth noting that theecimal data type can encode trailing zeros in a value. Sifecification currently
makes no comment about whether trailing zerosbacimal literal should be honored by a compiler.

FloatingPointLiteral ::=

FloatingPointLiteralValue [FloatingPointTypeCharacter | |

IntLiteral FloatingPointTypeCharacter

FloatingPointTypeCharacter ::=
SngleCharacter |
DoubleCharacter |
DecimalCharacter |
SngleTypeCharacter |
DoubleTypeCharacter |
Decimal TypeCharacter

SngleCharacter ::= F
DoubleCharacter ::= R
DecimalCharacter ::= D

FloatingPointLiteral Value ::=
IntLiteral . IntLiteral [Exponent] |
. IntLiteral [Exponent] |
IntLiteral Exponent

Exponent ::= E [Sgn] IntLiteral
Sgn =+ | -

Copyright © Microsoft Corporation 2005. All righteserved.

11

Visual Basic Language Specification

2.4.4 String Literals

A string literal is a sequence of zero or more dde& characters beginning and ending with an ASQibée-
guote character, a Unicode left double-quote charaor a Unicode right double-quote character hilit
string, a sequence of two double-quote characieas escape sequence representing a double qubée in
string. A string constant is of tlstring type.

Module Test

Sub Main(Q)
' This prints out: "
console.writeLine("""")

' This prints out: a"b.
console.writeLine("a""b")

' This causes a compile error due to mismatched double-quotes.
console.writeLine("a"b™)
End Sub
End Module

Each string literal does not necessarily resudt irew string instance. When two or more stringditethat are
equivalent according to the string equality oparating binary comparison semantics appear indhges
program, these string literals refer to the samegsinstance. For instance, the output of theofeihg program
is True because the two literals refer to the same sinisigince.

Module Test
Sub Main()
Dim a As Object = "hello"
Dim b As Object = "hello"
console.writeLine(a Is b)
End Sub
End ModuTe

SringLiteral ::=
DoubleQuoteCharacter [SringCharacter+ | DoubleQuoteCharacter

DoubleQuoteCharacter ::=

n |
< Unicode left double-quote character (0x201Q) >
< Unicode right double-quote character (0x201D) >

SringCharacter ::=
< Character except forDoubleQuoteCharacter > |
DoubleQuoteCharacter DoubleQuoteCharacter

2.4.5 Character Literals

A character literal represents a single Unicodeatttar of thechar type. Two double-quote characters is an
escape sequence representing the double-quotectgrara

Module Test

Sub Main(Q)
12 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

This prints out: a.
console.writeLine("a"c)

This prints out:
Console.writeLine(""""c)

End Sub

End Module

CharacterLiteral ::= DoubleQuoteCharacter SringCharacter DoubleQuoteCharacter ¢

2.4.6 Date Literals

A date literal represents a particular momentriretexpressed as a value of there type. The literal may
specify both a date and a time, just a date, argjtisne. If the date value is omitted, then Japdaof the year 1
in the Gregorian calendar is assumed. If the tialaevis omitted, then 12:00:00 AM is assumed.

To avoid problems with interpreting the year valua date value, the year value cannot be twodigithen
expressing a date in the first century AD/CE, lagdieros must be specified.

A time value may be specified either using a 24rh@lue or a 12-hour value; time values that omitma or
PM are assumed to be 24-hour values. If a time vaoiés the minutes, the liter@lis used by default. If a time
value omits the seconds, the liteddb used by default. If both minutes and secondarited, themm or PM
must be specified. If the date value specifieduiside the range of ttimte type, a compile-time error occurs.

The following example contains several date literal
Dim d As Date

d = # 8/23/1970 3:45:39AM #
d = # 8/23/1970 # ' Date value: 8/23/1970 12:00:00AM.
d = # 3:45:39AM # ' Date value: 1/1/1 3:45:39AM.
d = # 3:45:39 # ' Date value: 1/1/1 3:45:39AM.
d =# 13:45:39 # ' Date value: 1/1/1 1:45:39pPMm.
d = # 1AM # ' Date value: 1/1/1 1:00:00AM.
d=# 13:45:39P™ # ' This date value 1is not valid.
DatelLiteral ::= # [Whitespacet] DateOrTime [Whitespace+ | #
DateOrTime ::=
DateValue Whitespacet+ TimeValue |
DateValue |
TimeValue
DateValue ::=

MonthValue / DayValue / YearValue |
MonthValue - DayValue - YearValue

TimeValue ::=
HourValue : MinuteValue [: SecondValue] [WhiteSpace+ | [AMPM]

MonthValue ::= IntLiteral
DayValue ::= IntLiteral
YearValue ::= IntLiteral

Copyright © Microsoft Corporation 2005. All righteserved. 13

Visual Basic Language Specification

HourValue ::= IntLiteral
MinuteValue ::= IntLiteral
SecondValue ::= IntLiteral
AMPM ::= AM | PM

2.4.7 Nothing

Nothing is a special literal; it does not have a type igrmbnvertible to all types in the type system|uding
type parameters. When converted to a particulae, tigps the equivalent of the default value oft ttype.

Nothing ::= Nothing

2.5 Separators
The following ASCII characters are separators:

Separator = C D) | LYY [|#]|,]-1:]:=

2.6 Operator Characters
The following ASCII characters or character seqesrienote operators:

Operator ::=
& | * |+ |_ |/ |\ |/\ |< |= |> |<= |>= |<> |<< |>> |
&= | %= | 4= | == | /= | \= | A= | <<= | >>=

14 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

3. Preprocessing Directives

Once a file has been lexically analyzed, severadkiof source preprocessing occur. The most impiprta
conditional compilation, determines which sourcpriscessed by the syntactic grammar; two otherstygbe
directives — external source directives and regioectives — provide meta-information about thersetbut
have no effect on compilation.

3.1 Conditional Compilation

Conditional compilation controls whether sequerafdsgical lines are translated into actual codeth®
beginning of conditional compilation, all logicahés are enabled; however, enclosing lines in dimmdil
compilation statements may selectively disableghimgs within the file, causing them to be ignodeaing the
rest of the compilation process. Because the donditcompilation process is done after lexicallgsia, even
disabled lines must be lexically valid.

For example, the program
#Const A = True
#Const B = False
Class C
#If A Then

sub FQ

End Sub
#Else

sub GQ

End Sub
#End If
#1f B Then

Sub HO

End Sub
#Else

Ssub 10

End Sub
#End If
End Class

produces the exact same sequence of tokens asotiram
Class C
Sub FO
End Sub

sub 10O
End Sub

Copyright © Microsoft Corporation 2005. All righteserved. 15

Visual Basic Language Specification
End Class

The constant expressions allowed in conditionalgtation directives are a subset of general cotistan
expressions.

Sart ;= [CCSatement+ |

CCSatement ::=

CCConstantDeclaration |

CCIfGroup |

LogicalLine
CCExpression ::=

LiteralExpression |

CCParenthesizedExpression |

SmpleNameExpression |

CCCastExpression |

CCOperator Expression
CCParenthesizedExpression ::= (CCExpression)
CCCastExpression ::= CastTarget (CCExpression)
CCOperatorExpression ::=

CCUnaryOperator CCExpression

CCExpression CCBinaryOperator CCExpression
CCUnaryOperator ::= + | - | Not
CCBinaryOperator =+ | - | * | / |\ |[Mod |A |=|<> | < |>]

<= |>=|& | And | Or | Xor | AndAlso | OrElse | << | >>

3.1.1 Conditional Constant Directives

Conditional constant statements define constaatsettist in a separate conditional compilation deatlon
space scoped to the source file. The declaratiacesis special in that no explicit declaration afiditional
compilation constants is necessary — conditionastamts can be implicitly defined in a conditiooaimpilation
directive.

Prior to being assigned a value, a conditional datipn constant has the valdething. When a conditional
compilation constant is assigned a value, whichtines constant expression, the type of the consemomes
the type of the value being assigned to it. A choidal compilation constant may be redefined midtipmes
throughout a source file.
For example, the following code prints only thérgfrabout to print value and the value ofest.
Module M1
Sub Printvalue(Byval Test As Integer)
#Const DebugCode = True
#1f DebugCode Then
Console.writeLine("about to print value")
#End If
#Const DebugCode = False
console.WriteLine(Test)
#1f DebugCode Then

16 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

console.WriteLine("printed value")
#End If
End Sub
End ModuTle

The compilation environment may also define conddi constants in a conditional compilation dec¢lara
space.

CCConstantDeclaration ::= # Const Identifier = CCExpression LineTerminator

3.1.2 Conditional Compilation Directives

Conditional compilation directives control conditad compilation and can only reference constantesgions
and conditional compilation constants. Each ofdbiestant expressions within a single conditionahgibation
group is evaluated and converted togbe1ean type in textual order from first to last until ookthe
conditional expressions evaluateStae. If an expression is not convertibleBoolean, a compile-time error
results. Permissive semantics and binary stringoeoisons are always used when evaluating conditiona
compilation constant expressions, regardless obamyon directives or compilation environment settings.

All lines enclosed by the group, including nestedditional compilation directives, are disabledepicfor
lines between the statement containingtthee expression and the next conditional statemerti@fitoup, or
lines between thelse statement and thend If statement if ag1se appears in the group and all of the
expressions evaluate kalse.

In this example, the call toriteToLog in theTrace conditional compilation directive is not processed
because the surroundinpgbug conditional compilation directive evaluatesrol se.
#Const Debug !

#Const Trace

False

Debugging off
True ' Tracing on

Class PurchaseTransaction
Sub Commit()
#1f Debug Then
CheckcConsistency()
#1If Trace Then
writeToLog(Me.ToString())
#End If
#End If
CommitHelper()
End Sub
End Class
CClfGroup ::=
If CCExpression [Then] LineTerminator
[CCSatement+ |
[CCElselfGroupt |

[CCElseGroup]
End If LineTerminator

Copyright © Microsoft Corporation 2005. All righteserved. 17

Visual Basic Language Specification

CCElselfGroup ::=
Elself CCExpresson [Then] LineTerminator
[CCSatement+ |

CCElseGroup ::=
Else LineTerminator
[CCSatement+ |

3.2 External Source Directives

A source file may include external source direditleat indicate a mapping between source linegextd
external to the source. External source directhaa® no effect on compilation and may not be nested
example:

Module Test
Sub Main()
#Externalsource("c:\wwwroot\inetpub\test.aspx", 30)
console.WriteLine("In test.aspx')
#End ExternalSource
End Sub
End ModuTe

Sart ::= [External SourceStatement+ |
External SourceStatement ::= ExternalSourceGroup | LogicalLine

External SourceGroup ::=
ExternalSource (SringLiteral , IntLiteral) LineTerminator
[LogicalLinet+]
End Externalsource LineTerminator

3.3 Region Directives

Region directives group lines of source code buehe other effect on compilation. The entire groap be
collapsed and hidden, or expanded and viewedgiintegrated development environment (IDE). These
directives are special in that they can neithet siar terminate within a method body. For example:

Module Test

#Region "Startup code - do not edit"
Sub Main()
End Sub

#End Region

End Module

Sart ::= [RegionStatement+]
RegionSatement ::= RegionGroup | LogicalLine

RegionGroup ::=
Region SringLiteral LineTerminator
[LogicalLinet]
End Region LineTerminator

18 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

3.4 External Checksum Directives

A source file may include an external checksumadtive that indicates what checksum should be ethftiea
file referenced in an external source directiveallrother respects external source directives Inaveffect on
compilation.

An external checksum directive contains the fileaarhthe external file, a globally unique identif{&UID)
associated with the file and the checksum for ke The GUID is specified as a string constarthef form
"IOXXXXX=-XXXX-XXXX-XXXX-XXXXXXXXXXXXY!, where X is a hexadecimal digit. The checksum is specifies as
string constant of the form "xxxx...", where x isexadecimal digit. The number of digits in a chechsuust

be an even number.

An external file may have multiple external cheakstirectives associated with it provided that &llhe GUID
and checksum values match exactly. If the nambeo&kternal file matches the name of a file bemgpiled,
the checksum is ignored in favor of the compilelgecksum calculation.

For example:

#Externalchecksum("c:\wwwroot\inetpub\test.aspx", _
"{12345678-1234-1234-1234-123456789abc}", _
"la2b3c4e5f617239a49b9a9c0391849d34950f923fab9484")

Module Test
Sub Main()

#Externalsource("c:\wwwroot\inetpub\test.aspx", 30)

console.writeLine("In test.aspx")
#End ExternalSource

End Sub
End Module
Sart ::= [External ChecksumSatement+ |
External ChecksumStatement ::=

ExternalcChecksum (SringLiteral , StringLiteral , SringLiteral) LineTerminator

Copyright © Microsoft Corporation 2005. All righteserved. 19

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

4. General Concepts

This chapter covers a number of concepts thateangined to understand the semantics of the Micta4stial
Basic language. Many of the concepts should belitanto Visual Basic programmers or C/C++ programsne
but their precise definitions may differ.

4.1 Declarations
A Visual Basic program is made up of named entifié®se entities are introduced throwfghlarations and
represent the "meaning" of the program.

At a top levelhamespaces are entities that organize other entities, suameated namespaces and tydepes
are entities that describe values and define eabtitode. Types may contain nested types andhgpebers.
Type members are constants, variables, methods, operatorsegiep, events, enumeration values, and
constructors.

An entity that can contain other entities definee@aration space. Entities are introduced into a declaration
space either through declarations or inheritarieeontaining declaration space is called theiestit
declaration context. Declaring an entity in a declaration space in tgfines a new declaration space that can
contain further nested entity declarations; thiag,declarations in a program form a hierarchy cfatation
spaces.

Except in the case of overloaded type members imvalid for declarations to introduce identicatigmed
entities of the same kind into the same declarat@mrext. Additionally, a declaration space mayaresontain
different kinds of entities with the same name;drample, a declaration space may never contaamiable
and a method by the same name.

The declaration space of a namespace is "open gratetivo namespace declarations with the samg full
gualified name contribute to the same declarati@ts. In the example below, the two namespacerdéolas
contribute to the same declaration space, in #se ceclaring two classes with the fully qualifireones
Data.Customer andbata.Order:

Namespace Data
Class Customer
End Class

End Namespace

Namespace Data
Class order
End Class

End Namespace

Because the two declarations contribute to the shrokaration space, a compile-time error would odoeach
contained a declaration of a class with the sam@ena

4.1.1 Overloading and Signatures

The only way to declare identically named entibéthe same kind in a declaration space is through
overloading. Only methods, operators, instance constructoi paoperties may be overloaded.

Copyright © Microsoft Corporation 2005. All righteserved. 21

Visual Basic Language Specification

Overloaded type members must possess unique sigaalthe signature of a type member consists afidinee
of the type member, the number of type parametsi the number and types of the member's parameters
Conversion operators also include the return tyfgeeoperator in the signature.

The following are not part of a member's signatarel hence cannot be overloaded on:

* Modifiers to a type member (for examp$hared or Private).

* Modifiers to a parameter (for exampbg,val or ByRef).

* The names of the parameters.

* The return type of a method or operator (exceptdmversion operators) or the element type of pgntg.
» Constraints on a type parameter.

The following example shows a set of overloadechotdeclarations along with their signatures. This
declaration would not be valid since several ofrtfethod declarations have identical signatures.

Interface ITest

sub FQ ' Signature 1is FQ).

Sub F(x As Integer) ' Signature is F(Integer).
Sub F(ByRef x As Integer) ' Signature is F(Integer).
Sub F(x As Integer, y As Integer) ' Signature is F(Integer,

Integer).
Function F(s As String) As Integer Signature is F(String).

Function F(x As Integer) As Integer Signature is F(Integer).

Sub F(a() As String) ' Signature is F(String()).
Sub F(ParamArray Byval a() As String) ' Signature is F(String()).
Sub F(of O ' Signature is F!1().

Sub F(Of T, UD(x As T, y As U) ' Signature is F!2(!1, !2)
Sub F(of U, TD(x As U, y As T) ' Signature is F!2(!2, !'1)
Sub F(of TD(x As T) ' Signature is F!1(!1)

Sub F(Of T As IDisposable)(x As T) ' Signature is F!1(!1)

End Interface

A method with optional parameters is considerelaee multiple signatures, one for each set of patars that
can be passed in by the caller. For example, fh@ximg method has three corresponding signatures:

Sub F(Byval x As Short, _
Byval Optional y As Integer = 10, _
Byval Optional z As Long = 20)

These are the method's signatures:
* F(Short)

* F(Short, Integer)

* F(Short, Integer, Long)

It is valid to define a generic type that may comtaembers with identical signatures based onype t
arguments supplied. Overload resolution rules aeel@o try and disambiguate between such overloads,
although there may be situations in which it is asgble to disambiguate. For example:

22 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

Class c(of T)
Sub F(Byval x As Integer)
End Sub

Sub F(Byval x As T)
End Sub

sub G(of u)(Byval x As T, Byval y As U)
End Sub

sub G(of u)(Byval x As U, Byval y As T)
End Sub
End Class

Module Test
Sub Main(Q)
Dim x As New C(Of Integer)
x.F(10) ' calls c(of T).F(Integer)
x.G(0of Integer)(10,10) ' Error: Can't choose between overloads
End Sub
End Module

4.2 Scope

Thescope of an entity's name is the set of all declarasipaces within which it is possible to refer to thaie
without qualification. In general, the scope ofeantity's name is its entire declaration contextyéeer, an
entity's declaration may contain nested declaratarentities with the same name. In that casendiséed entity
shadows, or hides, the outer entity, and access to thdsked entity is only possible through qualification

Shadowing through nesting occurs in namespaceges inested within namespaces, in types nestetwith
other types, and in the bodies of type membersd@hiag through the nesting of declarations alwaysues
implicitly; no explicit syntax is required.

In the following example, within the method, the instance variahles shadowed by the local variaklgbut
within theG method,i still refers to the instance variable.

Class Test

Il
o

Private i As Integer
sub FQ

Dim i As Integer
End Sub

Il
=

sub GO

End Sub
End Class
Copyright © Microsoft Corporation 2005. All righteserved. 23

Visual Basic Language Specification

When a name in an inner scope hides a hame intanszope, it shadows all overloaded occurrencésabf
name. In the following example, the call1l) invokes ther declared irtnner because all outer occurrences of
F are hidden by the inner declaration. For the sagason, the cali(""He110") is in error.

Class outer
Shared sub F(i As Integer)
End Sub

Shared Sub F(s As String)
End Sub

Class Inner
Shared sub F(1 As Long)
End Sub

sub GO
F(1) ' Invokes outer.Inner.F.
F("Hello") ' Error.
End Sub
End Class
End Class

4.3 Inheritance

An inheritance relationship is one in which oneetyfhederived type) derives from another (thase type),
such that the derived type's declaration spaceaditiplcontains the accessible nonconstructor tymenbers

and nested types of its base type. In the follovexample, clasa is the base class Bf andB is derived from
A.

Class A
End Class

Class B
Inherits A
End Class

SinceA does not explicitly specify a base class, its ludass is implicitlyobject.
The following are important aspects of inheritance:

» Inheritance is transitive. If typ@ is derived from typ®, and typeB is derived from typé\, typeC inherits
the type members declared in typas well as the type members declared in &pe

» A derived type extends, but cannot narrow, its lgse. A derived type can add new type membersjtand
can shadow inherited type members, but it canmobve the definition of an inherited type member.

* Because an instance of a type contains all ofyihe members of its base type, a conversion alweagsse
from a derived type to its base type.

24 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

» All types must have a base type, except for the tygect. Thus,0bject is the ultimate base type of all
types, and all types can be converted to it.

» Circularity in derivation is not permitted. Thaf when a type derives from a typa, it is an error for type
A to derive directly or indirectly from type

* A type may not directly or indirectly derive fromtype nested within it.

The following example produces a compile-time elrecause the classes circularly depend on each othe
Class A
Inherits B
End Class

Class B
Inherits C
End Class

Class C
Inherits A
End Class

The following example also produces a compile-termmer becauss indirectly derives from its nested class
through classa.

Class A
Inherits B.C
End Class

Class B
Inherits A

Public Class C
End Class
End Class

The next example does not produce an error becdass does not derive from class
Class A
Class B
Inherits A
End Class
End Class

4.3.1 Mustinherit and Notinheritable Classes

A MustInherit class is an incomplete type that can act onlylasse type. AustInherit class cannot be
instantiated, so it is an error to use Me@ operator on one. It is valid to declare varialE®ustInherit
classes; such variables can only be assigoetling or a value that is of a class derived from the
MustInherit class.

Copyright © Microsoft Corporation 2005. All righteserved. 25

Visual Basic Language Specification
When a regular class is derived fromwstInherit class, the regular class must override all inbdrit
Mustoverride members. For example:
MustInherit Class A
PubTlic Mustoverride Ssub FQ)
End Class

MustInherit Class B
Inherits A

Public sub GO
End Sub
End Class

Class C
Inherits B

Public overrides sub FQ)
End Sub
End Class
TheMustInherit classa introduces austoverride methodF. ClassB introduces an additional methad
but does not provide an implementatiorFoClasss must therefore also be declargstInherit. Classc

overridesr and provides an actual implementation. Since theao outstandingustoverride members in
classc, it is not required to beustInherit.

A NotInheritable class is a class from which another class cammdebivedNotInheritable classes are
primarily used to prevent unintended derivation.

In this example, clagsis in error because it attempts to derive fromNbieInheritable classA. A class can
not be marked bothustInherit andNotInheritable.

NotInheritable Class A

End Class

Class B
' Error, a class cannot derive from a NotInheritable class.
Inherits A

End Class

4.3.2 Interfaces and Multiple Inheritance

Unlike other types, which only derive from a singkse type, an interface may derive from multigiseb
interfaces. Because of this, an interface can inheridentically named type member from differbate
interfaces. In such a case, the multiply-inheritathe is not available in the derived interface, ifierring to
any of those type members through the derivedfatercauses a compile-time error, regardless obhsiges or
overloading. Instead, conflicting type members ntesteferenced through a base interface name.

26 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

In the following example, the first two statemeodsise compile-time errors because the multiplyitdeb
membercCount is not available in interfaceListCounter:

Interface IList
Property Count() As Integer
End Interface

Interface ICounter
Sub Count(Byval i As Integer)
End Interface

Interface IListCounter
Inherits IList
Inherits ICounter

End Interface

Module Test
Sub F(Byval x As IListCounter)
X.Count (1) ' Error, Count is not available.

X.Count =1 Error, Count is not available.

CType(x, IList).Count =1 ' 0k, invokes IList.Count.
CType(x, ICounter).Count(l) ' ok, invokes ICounter.Count.
End Sub
End Module

As illustrated by the example, the ambiguity isohesd by casting to the appropriate base interface type. Such
casts have no run-time costs; they merely congigewing the instance as a less-derived type atggle time.

When a single type member is inherited from theeshase interface through multiple paths, the typmber is
treated as if it were only inherited once. In otiverds, the derived interface only contains onéaimse of each
type member inherited from a particular base iatef For example:

Interface IBase
Sub F(Byval i As Integer)
End Interface

Interface ILeft
Inherits IBase
End Interface

Interface IRight
Inherits IBase
End Interface

Interface IDerived

Copyright © Microsoft Corporation 2005. All righteserved. 27

Visual Basic Language Specification

Inherits ILeft, IRight
End Interface

Class Derived
Implements IDerived
' only have to implement F once.
Sub F(Byval i As Integer) Implements IDerived.F
End Sub

End Class

If a type member name is shadowed in one path ¢hrthe inheritance hierarchy, then the name is@had in
all paths. In the following example, tlidase.F member is shadowed by theeft.F member, but is not
shadowed irtRight:

Interface IBase
Sub F(Byval i As Integer)
End Interface

Interface ILeft

Inherits IBase

Shadows Ssub F(Byval i As Integer)
End Interface

Interface IRight
Inherits IBase
sub GO

End Interface

Interface IDerived
Inherits ILeft, IRight
End Interface

Class Test
Sub H(Byval d As IDerived)
d.F(1) ' Invokes ILeft.F.
CType(d, IBase).F(1) ' Invokes IBase.F.
CType(d, ILeft).F(1) ' Invokes ILeft.F.
CType(d, IRight).F(1) ' Invokes IBase.F.
End Sub
End Class

28 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

The invocationd. F(1) selectsILeft.F, even thougliBase.F appears to not be shadowed in the access path
that leads throughright. Because the access path froberived to ILeft to IBase shadowsBase.F, the
member is also shadowed in the access pathIomEmived to IRight to IBase.

4.3.3 Shadowing

A derived type shadows the name of an inherited tyember by redeclaring it. Shadowing a nhame does n
remove the inherited type members with that natmegrely makes all of the inherited type membeit wiat
name unavailable in the derived class. The shadpdéclaration may be any type of entity.

Entities than can be overloaded can choose oneoofidrms of shadowingshadowing by name is specified
using theshadows keyword. An entity that shadows by name hidesyierg by that name in the base class,
including all overloadsShadowing by name and signature is specified using theverloads keyword. An

entity that shadows by name and signature hideytimeg by that name with the same signature agtiigy.
For example:

Class Base
sub FO
End Sub

Sub F(Byval i As Integer)
End Sub

sub GO
End Sub

Sub G(Byval i As Integer)
End Sub
End Class

Class Derived
Inherits Base

' only hides F(Integer).
overloads Sub F(Byval i As Integer)
End Sub

' Hides G() and G(Integer).
Shadows Sub G(Byval i As Integer)
End Sub

End Class

Module Test
Sub Main()
Dim X As Derived = New Derived()

Copyright © Microsoft Corporation 2005. All righteserved. 29

Visual Basic Language Specification

x.FQ) ' calls Base.F(Q).
x.G() " Error: No such method.
End Sub
End Module

Shadowing a method withraramArray argument by name and signature hides only theiohehl signature,
not all possible expanded signatures. This isénuen if the signature of the shadowing method nest¢he
unexpanded signature of the shadowed method. Tloeving example:

Class Base
Sub F(Byval ParamArray x As Integer())
console.wWriteLine("Base")
End Sub
End Class

Class Derived
Inherits Base

overloads Sub F(Byval x As Integer())
console.writeLine("Derived™)
End Sub
End Class

Module Test
Sub Main
Dim d As Derived = New Derived()
d.F(10)
End Sub
End ModuTe

printsBase, even thougiberived.F has the same sighature as the unexpanded foBasef. F.

A shadowing method or property that does not spetiadows or overloads assumesverloads if the
method or property is declaresterrides, shadows otherwise. If one member of a set of overloadddien
specifies theshadows or overloads keyword, they all must specify it. Tlsadows andoverloads

keywords cannot be specified at the same timehBigghadows noroverloads can be specified in a standard
module; members in a standard module implicitlydsivamembers inherited froobject.

It is valid to shadow the name of a type membetrtiha been multiply-inherited through interfaceertance
(and which is thereby unavailable), thus makingrtame available in the derived interface.

For example:
Interface ILeft
sub FQ
End Interface

30 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

Interface IRight
Ssub FQ
End Interface

Interface ILeftRight
Inherits ILeft, IRight
Shadows sub FQ)

End Interface

Module Test
Sub G(Byval i As ILeftRight)
i.FQ ' calls ILeftRight.F.
CType(i, ILeft).F() ' calls ILeft.F.
CType(i, IRight).F(Q) ' calls IRight.F.
End Sub
End Module
Because methods are allowed to shadow inheritedadst it is possible for a class to contain several
overridable methods with the same signature. This does nseptexn ambiguity problem, since only the

most-derived method is visible. In the followingaexple, thec andb classes contain twaverridable
methods with the same signature:

Class A
PubTlic overridable sub FQ)
console.writeLine("A.F")
End Sub
End Class

Class B
Inherits A

Public overrides Sub F(Q)
console.writeLine("B.F")
End Sub
End Class

Class C
Inherits B

PubTlic Shadows overridable sub FQ)
console.writeLine("C.F"™)
End Sub
End Class

Copyright © Microsoft Corporation 2005. All righteserved. 31

Visual Basic Language Specification

Class D
Inherits C

Public overrides sub FQ)
console.writeLine("D.F")
End Sub
End Class

Module Test
Sub Main()
Dim d As New D()
Dim a As A =d
Dim b As B = d
Dim c As C = d
a.FQ
b.FO
c.FO
d.FO
End Sub
End Module

There are tw@verridable methods here: one introduced by clasmd the one introduced by classThe
method introduced by clagshides the method inherited from classThus, theoverrides declaration in class
D overrides the method introduced by clasand it is not possible for clapgo override the method introduced
by classa. The example produces the output:

B.F
B.F
D.F
D.F

It is possible to invoke the hiddewerridable method by accessing an instance of alasgough a less-
derived type in which the method is not hidden.

It is not valid to shadow mustoverride method, because in most cases this would makedhs unusable.
For example:

MustInherit Class Base
Public Mustoverride Sub F(Q)
End Class

MustInherit Class Derived
Inherits Base

Pub1ic shadows Sub FQO)

32 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

End Sub
End Class

Class MorebDerived
Inherits Derived
' Error: MustOverride method Base.F is not overridden.
End Class

In this case, the clas®reberived is required to override thaustoverride methodsase. F, but because
the clas®erived shadowsase.F, this is not possible. There is no way to dectavalid descendent of
Derived.

In contrast to shadowing a name from an outer ssi@Elowing an accessible name from an inheriteplesc
causes a warning to be reported, as in the follgwkample:
Class Base
PubTic Ssub FQO
End Sub

Private Sub G(Q)
End Sub
End Class

Class Derived
Inherits Base

Public sub F() ' warning: shadowing an inherited name.
End Sub

Public sub G() ' No warning, Base.G is not accessible here.
End Sub
End Class

The declaration of methadin classberived causes a warning to be reported. Shadowing amiieti@ame is
specifically not an error, since that would pre€s#parate evolution of base classes. For exathplebove
situation might have come about because a latsroreof clas8ase introduced a methoHd that was not
present in an earlier version of the class. Hadtitvve situation been an errany change made to a base class
in a separately versioned class library could gty cause derived classes to become invalid.

The warning caused by shadowing an inherited namée eliminated through use of $teadows or
overloads modifier:
Class Base
Public Sub FQ
End Sub
End Class

Copyright © Microsoft Corporation 2005. All righteserved. 33

Visual Basic Language Specification

Class Derived
Inherits Base

Public Shadows Sub F() 'OK.
End Sub
End Class

Theshadows modifier indicates the intention to shadow theerited member. It is not an error to specify the
Shadows oroverloads modifier if there is no type member name to shadow

A declaration of a new member shadows an inhentedhber only within the scope of the new membein as
the following example:
Class Base
PubTlic Shared sub FQ)
End Sub
End Class

Class Derived
Inherits Base

Private Shared Shadows Sub F() ' Shadows Base.F in class Derived only.
End Sub
End Class

Class MorebDerived
Inherits Derived

Shared sub G(Q)
F() ' Invokes Base.F.
End Sub
End Class

In the example above, the declaration of methadclassberived shadows the methadthat was inherited
from classBase, but since the new meth@dn classberived hasPrivate access, its scope does not extend
to classmoreDerived. Thus, the calk () in Moreberived.G is valid and will invokeBase. F. In the case of
overloaded type members, the entire set of ovegldégbe members is treated as if they all had thet m
permissive access for the purposes of shadowing.

Class Base
PubTlic Sub FQ)
End Sub

End Class

Class Derived

34 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

Inherits Base

Private Shadows Sub F()
End Sub

Public Shadows Sub F(Byval i As Integer)
End Sub
End Class

Class MorebDerived
Inherits Derived

PubTic Ssub GQ)
FO ' Error. No accessible member with this signature.

End Sub
End Class

In this example, even though the declaratior ©f in Derived is declared wittprivate access, the
overloaded-(Integer) is declared witlPub11ic access. Therefore, for the purpose of shadowiregnamer
in Derived is treated as if it waBub11i ¢, so both methods shadawn Base.

4.4 Implementation

An implementation relationship exists when a type declares thatiéments an interface and the type
implements all the type members of the interfacéyp® that implements a particular interface isvestible to
that interface. Interfaces cannot be instantidtatlit is valid to declare variables of interfacesch variables
can only be assigned a value that is of a clagsrtiphements the interface. For example:

Interface ITestable
Function Test(Byval value As Byte) As Boolean
End Interface

Class TestablecClass
Implements ITestable

Function Test(Byval value As Byte) _
As Boolean Implements ITestable.Test
Return (value > 128)
End Function
End Class

Module Test

sub FO
Dim X As ITestable = New TestableClass

Copyright © Microsoft Corporation 2005. All righteserved. 35

Visual Basic Language Specification

Dim b As Boolean

b = x.Test(34)
End Sub
End Module

A type implementing an interface with multiply-infted type members must still implement those mésho
even though they cannot be accessed directly fnendérived interface being implemented. For example

Interface ILeft
Sub Test()
End Interface

Interface IRight
Sub Test()
End Interface

Interface ILeftRight
Inherits ILeft, IRight
End Interface

Class LeftRight
Implements ILeftRight

' Has to reference ILeft explicitly.
Sub TestLeft() Implements ILeft.Test
End Sub

' Has to reference IRight explicitly.
Sub TestRight() Implements IRight.Test
End Sub

' This causes an error because Test is not available in ILeftRight.
Sub TestLeftRight() Implements ILeftRight.Test
End Sub

End Class

EvenMmustInherit classes must provide implementations of all thenbers of implemented interfaces;
however, they can defer implementation of thesénaus by declaring them asstoverride. For example:

Interface ITest
Sub Testl()
Sub Test2()

End Interface

36 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

MustInherit Class TestBase
Implements ITest

' Provides an implementation.
Sub Testl() Implements ITest.Testl
End Sub

' pefers implementation.
Mustoverride Sub Test2() Implements ITest.Test2
End Class

Class TestDerived
Inherits TestBase

' Have to implement MustOverride method.
overrides Sub Test2()
End Sub

End Class

A type may choose to re-implement an interfaceitediase type implements. To re-implement therface,
the type must explicitly state that it implemerits interface. A type re-implementing an interfacgyrohoose
to re-implement only some, but not all, of the menstof the interface — any members not re-impleetent
continue to use the base type’s implementationekample:

Class TestBase
Implements ITest

Sub Testl() Implements ITest.Testl
console.writeLine("TestBase.Testl")
End Sub

Sub Test2() Implements ITest.Test2
console.WriteLine("TestBase.Test2")
End Sub
End Class

Class TestDerived
Inherits TestBase
Implements ITest ' Required to re-implement

Sub DerivedTestl() Implements ITest.Testl
console.wWriteLine("TestDerived.DerivedTestl")

Copyright © Microsoft Corporation 2005. All righteserved. 37

Visual Basic Language Specification

End Sub
End Class

Module Test
Sub Main()
Dim Test As ITest = New TestDerived()
Test.Testl()
Test.Test2()
End Sub
End ModuTe
This example prints:
TestDerived.DerivedTestl
TestBase.Test?2

When a derived type implements an interface whase mterfaces are implemented by the derivedsyjase
types, the derived type can choose to only implérieninterface's type members that are not already
implemented by the base types. For example:

Interface IBase
Sub Base()
End Interface

Interface IDerived
Inherits IBase

Sub Derived()
End Interface

Class Base
Implements IBase

Public Sub Base() Implements IBase.Base
End Sub
End Class

Class Derived
Inherits Base
Implements IDerived

' Required: IDerived.Derived not implemented by Base.
Public Sub Derived() Implements IDerived.Derived
End Sub

38 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.
End Class

An interface method can also be implemented usingvarridable method in a base type. In that caskerived
type may also override the overridable method dted the implementation of the interface. For eximp

Class Base
Implements ITest

Public Sub Testl() Implements ITest.Testl
console.writeLine("TestBase.Testl")
End Sub

Public overridable Sub Test2() Implements ITest.Test2
console.writeLine("TestBase.Test2")
End Sub
End Class

Class Derived
Inherits Base
' overrides base implementation.
Public Overrides Sub Test2()
console.writeLine("TestDerived.Test2")
End Sub
End Class

4.4.1 Implementing Methods

A typeimplements a type member of an implemented interface by stpgla method with ammpTements
clause. The two type members must have the sambarwhparameters, all of the types and modifiéithe
parameters must match, including the default vafugptional parameters, and all of the constraomtsnethod
parameters must match. For example:

Interface ITest
Sub F(ByRef x As Integer)
Sub G(Byval oOptional y As Integer = 20)
Sub H(Byval Paramarray z() As Integer)
End Interface

Class Test
Implements ITest
' Error: ByRef/Byval mismatch.

Sub F(Byval x As Integer) Implements ITest.F

End Sub

Copyright © Microsoft Corporation 2005. All righteserved. 39

Visual Basic Language Specification

' Error: Defaults do not match.
Sub G(Byval Optional y As Integer = 10) Implements ITest.G

End Sub

' Error: Paramarray does not match.
Sub H(Byval z() As Integer) Implements ITest.H
End Sub

End Class

A single method may implement any number of inteeftype members if they all meet the above crité&taa
example:
Interface ITest
Ssub F(Byval i As Integer)
Sub G(Byval i As Integer)
End Interface

Class Test
Implements ITest

Sub F(Byval i As Integer) Implements ITest.F, ITest.G
End Sub
End Class

When implementing a method in a generic interféoe jmplementing method must supply the type argusne
that correspond to the interface’s type paramekensexample:

Class 11(0f U, V)
Public sub mM(Byval x As U, Byval y As List(of Vv))

End Class

Class c1(of w, X)
Implements I1(0f w, X)

' W corresponds to U and X corresponds to V
Public sub mM(Byval x As W, Byval y As List(of X)) _
Implements I1(0f W, X).M
End Sub
End Class

Class 2
Implements I1(0f String, Integer)

40 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

String corresponds to U and Integer corresponds to V
PubTlic Sub M(Byval x As String, Byval y As List(of Integer)) _
Implements I1(0f String, Integer).M
End Sub
End Class

Note that it is possible that a generic interfa@y mot be implementable for some set of type argiisne
Interface 1I1(0f T, U)
Sub s1(Byval x As T)
Sub s1(Byval y As U)
End Interface

Class C1
' Unable to implement because I1.S1 has two identical signatures
Implements I1(0f Integer, Integer)

End Class

4.5 Polymorphism

Polymor phism provides the ability to vary the implementationaaihethod or property. With polymorphism, the
same method or property can perform different astibepending on the run-time type of the instahae t
invokes it. Methods or properties that are polyrhigfare calleaverridable. By contrast, the implementation
of a non-overridable method or property is invaiime implementation is the same whether the neetno
property is invoked on an instance of the classhich it is declared or an instance of a derivesdsl When a
non-overridable method or property is invoked, ¢dbmpile-time type of the instance is the deterngfactor.

For example:

Class Base
Public overridable Property X() As Integer
Get
End Get

Set
End Set
End Property
End Class

Class Derived
Public overrides Property X() As Integer
Get
End Get

Set
End Set
End Property

Copyright © Microsoft Corporation 2005. All righteserved. 41

Visual Basic Language Specification
End Class

Module Test
sub FO
Dim Z As Base

Z = New Base()
z.X =10 ' calls Base.X
Z = New Derived()
z.Xx =10 ' Ccalls Derived.X
End Sub
End Module

An overridable method may also hestoverride, which means that it provides no method body andtrne
overriddenMustoverride methods are only allowed MustInherit classes.

In the following example, the clastape defines the abstract notion of a geometrical slvdgpect that can
paint itself:

MustInherit Public Class Shape
Public Mustoverride Sub Paint(Byval g As Graphics
Byval r As Rectangle)

End Class

Public Class Ellipse
Inherits Shape

Public overrides sub Paint(Byval g As Graphics, Byval r As Rectangle)
g.drawellipse(r)
End Sub
End Class

Public Class Box
Inherits Shape

Public overrides Ssub Paint(Byval g As Graphics, Byval r As Rectangle)
g.drawrect(r)
End Sub
End Class
ThePaint method isMustoverride because there is no meaningful default implememathee111ipse
andBox classes are concretbape implementations. Because these classes ameusatinheri t, they are
required to override theaint method and provide an actual implementation.
It is an error for a base access to referenaesaoverride method, as the following example demonstrates:
Class A

42 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

Public Mustoverride Sub FQ)
End Class

Class B
Inherits A

PubTlic overrides Sub F(Q)
MyBase.F() ' Error, MyBase.F is MustOverride.
End Sub
End Class

An error is reported for theyBase . F() invocation because it referencesus toverride method.

4.5.1 Overriding Methods

A type mayoverride an inherited overridable method by declaring ahmétwith the same name and signature,
and marking the declaration with tbeerrides modifier. Whereas abverridable method declaration
introduces a new method, amerrides method declaration replaces the inherited implaatem of the
method.

An overriding method may be declamdtoverridable, which prevents any further overriding of the noeth
in derived types. In effecilotoverridable methods become non-overridable in any furthewveerclasses.

Consider the following example:
Class A
Public overridable sub F()
console.writeLine("A.F"™)
End Sub

Public overridable sub GQ)
console.writeLine("A.G")
End Sub
End Class

Class B
Inherits A

Public Overrides NotOverridable Sub FQ)
console.writeLine("B.F")
End Sub

Public overrides Sub GQ)
console.writeLine("B.G")
End Sub
End Class

Copyright © Microsoft Corporation 2005. All righteserved. 43

Visual Basic Language Specification

Class C
Inherits B

Public overrides Sub GQ)
Console.WriteLine("C.G")
End Sub
End Class

In the example, clagsprovides twaverrides methods: a methorlthat has th@otoverridable modifier
and a method that does not. Use of thetoverridable modifier prevents classfrom further overriding
methodF.

An overriding method may also be declaved toverride, even if the method that it is overriding is not
declaredMustoverride. This requires that the containing class be dedlanstInherit and that any further
derived classes that are not declatedtInherit must override the method. For example:

Class A
PubTlic Mustoverride Ssub FQ)
console.writeLine("A.F")
End Sub
End Class

MustInherit Class B
Inherits A

Public Overrides MustOoverride Sub FQ)
End Class

In the example, clagsoverridesa. F with aMustoverride method. This means that any classes derived from
B will have to overrider, unless they are declarmdstInherit as well.

A compile-time error occurs unless all of the fallng are true of an overriding method:

» The declaration context contains a single accesgiblerited method with the same signature as the
overriding method.

* The inherited method being overridden is overridabi other words, the inherited method being
overridden is noshared or NotOverridable.

» The accessibility domain of the method being declas the same as the accessibility domain of the
inherited method being overridden. There is oneption: aProtected Friend method must be
overridden by @rotected method if the two methods are not in the samerarog

» The parameters of the overriding method match #eerimiden method's parameters in regards to udage o
theByval, ByRef, ParamArray, andoptional modifiers, including the values provided for optib
parameters.

* The type parameters of the overriding method mtteloverridden method’s type parameters in regards
type constraints.

44 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

When overriding a method in a base generic typeotterriding method must supply the type argumtats
correspond to the base type parameters. For example

Class Base(of u, V)
Public overridable sub M(Byval x As U, Byval y As List(of V))

End Sub
End Class

Class Derived(of w, X)
Inherits c(of w, X)

' W corresponds to U and X corresponds to V
Public overrides sub M(Byval x As W, Byval y As List(of X))
End Sub

End Class

Class MoreDerived
Inherits Derived(of String, Integer)

' String corresponds to U and Integer corresponds to V
PubTlic overrides Sub M(Byval x As String, Byval y As List(0f Integer))

End Sub

End Class
Note that it is possible that an overridable metimoa generic class may not be able to be ovemiddesome
sets of type arguments. If the method is declaiexctoverride, this means that some inheritance chains may

not be possible. For example:
MustInherit Class Base(of T, U)
Public MustOverride Sub S1(Byval x As T)

End Sub

Public MustOverride Sub S1(Byval y As U)

End Sub
End Class

Class Derived
Inherits Base(Of Integer, Integer)

Can't override both sl's at once

' Error:
Public overrides sub S1(Byval x As Integer)
End Sub
End Class
An override declaration can access the overridédae Imethod using a base access, as in the foll@xargple:
45

Copyright © Microsoft Corporation 2005. All righteserved.

Visual Basic Language Specification

Class Base
Private x As Integer

Public overridable Sub Printvariables()
console.WriteLine("x = " & x)
End Sub
End Class

Class Derived
Inherits Base

Private y As Integer

Public overrides Sub Printvariables()
MyBase.Printvariables()
Console.WriteLine("y = " & y)

End Sub

End Class

In the example, the invocation myBase.Printvariables() in classDerived invokes the
PrintvariabTles method declared in clagase. A base access disables the overridable invocation
mechanism and simply treats the base method as-avesridable method. Had the invocatiorperived
been writtercType(Me, Base).Printvariables(), it would recursively invoke therintvariables
method declared inerived, not the one declared Base.

Only when it includes aaverrides modifier can a method override another method@lllother cases, a
method with the same signature as an inheritedadetimply shadows the inherited method, as in daenple
below:

Class Base
Public overridable sub F(Q)
End Sub

End Class

Class Derived
Inherits Base

Public overridable sub F() ' warning, shadowing inherited FQ).
End Sub
End Class

In the example, the methedin classDerived does not include anverrides modifier and therefore does not
override method in classBase. Rather, method in classberived shadows the method in classse, and a
warning is reported because the declaration doemclade ashadows or overloads modifier.

In the following example, methadin classberived shadows the overridable metheéhherited from class
Base:
46 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

Class Base
Public overridable sub F(Q)
End Sub

End Class

Class Derived
Inherits Base

Private Shadows Sub F() ' Shadows Base.F within Derived.
End Sub
End Class

Class MorebDerived
Inherits Derived

Public overrides sub F() ' 0k, overrides Base.F.
End Sub
End Class
Since the new methadin classberived hasPrivate access, its scope only includes the class body of

Derived and does not extend to clagsreDerived. The declaration of methadin classvoreberived is
therefore permitted to override the metlrohherited from classase.

When aroverridable method is invoked, the most derived implementatibthhe instance method is called,
based on the type of the instance, regardless ethehthe call is to the method in the base clatiseoderived
class. The most derived implementation obararridable methodv with respect to a clagsis determined as
follows:

» If R contains the introducingverridable declaration of4, this is the most derived implementatiorvof
» Otherwise, ifR contains an override of, this is the most derived implementatiorvof

» Otherwise, the most derived implementatiom @ the same as that of the direct base clags of

4.6 Accessibility

A declaration specifies thaecessibility of the entity it declares. An entity's accesdipiloes not change the
scope of an entity's name. Tamessibility domain of a declaration is the set of all declarationcgsan which
the declared entity is accessible.

The five access types arablic, Protected, Friend, Protected Friend, andPrivate. Public is the
most permissive access type, and the four othestgpe all subsets Blib11c. The least permissive access
type isPrivate, and the four other access types are all supesEetsivate.

The access type for a declaration is specifiecdmiaptional access modifier, which canpioé 11 c,
Protected, Friend, Private, or the combination afrotected andrriend. If no access modifier is
specified, the default access type depends ondtlardtion context; the permitted access typesddpend on
the declaration context.

« Entities declared with theub11ic modifier havePub11i c access. There are no restrictions on the use of
PubTic entities.

Copyright © Microsoft Corporation 2005. All righteserved. 47

Visual Basic Language Specification

» Entities declared with therotected modifier haveProtected accessProtected access can only be
specified on members of classes (both regular typmbers and nested classes) oowerridable
members of standard modules and structures (whicdt, oy definition, be inherited from
System.Object or System.valueType). A Protected member is accessible to a derived class,
provided that either the member is not an instamember, or the access takes place through an aestdn
the derived clas®rotected access is not a supersefofiend access.

» Entities declared with theriend modifier haverriend access. An entity witRriend access is
accessible only within the program that contaimsehtity declaration.

« Entities declared with therotected Friend modifiers have the union efrotected andfFriend
access.

» Entities declared with therivate modifier havePrivate access. Arivate entity is accessible only
within its declaration context, including any nesemntities.

For a generic type, the declaration context incdugipe parameters. This means that a generic titheone set
of type arguments does not have access to thet®ovdrotected members of the generic type wdliferent
set of type arguments. For example:

Class c(of T)
Private x As T
Protected y As T

Ssub FQ
Dim z As c(of Sstring)

Error: C(0f T) cannot access C(Of string)'s private members
Z_X = llall
End Sub

End Class
Annotation

The C# language (and possibly other languagesysitogeneric type to accemssivate andProtected
members regardless of what type arguments areisdpphis should be kept in mind when designingegien
classes that contafrotected members.

The accessibility in a declaration does not depmnthe accessibility of the declaration context. &le, a
type declared witlPrivate access may contain a type member with11 c access.

The following code demonstrates various accesitdbbmains:
Public Class A
Public shared X As Integer
Friend Shared Y As Integer
Private Shared zZ As Integer
End Class

Friend Class B
Public shared X As Integer
Friend Shared Y As Integer

48 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

Private Shared z As Integer

Public Class C
Public sShared X As Integer
Friend Shared Y As Integer
Private Shared z As Integer
End Class

Private Class D
Public sShared X As Integer
Friend Shared Y As Integer
Private Shared z As Integer
End Class
End Class

The classes and members have the following acdgysilmmains:

The accessibility domain af andA. X is unlimited.

The accessibility domain @f.v,B,B.X,B.Y,B.C,B.C.X, andB.C.Y is the containing program.
The accessibility domain @f. z isA.

The accessibility domain &f.z andB.D is B, includingB.C andB.D.

The accessibility domain &f.C.z isB.C.

The accessibility domain &f.D.X,B.D.Y, andB.D.Z iSB.D.

As the example illustrates, the accessibility donwdia member is never larger than that of a cointgitype.
For example, even though alimembers haveub1ic declared accessibility, all bat X have accessibility
domains that are constrained by a containing type.

Access tcProtected instance members must be through an instance afetived type so that unrelated types
cannot gain access to each other's protected mentmrexample:

Public Class User
Protected Password As String
End Class

Public Class Employee
Inherits User
End Class

PubTic Class Guest
Inherits User

Public Function GetPassword(Byval U As User) As String

Error: protected access has to go through derived type.

Copyright © Microsoft Corporation 2005. All righteserved. 49

Visual Basic Language Specification

Return U.Password
End Function
End Class

In the above example, the clams:st only has access to the proteckad sword field if it is qualified with an
instance ofcuest. This preventguest from gaining access to timassword field of anEmployee object
simply by casting it ta/ser.

AccessModifier ::= Public | Protected | Friend | Private | Protected Friend

4.6.1 Constituent Types

The constituent types of a declaration are the types that are referebgdtle declaration. For example, the type
of a constant, the return type of a method angbéinameter types of a constructor are all constittyges. The
accessibility domain of a constituent type of alaletion must be the same as or a superset ottessibility
domain of the declaration itself. For example:

Public Class X
Private Class Y
End Class
' Error: Exposing private class Y outside of X.

Public Function z() As Y

End Function

' valid: Not exposing outside of X.
Private Function A() As Y
End Function

End Class

Private Class B
Private Class C
End Class
' Error: Exposing private class Y outside of B.
Public Function D() As C
End Function

End Class

4.7 Type and Namespace Names

Many language constructs require a hamespace etdype specified; these can be specified by using
qualified form of the namespace or type's namguaified name consists of a series of identifiers separated by
periods; the identifier on the right side of a pdris resolved in the declaration space specifiethé identifier

on the left side of the period.

50 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

Thefully qualified name of a namespace or type is a qualified name thatbats the name of all containing
namespaces and types. In other words, the fulliifepabname of a namespace or typealis, whereT is the
name of the entity andis the fully qualified name of its containing éwnti

The example below shows several namespace and¢gbarations together with their associated fullglfied
names in in-line comments.

Class A 'A.
End Class
Namespace X "X,
Class B ' X.
Class C ' X.B.C.
End Class
End Class
Namespace Y ' X.Y.
Class D ' X.Y.D.
End Class

End Namespace
End Namespace

Namespace X.Y ' X.Y.
Class E ' X.Y.E.
End Class

End Namespace

In some situations, a qualified name may begin tithkeywordzlobal. The keyword represents the
unnamed outermost namespace, which is usefuliat&ins where a declaration shadows an enclosing
namespace. Thelobal keyword allows “escaping” out to the outermost rapace in that situation. For
example:

Class System
End Class

Module Test
Sub Main()

Error: Class System does not contain Int32
Dim x As System.Int32

Legal, binds to System in outermost namespace
Dim y As Global.System.Int32
End Sub
End ModuTe

Copyright © Microsoft Corporation 2005. All righteserved. 51

Visual Basic Language Specification

In the above example, the first method call is lisdviaecause the identifiedystem binds to the classystem,
not the namespasystem. The only way to access tBgstem namespace is to usdobal to escape out to
the outermost namespacd.obal cannot be used in amports statement okamespace declaration.

Because other languages may introduce types andspates that match keywords in the language, Visual
Basic recognizes keywords to be part of a qualifiache as long as they follow a period. Keywordsltisehis
way are treated as identifiers. For example, tradified identifierx.pefault.Class is a valid qualified
identifier, whileDefault.Class is not.

Qualifiedldentifier ::=
Identifier |
Global . ldentifierOrKeyword |
Qualifiedidentifier . IdentifierOrKeyword

4.7.1 Qualified Name Resolution

Given a qualified namespace or type name of tha RaR, wherer is the rightmost identifier in the qualified
name, the following steps describe how to deterrtonghich namespace or type the qualified namesefe

» Resolven, which may be either a qualified or unqualifiednsa

» If resolution ofN fails, resolves to a type parameter, or doeseasulve to a namespace or type, a compile-
time error occurs. IR matches the name of a namespace or typetimen the qualified name refers to that
namespace or type.

» If N contains one or more standard modules,rRantatches the name of a type in exactly one standard
module, then the qualified name refers to that.tyfipe matches the name of types in more than one
standard module, a compile-time error occurs.

* Otherwise, a compile-time error occurs.

Note An implication of this resolution process istthgpe members do not shadow namespaces or
types when resolving namespace or type names.

4.7.2 Unqualified Name Resolution

Given an unqualified nante the following steps describe how to determinw/ich namespace or type an
unqualified name refers:

» For each nested type containing the name referstamting from the innermost type and going to the
outermost, iR matches the name of an accessible nested typtype parameter in the current type, then
the unqualified name refers to that type or typaupeter.

* For each nested namespace containing the namenegerstarting from the innermost namespace amggoi
to the outermost namespace, do the following:

* If R matches the name of an accessible type or neataedspace in the current namespace, then the
unqualified name refers to that type or nested spare.

» If the namespace contains one or more accessiidatd modules, arkimatches the name of an
accessible nested type in exactly one standard Iedtthen the unqualified name refers to that nested
type. IfR matches the name of accessible nested types mtman one standard module, a compile-
time error occurs.

» If the source file has one or more import alias@slR matches the name of one of them, then the
unqualified name refers to that import alias.

» If the source file containing the name referencedra or more imports:

52 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

» If R matches the name of an accessible type in exagdymport, then the unqualified name refers to
that type. IfR matches the name of an accessible type in monedi@import and all are not the same
entity, a compile-time error occurs.

* If R matches the name of a namespace in exactly or@tintipen the unqualified name refers to that
namespace. K matches the name of a namespace in more thampuoetiand all are not the same
entity, a compile-time error occurs.

» If the imports contain one or more accessible stethchodules, ankl matches the name of an
accessible nested type in exactly one standard Ieathen the unqualified name refers to that typr.
matches the name of accessible nested types inthramrene standard module, a compile-time error
occurs.

» If the compilation environment defines one or mionport aliases, ank matches the name of one of them,
then the unqualified name refers to that impogsali

* If the compilation environment defines one or mionports:

* If R matches the name of an accessible type in exaicdymport, then the unqualified name refers to
that type. IfR matches the name of an accessible type in moneaih@ import, a compile-time error
occurs.

* If R matches the name of a namespace in exactly oratintipen the unqualified name refers to that
namespace. K matches the name of a namespace in more thamguoetj a compile-time error
occurs.

» If the imports contain one or more accessible stethchodules, an’l matches the name of an
accessible nested type in exactly one standard Ieathen the unqualified name refers to that typr.
matches the name of accessible nested types inthmaomeone standard module, a compile-time error
occurs.

* Otherwise, a compile-time error occurs.

Note An implication of this resolution process istthgpe members do not shadow namespaces or
types when resolving namespace or type names.

If the type name is a constructed type name {iiaciudes a type argument list), then only typéthwhe same
arity as the type argument list are matched.

Normally, a name can only occur once in a particnéanespace. However, because namespaces can be
declared across multiple .NET assemblies, it isipis to have a situation where two assembliedefitype
with the same fully qualified name. In that casgpe declared in the current set of source fégzreferred
over a type declared in an external .NET assen@itlyerwise, the name is ambiguous and there is yaeva
disambiguate the name.

4.8 Variables

A variable represents a storage location. Every variableahgpe that determines what values can be stored in
the variable. Because Visual Basic is a type-safguage, every variable in a program has a typehend
language guarantees that values stored in variabdeslways of the appropriate type. Variablessarays
initialized to the default value of their type bef@ny reference to the variable can be madenhtipossible to
access uninitialized memory.

4.9 Generic Types and Methods

Types (except for standard modules) and methodsl@aaretype parameters, which are types that will not be
provided until an instance of the type is declarethe method is invoked. Types and methods wible ty

Copyright © Microsoft Corporation 2005. All righteserved. 53

Visual Basic Language Specification

parameters are also knowngeseric types andgeneric methods, respectively, because the type or method must
be written generically, without specific knowledgfethe types that will be supplied by code thatsube type
or method.

Annotation

At this time, even though methods and delegatedeageneric, properties, events and operators taeno
generic themselves. They may, however, use typmmpeers from the containing class.

From the perspective of the generic type or methdgpe parameter is a placeholder type that willilked in
with an actual type when the type or method is uSgde arguments are substituted for the type peiens in
the type or method at the point at which the typmethod is used. For example, a generic stack clasld be
implemented as:

Public Class Stack(of ItemType)
Protected Items(0 To 99) As ItemType
Protected CurrentIndex As Integer = 0

Public Sub Push(Byval Data As ItemType)
If CurrentIndex = 100 Then
Throw New ArgumentException("Stack is full.™)
End If

Items(CurrentIndex) = Data
CurrentIndex += 1
End Sub

Public Function Pop() As ItemType
If CurrentIndex = 0 Then
Throw New ArgumentException('Stack is empty.")
End If

CurrentIndex -= 1
Return Items(CurrentIndex + 1)
End Function
End Class

Declarations that use tlseack (0f ItemType) class must supply a type argument for the typarpater
ItemType. This type is then filled in wherev@temType is used within the class:

Option Strict On

Module Test
Sub Main(Q)
Dim s1 As Stack(of Integer)
Dim s2 As Stack(of Double)

54 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

s1.Push(10.10) ' Error: Stack(of Integer).Push takes an Integer
s2.Push(10.10) ' OK: Stack(of Double).Push takes a Double
console.writeLine(s2.Pop().GetType().Tostring()) ' Prints: Double
End Sub
End Module

4.9.1 Type Parameters

Type parameters may be supplied on type or metholdutions. Each type parameter is an identifigickvis
a place-holder for a type argument that is supptiecteate a constructed type or method. By contaaype
argument is the actual type that is substitutedHertype parameter when a generic type or methaded.

Each type parameter in a type or method declaratfines a name in the declaration space of tipat ¢y
method. Thus, it cannot have the same name aseargg®e parameter, a type member, a method pargroete
a local variable. The scope of a type parametex type or method is the entire type or method. Beedype
parameters are scoped to the entire type declarat@sted types can use outer type parametersalBoisneans
that type parameters must always be specified \ebeassing types nested inside generic types:

Public Class outer(of T)
Public Class Inner
Public sub F(Byval x As T)
End Sub
End Class
End Class

Module Test
Sub Main()
Dim x As New Outer(of Integer).Inner
End Sub
End Module

Unlike other members of a class, type parametersairinherited. Type parameters in a type can baly
referred to by their simple name; in other wortisytcannot be qualified with the containing typenea
Although it is bad programming style, the type pagters in a nested type can hide a member or gyaeneter
declared in the outer type:

Class outer(of T)
Class Inner(of T)
PubTic t1l As T ' Refers to Inner's T
End Class
End Class

Types and methods may be overloaded based on thigemwf type parameters (arity) that the types or
methods declare. For example, the following detilama are legal:

Module C
sub MO

Copyright © Microsoft Corporation 2005. All righteserved. 55

Visual Basic Language Specification
End Sub

Sub Mm(of MO
End Sub

sub Mm(of T, U)O
End Sub

End Module

Structure c(of T)
End Structure

Class c(of 1, V)
End Class

In the case of types, overloads are always matabaihst the number of type arguments specifieds iBhi
useful when using both generic and non-genericsektogether in the same program:

Class Queue
End Class

Class Queue(of T)

End Class

Class X
Dim ql As Queue ' Non-generic queue
Dim g2 As Queue(0f Integer) ' Generic queue

End Class

Rules for methods overloaded on type parametersowmered in the section on method overload reswiuti

Within the containing declaration, type parametgesconsidered full types. Since a type parametebe
instantiated with many different actual type argateetype parameters have slightly different openatand
restrictions than other types as described below:

» Atype parameter cannot be used directly to deeldrase class or interface.

» The rules for member lookup on type parametersripa the constraints, if any, applied to the type
parameter.

» The available conversions for a type parametermtpa the constraints, if any, applied to the type
parameters.

* Inthe absence ofstructure constraint, a value with a type represented lypa parameter can be
compared witiNothing usingIs andIsNot.

* Atype parameter can only be used e expression if the type parameter is constrainedNxyw
constraint.

» Atype parameter cannot be used anywhere withittgibute exception within @etType expression.

56 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.
Type parameters can be used as type argumentsaioganeric types and parameters. The followingngka is
a generic type that extends theack (0f ItemType) class:
Class MyStack(of ItemType)
Inherits Stack(of ItemType)

Public Readonly Property Size() As Integer
Get
Return CurrentIndex
End Get
End Property
End Class

When a declaration supplies a type argumemtyxack, the same type argument will be appliedtack as
well.

As a type, type parameters are purely a compile-ionstruct. At run-time, each type parameter is\ddo a
run-time type that was specified by supplying aetgpgument to the generic declaration. Thus, the of a
variable declared with a type parameter will, ait-time, be a non-generic type or a specific constditype.
The run-time execution of all statements and exgioes involving type parameters uses the actual tiypt was
supplied as the type argument for that parameter.

TypeParameterList ::=
(of TypeParameters)

TypeParameters ::=
TypeParameter |
TypeParameters , TypeParameter

TypeParameter ::=
Identifier [TypeParameterConstraints |

4.9.2 Type Constraints

Because a type argument can be any type in thestygiem, a generic type or method cannot make any
assumptions about a type parameter. Thus, the meraba type parameter are considered to be thebesm
of the typeobject, since all types derive froobject.

In the case of a collection liketack (of ItemType), this fact may not be a particularly importantrieton,
but there may be cases where a generic type méytavimake an assumption about the types that will b
supplied as type argumenigpe constraints can be placed on type parameters that restricthwtfipes can be
supplied as a type parameter and allow generistgpenethods to assume more about type parameters.

Public Class DisposableStack(0f ItemType As IDisposable)
Implements IDisposable

Protected Items(0 To 99) As ItemType
Protected CurrentIndex As Integer = 0

Public sub Push(Byval Data As ItemType)
End Sub

Copyright © Microsoft Corporation 2005. All righteserved. 57

Visual Basic Language Specification

PubTic Function Pop() As ItemType

End Function

Private Sub Dispose() Implements IDispoable.Dispose
For Each Item As IDisposable In Items
Item.Dispose()
Next
End Sub
End Class
In this example, theisposablestack(0of ItemType) constrains its type parameter to only types that

implement the interfaceystem.IDisposable. As a result, it can implemenbadspose method that disposes
any objects still left in the queue.

Type constraints that are classes specify a conbrase class that a type argument must either bsathe as or
inherit from. Type constraints that are interfaspscify an interface that a type argument mustémgit.
Whenever a generic type or method is referencedyfte arguments supplied must derive from or imelet

all of the bounds given for the matching type pagtan

Type constraints must satisfy the following rules:
* The type must be a class or an interface.
e The type may not beotInheritable.

» The type may not be one of the following specipkfy.System.Array, System.Delegate,
System.MulticastDelegate, System.Enum, or System.valueType.

* The type constraint must not beject. Since all types derive frombject, such a constraint would have
no effect if it were permitted.

* The type constraint must be at least as accessslilee generic type or method being declared.

A type parameter with a class or interface constiaiconsidered to have the same members aslésatar
interface constraint. If a type parameter has iplelttonstraints, then the type parameter is coraid® have
the union of all the members of the constraintthéfe are members with the same name in moreoiian
constraint, then members are preferred in thewiafig order, with the class constraint being the thposferred:
the class constraint, the interface constrastigect. If a member with the same name appears in mare th
one interface constraint the member is unavail@@ddén multiple interface inheritance) and the tppeameter
must be cast to the desired interface.

Class C1
Sub s1(Byval x As Integer)
End Sub

End Class

Interface Il
Sub s1(Byval x As Integer)
End Interface

58 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

Interface I2
Sub s1(Byval y As Double)
End Interface

Module Test
sub T1(of T As {c1, 11, 121)0O

Dim a As T

a.51(10) ' calls cl.s1, which is preferred

a.51(10.10) ' Also calls c1.s1, class is still preferred
End Sub

Sub T2(of T As {11, 12})0O
Dim a As T
a.S1(10) ' Error: call is ambiguous between I11.S1, 12.S1
End Sub
End Module

Type constraints can use the containing types ypoéthe containing types’ type parameters. Infill®wing
example, the constraint requires that the typeraeg supplied implements a generic interface uiséedf as a
type argument:

Class sorter(of v As IComparable(of V))

End Class
In the case where a type constraint uses a conggiyppe’s type parameter, the constraint requhiasthe type
parameter be the same as or inherit from the typplied for the type parameter. For example:

Class List(of T)
Sub AddrRange(0f S As T)(Byval Collection As IEnumerable(0f S))

End Sub
End Class

In this example, the type parameteon AddrRange is constrained to the type parameterf List. This means
that aList(of control) would constraimddRange’s type parameter to any type that is or inheritenf
control.

When overriding a method or implementing an inteefenember, it is possible that a type parametestcained
on another type parameter would require specifgitigpe constraint that is illegal. In those ca#iss following
relaxations apply:

» Multiple class constraints may be applied as lahthay have an inheritance relationship. The mesveld
class is considered to be the constraint.

* The same interface constraial,ass constraint oistructure constraint can be applied multiple times.

e The type may b&otInheritable.

Copyright © Microsoft Corporation 2005. All righteserved. 59

Visual Basic Language Specification

* The type may be one of the following special tyfm&tem.Array, System.Delegate,
System.MulticastDelegate, System.Enum, or System.valueType.

A type parameter constrained to one of the tydesvatl by the above relaxations can only use theemsions
allowed by thepirectcast operator. For example:

MustInherit Class Base(0f T)
Mustoverride Sub S1(of U As T)(Byval x As U)
End Class

Class Derived
Inherits Base(Oof Integer)
' The constraint of U must be Integer, which is normally not allowed.
overrides Sub s1(of U As Integer)(Byval x As U)

Dim y As Integer = x ' 0K
Dim z As Long = X ' Error: Can't convert
End Sub
End Class

There is a special type constraint cales that requires that the type be able to be usadirexpressions. If
New is specified as a type parameter bound, any tsgren@ent used for that type parameter must have an
accessible parameterless constructor and canrdgdb@edustInherit. For example:

Class Factory(Oof T As New)
Function CreateInstance() As T
Return New T(Q)
End Function
End Class
There are also two special type constraints,ss andstructure, which limit the kind of type that can be
used to satisfy the constraint. Thkass constraint constrains the type parameter to rete®types only. The

Structure constraint constrains the type parameter to vigipes only, with the exception of
System.Nullable(of T).

Annotation

Structure constraints do not all®ystem.NullabTe(of T) so that it is not possible to supply
System.Nullable(of T) as a type argument to itself.

Multiple type constraints can be specified forraghke type parameter by enclosing the type consgraincurly
braces {}). Only one type constraint for a given type par@mean be a class.

Class cControlFactory(of T As {Control, New})

End Class

When supplying type parameters as type argumdmgdype parameters must satisfy the constraintseof
matching type parameters.

Class Base(0of T As cClass)
End Class

60 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

Class Derived(of V)
' Error: V does not satisfy the constraints of T
Inherits Base(0f V)
End Class
Values of a constrained type parameter can betosactess the instance members, including instaetieods,
specified in the constraint.
Interface IPrintable
Sub Print()

End Interface

Class Printer(of vV As IPrintable)
Sub Printone(Byval vl As V)
V1.Print(Q)
End Sub
End Class
TypeParameter Constraints ::=

As Constraint |
As { ConstraintList }

ConstraintList ::=
ConstraintList , Constraint |
Constraint

Constraint ::= TypeName | New

Copyright © Microsoft Corporation 2005. All righteserved. 61

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

5. Attributes

The Visual Basic language enables the programmegedoify modifiers on declarations, which represent
information about the entities being declared. &@mple, affixing a class method with the modifien® 11 c,
Protected, Friend, Protected Friend, orPrivate specifies its accessibility.

In addition to the modifiers defined by the langeiadisual Basic also enables programmers to create
modifiers, calledattributes, and to use them when declaring new entities. 8 hesv modifiers, which are
defined through the declaration of attribute clasaee then assigned to entities throatjii bute blocks.

Note Attributes may be retrieved at run time throtigh .NET Framework's reflection APIs. These APIs
are outside the scope of this specification.

For instance, a framework might definael p attribute that can be placed on program elemetts as classes
and methods to provide a mapping from program emésnte documentation, as the following example
demonstrates:

<AttributeUsage(AttributeTargets.Al1)> _
Public Class HelpAttribute
Inherits Attribute

Public Sub New(Byval Urlvalue As String)
Me.Urlvalue = uUrlvalue
End Sub

Public Topic As String
Private Urlvalue As String

Public Readonly Property Ur1() As String
Get
Return Urlvalue
End Get
End Property
End Class

The example defines an attribute class nare&gpAttribute, orHelp for short, that has one positional
parameteryr1value) and one named argumembp:ic).

The next example shows several uses of the atribut

<Help("http://www.example.com/.../Classl.htm")> _
Public Class Classl

<Help("http://www.example.com/.../Classl.htm", Topic := "F")> _
PubTic sub FQ
End Sub
End Class

Copyright © Microsoft Corporation 2005. All righteserved. 63

Visual Basic Language Specification
The next example checks to seelfiss1 has aHelp attribute, and writes out the associate@ic andurl
values if the attribute is present.
Module Test
Sub Main(Q)
Dim type As Type = GetType(Classl)
Dim arr() As Object() = _
type.GetCustomAttributes(GetType(HelpAttribute), True)

If arr.Length = 0 Then
Console.writeLine("Classl has no Help attribute.")

Else
Dim ha As HelpAttribute = CType(arr(0), HelpAttribute)
Console.writeLine("url = " & ha.url & "Topic = " & ha.Topic)
End If
End Sub
End ModuTe

5.1 Attribute Classes

An attribute class is a non-generic class that derives freystem. Attribute and is noMustInherit. The
attribute class must havesgstem.AttributeUsage attribute that declares what the attribute isdvah,
whether it may be used multiple times in a decianaand whether it is inherited. The following exale
defines an attribute class nanginpleAttribute that can be placed on class declarations andanger
declarations:

<AttributeUsage(AttributeTargets.Class Or AttributeTargets.Interface)> _
Public Class SimpleAttribute
Inherits System.Attribute

End Class
The next example shows a few uses ofsthepe attribute. Although the attribute class is named
simpleAttribute, uses of this attribute may omit tAdribute suffix, thus shortening the namegomp1e:

<Simple()> Class Classl

End Class

<Simple()> Interface Interfacel

End Interface

Thesystem.AttributeUsage attribute has a variable initializex] TowmMu1t1ipTe, which specifies whether
the indicated attribute can be specified more thraae for a given declaration.Afl TowmMultipTe for an
attribute isTrue, it is amultiple-use attribute class, and can be specified more than once on a deciardit
AllowmuTtiple for an attribute i$alse or unspecified for an attribute, it issagle-use attribute class, and
can be specified at most once on a declaration.

The following example defines a multiple-use atitédbclass namesuthorAttribute:
<AttributeUsage(AttributeTargets.Class, AllowMultiple := True)>
Public Class AuthorAttribute

Inherits System.Attribute

64 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

Public Sub New(Byval value As String)
End Sub

Public Readonly Property value() As String
Get
End Get
End Property
End Class
The example shows a class declaration with two akdgAuthor attribute:
<Author("Maria Hammond"), Author("Ramesh Meyyappan")>
Class Classl
End Class

Thesystem.AttributeUsage attribute has a public instance varialieherited, that specifies whether the
attribute, when specified on a base type, is alkerited by types that derive from this base tyjpihe

Inherited public instance variable is not initialized, aaldf value ofFalse is used. Properties and events do
not inherit attributes, although the methods defihg properties and events do. Interfaces do farin

attributes.

If a single-use attribute is both inherited andcfed on a derived type, the attribute specifiedtive derived
type overrides the inherited attribute. If a mu#ipse attribute is both inherited and specifiecaaterived type,
both attributes are specified on the derived t{me.example:

<AttributeUsage(AttributeTargets.Class, AllowMultiple := True
Inherited := True >
Class MultiuUseAttribute
Inherits System.Attribute

Public Sub New(Byval value As Boolean)
End Sub
End Class

<AttributeUsage(AttributeTargets.Class, Inherited := True)>
Class SingleUseAttribute
Inherits Attribute

Public sub New(Byval value As Boolean)
End Sub
End Class

<Singleuse(True), MultiUse(True)> Class Base
End Class

Copyright © Microsoft Corporation 2005. All righteserved. 65

Visual Basic Language Specification

Derived has three attributes defined on it: SingleuUse(False),
" Multiuse(True) and MultiUse(False)
<Singleuse(False), Multiuse(False)> _
Class Derived

Inherits Base

End Class

The positional parameters of the attribute arendelfiby the parameters of the public constructothef
attribute class. Positional parameters mustypea1 and may not specifgyRef, Optional or Paramarray.
Public instance variables and properties are defiryepublic read-write properties or instance Jalga of the
attribute class. The types that can be used irtipoal parameters and public instance variablespaogerties
are restricted to attribute types. A type is arilatte type if it is one of the following:

* Any primitive type except fobate andbecimal.

* The typeobject.

* The typesystem.Type.

* An enumerated type, provided that it and the typeghich it is nested (if any) hawb11i c accessibility.

* A one-dimensional array of one of the previous $yjpethis list.

5.2 Attribute Blocks

Attributes are specified iattribute blocks. Each attribute block is delimited by angle brasKe<>"), and
multiple attributes can be specified in a commaasated list within an attribute block or in mulephttribute
blocks. The order in which attributes are speciftedot significant. For example, the attributedide<a, B>,
<B, A>,<A> and <A> are all equivalent.

An attribute may not be specified on a kind of deafion it does not support, and single-use atgdbmay not
be specified more than once in an attribute bldtle example below causes errors both becauseimgis$ to
useHelpstring on the interfac@anterfacel and more than once on the declaratioglafss1.

<AttributeUsage(AttributeTargets.Class)> _
Public Class HelpStringAttribute
Inherits System.Attribute

Private Internalvalue As String

Public Sub New(Byval value As String)
Me.Internalvalue = value
End Sub

Public Readonly Property value() As String
Get
Return Internalvalue
End Get
End Property
End Class

66 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

" Error: HelpString only applies to classes.
<HelpString("Description of Interfacel”)> _
Interface Interfacel
Sub sub1()

End Interface
' Error: HelpString is single-use.

<HelpString("Description of Classl"), _

HelpString("Another description of Classl")> _

Public Class Classl

End Class
An attribute consists of an optional attribute nfiedj an attribute name, an optional list of pasial arguments,

and variable/property initializers. If there arepayameters or initializers, the parentheses maynited. If an
attribute has a modifier, it must be in an attrébblock at the top of a source file.

If a source file contains an attribute block attitye of the file that specifies attributes for tessembly or
module that will contain the source file, eachibttie in the attribute block must be prefixed bhei the
AssembTy orModule modifier and a colon.

Attributes ::=
AttributeBlock |
Attributes AttributeBlock

AttributeBlock ::= < AttributeList >

AttributeList ::=
Attribute |
Attributelist , Attribute

Attribute ::=
[AttributeModifier :] SmpleTypeName [([AttributeArguments |) |

AttributeModifier ::= Assembly | Module

5.2.1 Attribute Names

The name of an attribute specifies an attributesclBy convention, attribute classes are namedthétisuffix
Attribute. Uses of an attribute may either include or o suffix. Consequently the name of an attribute
class that corresponds to an attribute identifieither the identifier itself or the concatenatdrthe qualified
identifier andattribute. When the compiler resolves an attribute naneppendattribute to the name
and tries the lookup. If that lookup fails, the goler tries the lookup without the suffix. For expale, uses of
an attribute classimpleAttribute may omit theattribute suffix, thus shortening the namesomple:

<Simple(> _
Class cClassl
End Class

<Simple(> _
Interface Interfacel

Copyright © Microsoft Corporation 2005. All righteserved. 67

Visual Basic Language Specification
End Interface
The example above is semantically equivalent tdahewing:
<SimpTleAttribute()> _
Class Classl
End Class

<SimpleAttribute()> _
Interface Interfacel
End Interface

In general, attributes named with the suffixtribute are preferred. The following example shows two
attribute classes namadandxAttribute.

<AttributeUsage(AttributeTargets.Al1)> _
Public Class X

Inherits System.Attribute
End Class

<AttributeUsage(AttributeTargets.Al1)> _
Public Class XAttribute

Inherits System.Attribute
End Class

' Refers to XAttribute.
<xXO> _

Class Classl

End Class

' Refers to XAttribute.
<XAttribute()> _

Class Class?2

End Class

Both the attribute blockx> and the attribute blockxAttribute> refer to the attribute class named
XAttribute. It is not possible to useas an attribute until you remove the declarat@mrcfassxattribute.

5.2.2 Attribute Arguments

Arguments to an attribute may take two forms: pas#l arguments and instance variable/propertjalizers.
Any positional arguments to the attribute must pdecthe instance variable/property initializergasitional
argument consists of a constant expression, a immenadional array-creation expression @eaType
expression. An instance variable/property initalizonsists of an identifier, which can match kegdgo
followed by a colon and equal sign, and termindigd constant expression oGatType expression.

Given an attribute with attribute classpositional argument list, and instance variable/property initializer list
N, these steps determine whether the argumentsahde v

68 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

* Follow the compile-time processing steps for coingian expression of the forkew T(P). This either
results in a compile-time error or determines astmctor onr that is most applicable to the argument list.

» If the constructor determined in step 1 has parara¢hat are not attribute types or is inaccessibthe
declaration site, a compile-time error occurs.

» For each instance variable/property initializeg in N:
* LetName be the identifier of the instance variable/properitializer Arg.

* Name must identify a norshared, writeable,pub1i c instance variable or parameterless property on
whose type is an attribute typeTihas no such instance variable or property, a dentipie error
occurs.

For example:
<AttributeUsage(AttributeTargets.All)> _
Public Class GeneralAttribute

Inherits Attribute

Public sub New(Byval x As Integer)
End Sub

Public sub New(Byval x As Double)
End Sub

Public y As Type

Public Property z As Integer
Get
End Get

Set
End Set
End Property
End Class

' calls the first constructor.

<General (10, z := 30, y := GetType(Integer))> _
Class Foo

End Class

' Ccalls the second constructor.
<General(10.5, z := 10)> _
Class Bar

End Class

Copyright © Microsoft Corporation 2005. All righteserved. 69

Visual Basic Language Specification

Type parameters cannot be used anywhere in adridsguments. However, constructed types may be used
<AttributeUsage(AttributeTargets.Al1)> _
Class A
Inherits System.Attribute

Public Sub New(Byval t As Type)
End Sub
End Class

Class List(of T)

Error: attribute argument cannot use type parameter
<A(GetType(T))> Dim tl As T

OK: closed type
<A(GetType(List(of Integer)))> Dim y As Integer
End Class

AttributeArguments ::=
AttributePositional ArgumentList |
AttributePositional ArgumentList , VariablePropertylnitializerList |
VariablePropertyl nitializerList

AttributePositional ArgumentList ::=
AttributeArgumentExpression |
AttributePositional ArgumentList , AttributeArgumentExpression

VariablePropertylnitializerList ::=

VariablePropertylnitializer |

VariablePropertylnitializerList , VariablePropertylnitializer
VariablePropertylnitializer ::=

IdentifierOrKeyword := AttributeArgumentExpression
AttributeArgumentExpression ::=

ConstantExpression |

GetTypeExpression |

ArrayCreationExpression

70 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

6. Source Files and Namespaces

A Visual Basic program consists of one or more sefites. When a program is compiled, all of tharse files
are processed together; thus, source files camdepeeach other, possibly in a circular fashioitheut any
forward-declaration requirement. The textual omfedeclarations in the program text is generallypof
significance.

A source file consists of an optional set of optstetements, import statements, and attribute ;hwdrie
followed by a namespace body. The attributes, whiakt each have either thesemb1y orModule modifier,
apply to the .NET assembly or module produced bycttmpilation. The body of the source file funci@s an
implicit namespace declaration for the global ngmes, meaning that all declarations at the top leiva
source file are placed in the global namespaceekample:

FileA.vb:
Class A
End Class
FileB.vb:
Class B
End Class

The two source files contribute to the global ngmaes, in this case declaring two classes withuhg f
qualified names9 andB. Because the two source files contribute to timeesdeclaration space, it would have
been an error if each contained a declarationmémber with the same name.

Note The compilation environment may override the egpace declarations into which a source file is
implicitly placed.

Except where noted, statements within a Visual@pgigram can be terminated either by a line teatoinor
by a colon.

Sart =
[OptionSatement+ |
[ImportsStatement+ |
[AttributesSatement+ |
[NamespaceMemberDeclaration+]

SatementTerminator ::= LineTerminator | :
AttributesStatement ::= Attributes SatementTer minator

6.1 Program Startup and Termination

Program startup occurs when the execution envirohee=cutes a designated method, which is refeored
the program'entry point. This entry point method, which must always be @dmain, must be shared, cannot
be contained in a generic type, and must have btie dollowing signatures:

Sub Main()
Sub Main(Byval Args() As String)
Function Main() As Integer

Copyright © Microsoft Corporation 2005. All righteserved. 71

Visual Basic Language Specification
Function Main(Byval Args() As String) As Integer

The accessibility of the entry point method islevant. If a program contains more than one swetabkry
point, the compilation environment must designate as the entry point. Otherwise, a compile-tinnerer
occurs. The compilation environment may also craatentry point method if one does not exist.

When a program begins, if the entry point has arpater, the argument supplied by the executiorremwvient
contains the command-line arguments to the progegmesented as strings. If the entry point hasumreype

of Integer, then the value returned from the function ismetd to the execution environment as the result of
the program.

In all other respects, entry point methods behavhe same manner as other methods. When exededioes
the invocation of the entry point method made leygkecution environment, the program terminates.

6.2 Compilation Options

A source file can specify compilation options ie gource code usirggption statements. An Option statement
applies only to the source file in which it appearsd only one of each type @tion statement may appear in
a source file. For example:

Option Strict On

Option Compare Text

Option Strict Off ' Not allowed, Option Strict is already specified.
Option Compare Text ' Not allowed, Option Compare is already specified.

There are three compilation options: strict typmaetics, explicit declaration semantics, and coispar
semantics. If a source file does not include ai@deroption statement, then the compilation environment
determines which particular set of semantics velused. There is also a fourth compilation opticteger
overflow checks, which can only be specified thiotlge compilation environment.

OptionSatement ::=
OptionExplicitStatement |
OptionSrictSatement |
OptionCompareStatement

6.2.1 Option Explicit Statement

Theoption Explicit statement determines whether local variables reaynplicitly declared. The keywords
on or off may follow the statement; if neither is specifigee default i®n. If no statement is specified in a
file, the compilation environment determines whigh be used.

Note Explicit andoff are not reserved words.
Option Explicit off

Module Test
Sub Main()
X =5

End Sub

End Module

valid because Option Explicit is off.

In this example, the local variabtes implicitly declared by assigning to it. The ¢ypfx isobject.
OptionExplicitStatement ::= option Explicit [OnOff | SatementTerminator
OnOff ::= on | off

72 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

6.2.2 Option Strict Statement

Theoption Strict statement determines whether conversions andtapesa@nobject are governed by
strict or permissive type semantics and whethezgygre implicitly typed agbject if no As clause is
specified. The statement may be followed by thedkagson or of f; if neither is specified, the defaultds. If
no statement is specified in a file, the compilagmvironment determines which will be used.

Note strict andoff are not reserved words.
Option Strict On

Module Test
Sub Main(Q)
Dim x ' Error, no type specified.

Dim o As Object
Dim b As Byte = o

Error, narrowing conversion.

0.Foo() ' Error, Tate binding disallowed.
o=o0+ 1" Error, addition is not defined on Object.
End Sub
End ModuTle
Under strict semantics, the following are disalldwe
* Narrowing conversions without an explicit cast @per.
* Late binding.
» Operations on typebject other than=, <>, Typeof...Is, andls.
» Omitting theAs clause in a declaration.
OptionSrictSatement ::= Option Strict [OnOff] SatementTerminator

6.2.3 Option Compare Statement

Theoption Compare statement determines the semantics of string cosgue. String comparisons are

carried out either using binary comparisons (inalitthe binary Unicode value of each character mspared)

or text comparisons (in which the lexical meanihgach character is compared using the curremir@)ltlf no

statement is specified in a file, the compilatiowieonment controls which type of comparison wil bsed.
Note Compare, Binary, andText are not reserved words.

Option Compare Text

Module M
Sub Main()
console.writeLine("a" = "A")
End Sub
End Module

In this case, the string comparison is done usitextcomparison that ignores case differencesptfion
Compare Binary had been specified, then this would have primtetse.

Prints True.

Copyright © Microsoft Corporation 2005. All righteserved. 73

Visual Basic Language Specification

OptionCompareStatement ::= Option Compare CompareOption StatementTer minator
CompareOption ::= Binary | Text

6.2.4 Integer Overflow Checks

Integer operations can either be checked or natkeltefor overflow conditions at run time. If ovend¥
conditions are checked and an integer operatiorflowes, asystem.overflowException exception is
thrown. If overflow conditions are not checkedgiger operation overflows do not throw an excepfidre
compilation environment determines whether thisoopis on or off.

6.3 Imports Statement
Imports statements import the names of entities into aceofile, allowing the names to be referenced witho
gualification.
Within member declarations in a source file thattams artmports statement, the types contained in the
given namespace can be referenced directly, asrséles following example:

Imports N1.N2

Namespace N1.N2
Class A
End Class
End Namespace

Namespace N3
Class B
Inherits A
End Class
End Namespace

Here, within the source file, the type membersarhaspacal.N2 are directly available, and thus class B
derives from clas§81.N2.A.

Imports statements must appear after apyion statements but before any type declarations. The
compilation environment may also define implbitports statements.

Imports statements make names available in a sourcédfiteajo not declare anything in the global

namespace's declaration space. The scope of thesriamported by ammports statement extends over the

namespace member declarations contained in theestle. The scope of atmports statement specifically

does not include othamports statements, nor does it include other source filggorts statements may not

refer to one another.

In this example, the lagimports statement is in error because it is not affectethb first import alias.
Imports R1 = N1 ' OK.

N1.N2 ' OK.

R1.N2 ' Error: Can't refer to R1.

Imports R2
Imports R3

Namespace N1.N2
End Namespace

74 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

Note The namespace or type names that appaamiorts statements are always treated as if they are
fully qualified. That is, the leftmost identifien & namespace or type name always resolves indhelg
namespace and the rest of the resolution proceedsding to normal name resolution rules. Thides t
only place in the language that applies such a tiierule ensures that a name cannot be complatiden
from qualification. Without the rule, if a nametime global namespace were hidden in a particulaicso
file, it would be impossible to specify any namesni that namespace in a qualified way.

In this example, th@mports statement always refers to the globastem namespace, and not the class in the
source file.
Imports System ' Imports the namespace, not the class.

Class System

End Class
ImportsStatement ::= Imports ImportsClauses SatementTerminator
ImportsClauses ::=

ImportsClause |
ImportsClauses , ImportsClause

ImportsClause ::= ImportsAliasClause | ImportsNamespaceClause

6.3.1 Import Aliases
An import alias defines an alias for a namespace or type.
Imports A = N1.N2.A

Namespace N1.N2
Class A
End Class
End Namespace

Namespace N3
Class B
Inherits A
End Class
End Namespace

Here, within the source file, is an alias foN1.N2.A, and thus class3 . B derives from class1.N2.A. The
same effect can be obtained by creating an RlfasN1.N2 and then referencimgy. A:

Imports R = N1.N2

Namespace N3
Class B
Inherits R.A
End Class
End Namespace

Copyright © Microsoft Corporation 2005. All righteserved. 75

Visual Basic Language Specification

The identifier of an import alias must be uniquéhivi the declaration space of the global namesfaatgust
the global namespace declaration in the sourcenfiéhich the import alias is defined), even thoitgioes not
declare a name in the global namespace's declasgiare.

Annotation

Declarations in a module do not introduce namestimé containing declaration space. Thus, it igival a
declaration in a module to have the same name aspnt alias, even though the declaration’s narebe
accessible in the containing declaration space.

Imports A = N3.A

Class A
End Class

Namespace N3
Class A
End Class

End Namespace

Here, the global namespace already contains a miexmbe it is an error for an import alias to use that
identifier. It is likewise an error for two or momaport aliases in the same source file to dedéeses by the
same name.

An import alias can create an alias for any namaspatype. Accessing a namespace or type througttias
yields exactly the same result as accessing theswage or type through its declared name.

N1
N1.N2

Imports R1
Imports R2

Namespace N1.N2
Class A
End Class
End Namespace

Namespace N3
Class B
Private a As N1.N2.A
Private b As R1.N2.A
Private c As R2.A
End Class
End Namespace
Here, the namesl.N2.A, R1.N2.A, andR2.A are equivalent, and all refer to the class whabg qualified
name isN1.N2.A.
Declarations in the source file may shadow the inglias name.
Imports R = N1.N2

76 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

Namespace N1.N2
Class A
End Class
End Namespace

Namespace N3
Class R
End Class

Class B
Inherits R.A ' Error, R has no member A
End Class
End Namespace

In the preceding example the reference ta in the declaration o causes an error becausefers toN3. R,
NOtN1.N2.

An import alias makes an alias available withiregtipular source file, but it does not contribuig @ew
members to the underlying declaration space. larotlords, an import alias is not transitive, bihea affects
only the source file in which it occurs.

Filel.vb:

Imports R = N1.N2

Namespace N1.N2
Class A
End Class
End Namespace

File2.vb:
Class B
Inherits R.A ' Error, R unknown.
End Class

In the above example, because the scope of therirals that introduces only extends to declarations in the
source file in which it is containes,is unknown in the second source file.

ImportsAliasClause ::=

Identifier = Qualifiedidentifier |
Identifier = ConstructedTypeName

6.3.2 Namespace Imports

A namespace import imports all of the members of a namespace or @i@ying the identifier of each member
of the namespace or type to be used without qoatfi€in. In the case of types, a namespace impbyrtatiows
access to the shared members of the type withquirieg qualification of the class name. In particuyit

allows the members of enumerated types to be ugbdw qualification. For example:

Copyright © Microsoft Corporation 2005. All righteserved. 77

Visual Basic Language Specification

Imports Colors

Enum Colors
Red
Green
Blue

End Enum

Module M1
Sub Main(Q)
Dim c As Colors = Red
End Sub
End Module
Unlike an import alias, a namespace import haseatictions on the names it imports and may import

namespaces and types whose identifiers are aldsdgred within the global namespace. The namesriexh
by a regular import are shadowed by import ali@sesdeclarations in the source file.

In the following examplea refers toN3. A rather tham1.N2. A within member declarations in thé
namespace.

Imports N1.N2

Namespace N1.N2
Class A
End Class
End Namespace

Namespace N3
Class A
End Class

Class B
Inherits A
End Class
End Namespace

When more than one imported namespace contains emerp the same name (and that name is not otherwis

shadowed by an import alias or declaration), aregfee to that name is ambiguous and causes a @stimé
error.

Imports N1
Imports N2

Namespace N1
Class A

78 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

End Class
End Namespace

Namespace N2
Class A
End Class

End Namespace

Namespace N3
Class B
Inherits A ' Error, A is ambiguous.
End Class
End Namespace

In the above example, botil andN2 contain a membex. Becausei3 imports both, referencingin N3 causes
a compile-time error. In this situation, the coctfican be resolved either through qualificatiomedérences te,
or by introducing an import alias that picks a jgaitar A, as in the following example:

Imports N1
Imports N2
Imports A = N1.A

Namespace N3
Class B
Inherits A ' A means N1.A.
End Class
End Namespace

Only namespaces, classes, structures, enumerates] gnd standard modules may be imported.

ImportsNamespaceClause ::=
Qualifiedidentifier |
ConstructedTypeName

6.4 Namespaces

Visual Basic programs are organized using hamespaianespaces both internally organize a prograweis
as organize the way program elements are exposgti¢o programs.

Unlike other entities, namespaces are open-endeldnay be declared multiple times within the sanog@mm
and across many programs, with each declaratiotriboting members to the same namespace. In the
following example, the two namespace declaratiamribute to the same declaration space, declanng
classes with the fully qualified name$.N2.A andN1.N2.B.

Namespace N1.N2
Class A
End Class
End Namespace

Copyright © Microsoft Corporation 2005. All righteserved. 79

Visual Basic Language Specification

Namespace N1.N2
Class B
End Class
End Namespace

Because the two declarations contribute to the sheokaration space, it would be an error if eaditaioed a
declaration of a member with the same name.

There is a global namespace that has no name argbwiested namespaces and types can always bseatces
without qualification. The scope of a namespace berdeclared in the global namespace is the gutirgram
text. Otherwise, the scope of a type or namespeclared in a namespace whose fully qualified naneas the
program text of each namespace whose correspondimgspace's fully qualified name begins witbr isN

itself. (Note that a compiler can choose to putatations in a particular namespace by defaults Tioies not
alter the fact that there is still a global, unndmeamespace.)

In this example, the clagscan see the clagsbhecaus®'s namespacel.N2 .N3 is conceptually nested within
the namespaaél . N2.
Namespace N1.N2
Class A
End Class
End Namespace

Namespace N1.N2.N3
Class B
Inherits A
End Class
End Namespace

6.4.1 Namespace Declarations

A namespace declaration consists of the keywantkspace followed by a qualified identifier and optional
namespace member declarations. If the namespaaisamalified, the namespace declaration is tdeasgaf it
is lexically nested within namespace declaratiamrsesponding to each name in the qualified name. Fo
example, the following two hamespaces are semdigteguivalent:

Namespace N1.N2
Class A
End Class

Class B
End Class
End Namespace

Namespace N1
Namespace N2
Class A
End Class

80 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

Class B
End Class
End Namespace
End Namespace

When dealing with the members of a namespacendatigmportant where a particular member is dedaife
two programs define an entity with the same nanthérsame namespace, attempting to resolve the imatime
namespace causes an ambiguity error.

Namespaces are by definitienb11ic, so a namespace declaration cannot include amgsiccodifiers.

NamespaceDeclaration ::=
Namespace Qualifiedldentifier StatementTerminator
[NamespaceMemberDeclaration+ |
End Namespace SatementTerminator

6.4.2 Namespace Members

Namespace members can only be namespace declaratidtype declarations. Type declarations may have
Public or Friend access. The default access for typesrisend access.

NamespaceMemberDeclaration ::=
NamespaceDeclaration |
TypeDeclaration

TypeDeclaration ::=
ModuleDeclaration |
NonModuleDeclaration

NonModuleDeclaration ::=
EnumDeclaration |
SructureDeclaration |
InterfaceDeclaration |
ClassDeclaration |
DelegateDeclaration

Copyright © Microsoft Corporation 2005. All righteserved. 81

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

7. Types

The two fundamental categories of types in VisuasiB areval ue types andreference types. Primitive types
(except strings), enumerations, and structuresate types. Classes, strings, standard modulesfanes,
arrays, and delegates are reference types.

Every type has default value, which is the value that is assigned to variabfebat type upon initialization.

TypeName ::=
ArrayTypeName |
NonArrayTypeName

NonArrayTypeName ::=
SmpleTypeName |
ConstructedTypeName

SmpleTypeName ::=
Qualifiedidentifier |
BuiltinTypeName

BuiltinTypeName ::= object | PrimitiveTypeName
TypeModifier ::= AccessModifier | shadows

7.1 Value Types and Reference Types

Although value types and reference types can biagiin terms of declaration syntax and usagerthei
semantics are distinct.

Reference types are stored on the run-time heap;tay only be accessed through a reference tstiha@ge.
Because reference types are always accessed thmefegbnces, their lifetime is managed by the .NET
Framework. Outstanding references to a particakstance are tracked and the instance is destraoygdavben
no more references remain. A variable of referéype contains a reference to a value of that tgpalue of a
more derived type, or a null referencendll reference is a reference that refers to nothing; it is rmggible to
do anything with a null reference except assigAssignment to a variable of a reference type eseatcopy of
the reference rather than a copy of the referemakee. For a variable of a reference type, theuefalue is a
null reference.

Value types are stored directly on the stack, eitithin an array or within another type; theirrstge can only
be accessed directly. Because value types arelsdoeetly within variables, their lifetime is deteined by the
lifetime of the variable that contains them. Whiea location containing a value type instance isrdgsd, the
value type instance is also destroyed. Value tgpeslways accessed directly; it is not possiblreéate a
reference to a value type. Prohibiting such a ezfee makes it impossible to refer to a value dlestance that
has been destroyed. Because value types are alwaysheritable, a variable of a value type always
contains a value of that type. Because of thisy#thee of a value type cannot be a null referenoegcan it
reference an object of a more derived type. Assa@rirto a variable of a value type creates a copliefalue
being assigned. For a variable of a value typed#fault value is the result of initializing eacrsable member
of the type to its default value.

The following example shows the difference betwedarence types and value types:
Class Classl
Public value As Integer = 0

Copyright © Microsoft Corporation 2005. All righteserved. 83

Visual Basic Language Specification
End Class

Module Test
Sub MainQ)
Dim vall As Integer = 0

vall

Dim val2 As Integer
val2 = 123
Dim refl As Classl

New Class1()

Dim ref2 As Classl = refl
ref2.value = 123
console.WriteLine("values: " & vall & ", " & val2)
console.wWriteLine("Refs: " & refl.value & ", " & ref2.value)
End Sub
End Module

The output of the program is:
values: 0, 123
Refs: 123, 123
The assignment to the local variabkel 2 does not impact the local variable11 because both local variables

are of a value type (the typateger) and each local variable of a value type hasyits storage. In contrast,
the assignmentef2.value = 123; affects the object that bottef1 andref2 reference.

One thing to note about the .NET Framework typéesygs that even though structures, enumeratiods an
primitive types (except fagtring) are value types, they all inherit from referehgees. Structures and the
primitive types inherit from the reference typgstem.valueType, which inherits fronobject. Enumerated
types inherit from the reference typgstem. Enum, which inherits fronsystem.valueType..

7.2 Interface Implementation

Structure and class declarations may declare libgtimplement a set of interface types throughanaore
Implements clauses. All the types specified in theplements clause must be interfaces, and the type must
implement all members of the interfaces. For exampl

Interface ICloneable
Function Clone() As Object
End Interface

Interface IComparable
Function CompareTo(Byval other As Object) As Integer
End Interface

Structure ListEntry
Implements ICloneable, IComparable

Public Function Clone() As Object Implements ICloneable.Clone
End Function
84 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

Public Function CompareTo(Byval other As Object) As Integer _
Implements IComparable.CompareTo
End Function
End Structure

A type that implements an interface also implicithplements all of the interface's base interfatéss is true
even if the type does not explicitly list all basterfaces in th@amplements clause. In this example, the
TextBox structure implements botftontrol andITextBox.

Interface IControl
Sub Paint(Q)
End Interface

Interface ITextBox

Inherits IControl

Sub SetText(Byval Text As String)
End Interface

Structure TextBox
Implements ITextBox

Public Sub Paint() Implements ITextBox.Paint
End Sub

Public Sub setText(Byval Text As String) Implements ITextBox.SetText
End Sub
End Structure

Declaring that a type implements an interface ith @initself does not declare anything in the dextlan space
of the type. Thus, it is valid to implement twodrfaces with a method by the same name.

Types cannot implement a type parameter on its altimpugh it may involve the type parameters thatim
scope.

Class cl(of v)
Implements V
Implements IEnumerable(of V) ' OK, not directly implementing

End Class

Error, can't implement type parameter directly

Generic interfaces can be implemented multiple dining different type arguments. However, a gerigpe
cannot implement a generic interface using a tygarpeter if the supplied type parameter (regardiesge
constraints) could overlap with another implemeaataof that interface. For example:

Interface 1I1(0f T)
End Interface

Class c1

Copyright © Microsoft Corporation 2005. All righteserved. 85

Visual Basic Language Specification

Implements I1(0f Integer)
Implements I1(0f Double) ' 0K, no overlap
End Class

Class c2(of T)

Implements I1(0f Integer)

Implements I1(0f T) ' Error, T could be Integer
End Class

TypelmplementsClause ::= ImpTements Implements StatementTer minator

Implements ::=
NonArrayTypeName |
Implements , NonArrayTypeName

7.3 Primitive Types

Theprimitive types are identified through keywords, which are aligeepredefined types in thgeystem
namespace. A primitive type is completely indistirspable from the type it aliases: writing the resd word
Byte is exactly the same as writisgstem.Byte.

Because a primitive type aliases a regular typeryeprimitive type has members. For example;eger has
the members declared $iystem.Int32. Literals can be treated as instances of theresponding types.

The primitive types differ from other structure &gin that they permit certain additional operation

» Primitive types permit values to be created byingititerals. For examplg,231 is a literal of type
Integer.

* ltis possible to declare constants of the priraitiypes.

* When the operands of an expression are all prietifjpe constants, it is possible for the compier t
evaluate the expression at compile time. Such presgion is known as a constant expression.

Visual Basic defines the following primitive types:

* The integral value typemyte (1-byte unsigned integeidpyte (1-byte signed integeryshort (2-byte
unsigned integerghort (2-byte signed integenyinteger (4-byte unsigned integernteger (4-byte
signed integer)yLong (8-byte unsigned integer), andng (8-byte signed integer). These types map to
System.Byte, System.SByte, System.UIntl6, System.Intl6, System.UInt32, System.Int32,
System.UInt64 andsystem.Int64, respectively. The default value of an integraltys equivalent to
the literalO.

* The floating-point value typesingle (4-byte floating point) andouble (8-byte floating point). These
types map teystem.Single andSystem.Double, respectively. The default value of a floating+goi
type is equivalent to the literal

 ThebDecimal type (16-byte decimal value), which mapsietem.Decimal. The default value of
decimal is equivalent to the literab.

* TheBooTlean value type, which represents a truth value, tylyiche result of a relational or logical
operation. The literal is of typgystem.Boolean. The default value of thBoo1ean type is equivalent to
the literalFalse.

» ThebDate value type, which represents a date and/or adimemaps teystem.DateTime. The default
value of thepate type is equivalent to the literéll 01/01/0001 12:00:00AM #.

86 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

» Thechar value type, which represents a single Unicodeasdtar and maps ®ystem.Char. The default
value of thechar type is equivalent to the constant expressiori (0).

* Thestring reference type, which represents a sequence ebdaicharacters and maps to
System.String. The default value of th&tring type is a null reference.

PrimitiveTypeName ::= NumericTypeName | Boolean | Date | Char | String
NumericTypeName ::= Integral TypeName | FloatingPointTypeName | Decimal

Integral TypeName ::= Byte | SByte | UShort | Short | UInteger | Integer | ULong | Long
FloatingPointTypeName ::= Single | Double

7.4 Enumerations

Enumerations are value types that inherit frobystem. Enum and symbolically represent a set of values of one
of the primitive integral types. For an enumeratigme E, the default value is the value produced by the
expressiorcType(0, E).

The underlying type of an enumeration must be tegial type that can represent all the enumeratines
defined in the enumeration. If an underlying typspecified, it must beyte, SByte, UShort, Short,
UInteger, Integer, ULong, Long, or one of their corresponding types in fystem namespace. If no
underlying type is explicitly specified, the defaislInteger.
The following example declares an enumeration aitlunderlying type ofong:
Enum Color As Long
Red
Green
Blue
End Enum

A developer might choose to use an underlying tffieong, as in the example, to enable the use of valwads th
are in the range afong, but not in the range aihteger, or to preserve this option for the future.

EnumDeclaration ::=
[Attributes] [TypeModifier+] Enum Identifier [As QualifiedName | SatementTerminator
EnumMember Declaration+
End Enum SatementTerminator

7.4.1 Enumeration Members

The members of an enumeration are the enumeraleglsvdeclared in the enumeration and the members
inherited from classystem.Enum.

The scope of an enumeration member is the enurmemgiclaration body. This means that outside of an
enumeration declaration, an enumeration member atwstys be qualified (unless the type is specifycal
imported into a namespace through a namespacetimpor

Declaration order for enumeration member declanatie significant when constant expression values a
omitted. Enumeration members implicitly hasgb 11 c access only; no access modifiers are allowed on
enumeration member declarations.

EnumMemberDeclaration ::= [Attributes] Identifier [= ConstantExpression | StatementTer minator

Copyright © Microsoft Corporation 2005. All righteserved. 87

Visual Basic Language Specification

7.4.2 Enumeration Values

The enumerated values in an enumeration memberésieclared as constants typed as the underlying
enumeration type, and they can appear wherevetamaasare required. An enumeration member defimitiih
= gives the associated member the value indicataldebgonstant expression. The constant expresgigh m
evaluate to an integral type that is implicitly gertible to the underlying type and must be wittia range of
values that can be represented by the underlyjpgy fifhe following example is in error because thestant
valuesl.5, 2.3, and3. 3 are not implicitly convertible to the underlyingégral type_ong with strict
semantics.

Option Strict On

Enum Color As Long

Red = 1.5

Green = 2.3

Blue = 3.3
End Enum

Multiple enumeration members may share the sanoeiassd value, as shown below:
Enum Color
Red
Green
Blue
Max = Blue
End Enum

The example shows an enumeration that has two eatioremembers —BTue andmax — that have the same
associated value.

If the first enumerator value definition in the emeration has no initializer, the value of the cepanding
constant i€. An enumeration value definition without an inlitar gives the enumerator the value obtained by
increasing the value of the previous enumeratidmevby 1. This increased value must be within the range of
values that can be represented by the underlyjogy ty

Enum Color
Red
Green = 10
Blue

End Enum

Module Test
Sub Main()
Console.WriteLine(StringFromColor(Color.Red))
Console.WriteLine(StringFromColor(Color.Green))
Console.WriteLine(StringFromColor(Color.BTlue))
End Sub

Function StringFromColor(Byval c As Color) As String

88 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

Select Case c
Case Color.Red
Return String.Format("Red = " & CInt(c))

Case Color.Green
Return String.Format("Green = " & CInt(c))

Case Color.Blue

Return String.Format("Blue = " & CInt(c))
Case Else
Return "Invalid color"
End Select
End Function
End Class

The example above prints the enumeration valuestesidassociated values. The output is:

Red = 0
Blue = 11
Green = 10

The reasons for the values are as follows:

* The enumeration valueed is automatically assigned the valuésince it has no initializer and is the first
enumeration value member).

* The enumeration valugreen is explicitly given the valuao.

* The enumeration valugl ue is automatically assigned the value one greatar the enumeration value that
textually precedes it.

The constant expression may not directly or indiyacse the value of its own associated enumeratabme
(that is, circularity in the constant expressionos allowed). The following example is invalid laese the
declarations of andB are circular.

Enum Circular
A =B
B

End Enum

A depends oB explicitly, andB depends on implicitly.

7.5 Classes

A classis a data structure that may contain data men{berstants, variables, and events), function mesnber
(methods, properties, indexers, operators, andmansrs), and nested types. Classes are refetgpes. The
following example shows a class that contains éauh of member:

Class AClass

Public Sub New()
Copyright © Microsoft Corporation 2005. All righteserved. 89

Visual Basic Language Specification

console.wWriteLine("Constructor™)
End Sub

Public sub New(Byval value As Integer)
MyvVariable = value
Console.WriteLine("Constructor™)

End Sub

Public Const MyConst As Integer = 12
Public Myvariable As Integer = 34

Public Sub MyMethod()
console.WriteLine("MyClass.MyMethod™)
End Sub

Public Property MyProperty() As Integer
Get
Return Myvariable
End Get

Set (Byval value As Integer)
MyVariable = value
End Set
End Property

Default Public Property Item(Byval index As Integer) As Integer
Get
Return O
End Get

Set (Byval value As Integer)
console.writeLine("Item(" & index & ") = " & value)
End Set
End Property

Public Event MyEvent()

Friend Class MyNestedClass
End Class
End Class

90 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

The following example shows uses of these members:
Module Test
' Event usage.
Dim WithEvents aInstance As AClass

Sub Main(Q)
' Constructor usage.

Dim a As AClass = New AClass()

Dim b As AClass = New AClass(123)

' Constant usage.

console.WriteLine("MyConst = " & AClass.MyConst)

' variable usage.

a.Myvariable += 1

Console.writeLine("a.Myvariable = " & a.Myvariable)

' Method usage.

a.MyMethod ()

' Property usage.

a.MyProperty += 1

console.wWriteLine("a.MyProperty = " & a.MyProperty)

a(l) =1

' Event usage.
aInstance = a

End Sub

Sub MyHandler() Handles aInstance.MyEvent
Cconsole.writeLine("Test.MyHandler")
End Sub
End ModuTle

There are two class-specific modifievsistInherit andNotInheritabTe. It is invalid to specify them both.

ClassDeclaration ::=
[Attributes] [ClassModifier+] class Identifier [TypeParameterList | SatementTerminator
[ClassBase]
[TypelmplementsClauset |
[ClassMemberDeclaration+ |
End Class StatementTerminator

Copyright © Microsoft Corporation 2005. All righteserved. 91

Visual Basic Language Specification

ClassMadifier ::= TypeModifier | MustInherit | NotInheritable | Partial

7.5.1 Class Base Specification

A class declaration may include a base type spatidin that defines the direct base type of thescld a class
declaration has no explicit base type, the diraseltype is implicithobject. For example:

Class Base
End Class

Class Derived
Inherits Base
End Class

Base types cannot be a type parameter on its dtkough it may involve the type parameters thatiascope.
Class cl(of v)
End Class

Class c2(of v)
Inherits Vv ' Error, type parameter used as base class
End Class

Class c3(of V)
Inherits cl1(of v) ' OK: not directly inheriting from V.
End Class
Classes may only derive frobbject and classes. It is invalid for a class to derroefSystem.valueType,

System.Enum, System.Array, System.MulticastDelegate or System.Delegate. A generic class
cannot derive fronsystem.Attribute or from a class that derives from it.

Every class has exactly one direct base class;iemdarity in derivation is prohibited. It is npbssible to
derive from aNotInheritabTle class, and the accessibility domain of the basgsainust be the same as or a
superset of the accessibility domain of the clessdfi

ClassBase ::= Inherits NonArrayTypeName StatementTerminator

7.5.2 Class Members

The members of a class consist of the memberdintexd by its class member declarations and the m@emb
inherited from its direct base class.

A class member declaration may haub1ic, Protected, Friend, Protected Friend, orPrivate
access. When a class member declaration doesahadénan access modifier, the declaration defaoilts
Pub1ic access, unless it is a variable declaration;anh ¢hse it defaults terivate access.

The scope of a class member is the class bodyichwhe declaration occurs. If the member basend
access, its scope extends to the class body adeniwed class in the same program, and if the meimde
Public, Protected, orProtected Friend access, its scope extends to the class body alenyed class in
any program.

ClassMemberDeclaration ::=
NonModuleDeclaration |

92 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

EventMemberDeclaration |
VariableMemberDeclaration |
ConstantMember Declaration |
MethodMemberDeclaration |
PropertyMember Declaration |
ConstructorMember Declaration |
OperatorDeclaration

7.6 Structures

Structures are value types that inherit frodystem.valueType. Structures are similar to classes in that they
represent data structures that can contain datebersrand function members. Unlike classes, however,
structures do not require heap allocation.

In the case of classes, it is possible for twoaldes to reference the same object, and thus pe$sib
operations on one variable to affect the objearmfced by the other variable. With structuresytr@ables
each have their own copy of the data, so it igpessible for operations on one to affect the othgthe
following example illustrates:

Structure Point
Public x, y As Integer

Public Sub New(Byval x As Integer, Byval y As Integer)

Me.X = X
Me.y =y
End Sub

End Structure
Given the above declaration the following code ifinagt outputs the value:

Point a = new Point(10, 10)
Point b = a
a.x = 100

System.Console.WriteLine(b.x)

The assignment af to b creates a copy of the value, @ thus unaffected by the assignmend ta. Had
Point instead been declared as a class, the output wedld0 becausa andb would reference the same
object.

StructureDeclaration ::=
[Attributes | [StructureModifier+ | Structure ldentifier [TypeParameterList |
SatementTer minator
[Typel mplementsClause+ |
[StructMemberDeclaration+ |
End Structure SatementTerminator

StructureModifier ::= TypeModifier | partial

7.6.1 Structure Members

The members of a structure are the members inteabliog its structure member declarations and thebeesn
inherited fromsystem.valueType. Structures must contain at least one instandahlar

Copyright © Microsoft Corporation 2005. All righteserved. 93

Visual Basic Language Specification

Every structure implicitly has erub11ic parameterless instance constructor that prodbheedefault value of
the structure. As a result, it is not possibled@tructure type declaration to declare a paraiesginstance
constructor. A structure type is, however, perrditie declargoarameterized instance constructors, as in the
following example:

Structure Point
Private x, y As Integer

Public sub New(Byval x As Integer, Byval y As Integer)

Me.X = X
Me.y =y
End Sub

End Structure

Given the above declaration, the following statetméoth create roint with x andy initialized to zero.
Dim pl As Point = New Point()
Dim p2 As Point = New Point(0, 0)

Normally, a structure member declaration may omlyePublic, Friend, orPrivate access, but when
overriding members inherited froobject, Protected andProtected Friend access may also be used.
When a structure member declaration does not ircludaccess modifier, the declaration defaultsutol i c
access. The scope of a member declared by a s&ustihe structure body in which the declaratioouns.

SructMemberDeclaration ::=
NonModuleDeclaration |
VariableMemberDeclaration |
ConstantMember Declaration |
EventMemberDeclaration |
MethodMember Declaration |
PropertyMember Declaration |
ConstructorMemberDeclaration |
OperatorDeclaration

7.7 Standard Modules

A standard module is a type whose members are implicBlyared and scoped to the declaration space of the
standard module's containing namespace, rathejubtto the standard module declaration itsedn8ard
modules may never be instantiated. It is an ecraieclare a variable of a standard module type.

A member of a standard module has two fully quadifnames, one without the standard module nameraand
with the standard module name. More than one stdrdadule in a namespace may define a member with a
particular name; unqualified references to the nauatside of either module are ambiguous. For exampl

Namespace N1
Module M1

Sub S10

End Sub

Sub S20)
End Sub
End Module
94 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

Module M2
Sub s20)
End Sub

End Module

Module M3
Sub Main()
s1() ' valid: calls N1.Mm1.sl.
N1.Ss1() ' valid: calls N1.m1.sl.
S2() ' Not valid: ambiguous.
N1.S2() ' Not valid: ambiguous.
N1.M2.S2() ' valid: calls N1.M2.S2.
End Sub
End Module
End Namespace

A module may only be declared in a namespace anchotebe nested in another type. Standard modudgs m
not implement interfaces, they implicitly derivefnobject, and they have onlyhared constructors.

ModuleDeclaration ::=
[Attributes] [TypeModifier+] Module Identifier StatementTerminator
[ModuleMemberDeclaration+]
End Module SatementTerminator

7.7.1 Standard Module Members

The members of a standard module are the membssduiced by its member declarations and the members
inherited fromobject. Standard modules may have any type of membeipektstance constructors. All
standard module type members are implicthared.

Normally, a standard module member declaration amy haverpublic, Friend, or Private access, but
when overriding members inherited frabject, theProtected andProtected Friend access modifiers
may be specified. When a standard module membdardéon does not include an access modifier, the
declaration defaults teub11 c access, unless it is a variable, which defaults-torate access.

As previously noted, the scope of a standard moaheleber is the declaration containing the standardule
declaration. Members inherited fravhject are not included in this special scoping; thosenbers have no
scope and must always be qualified with the nantbefodule. If the member hasiend access, its scope
extends only to namespace members declared irathe grogram.

ModuleMemberDeclaration ::=
NonModuleDeclaration |
VariableMemberDeclaration |
ConstantMember Declaration |
EventMemberDeclaration |
MethodMemberDeclaration |
PropertyMember Declaration |
ConstructorMember Declaration

Copyright © Microsoft Corporation 2005. All righteserved. 95

Visual Basic Language Specification

7.8 Interfaces

Interfaces are reference types that other types implemegtiémantee that they support certain methods. An
interface is never directly created and has noahcépresentation — other types must be convedeaht
interface type. An interface defines a contractlass or structure that implements an interfacet euisere to
its contract.

The following example shows an interface that costa default propertytem, an eveng, a method-, and a
propertyp:
Interface IExample
Default Property Item(Byval index As Integer) As String
Event EQ)
Sub F(Byval value As Integer)
Property P() As String
End Interface

Interfaces may employ multiple inheritance. In fbowing example, the interfacBcomboBox inherits from
bothITextBox andIL1istBox:

Interface IControl
Sub Paint()
End Interface

Interface ITextBox

Inherits IControl

Sub SetText(Byval Text As String)
End Interface

Interface IListBox

Inherits IControl

Sub setItems(Byval items() As String)
End Interface

Interface IComboBox
Inherits ITextBox, ILiSstBox
End Interface

Classes and structures can implement multiplefates. In the following example, the cla&ski tBox derives
from the clasgontrol and implements bothcontrol andIDataBound:

Interface IDataBound
Sub Bind(Byval b As Binder)
End Interface

PubTic Class EditBox
Inherits Control
Implements IControl, IDataBound

96 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

Public Sub Paint() Implements IControl.Paint

End Sub

Public Sub Bind(Byval b As Binder) Implements IDataBound.Bind
End Sub
End Class

InterfaceDeclaration ::=
[Attributes] [TypeModifier+] Interface ldentifier [TypeParameterList | StatementTerminator
[InterfaceBaset+]
[InterfaceMemberDeclarationt |
End Interface StatementTerminator

7.8.1 Interface Inheritance

The base interfaces of an interface are the explase interfaces and their base interfaces. kerotbrds, the
set of base interfaces is the complete transitovguce of the explicit base interfaces, their eiplhase
interfaces, and so on. If an interface declardtias no explicit interface base, then there is s lnaterface for
the type — interfaces do not inherit framject (although they do have a widening conversioolipect). In
the following example, the base interfacesoémboBox areIControl, ITextBox, andIListBox.

Interface IControl
Sub Paint()
End Interface

Interface ITextBox

Inherits IControl

Sub SetText(Byval Text As String)
End Interface

Interface IListBox

Inherits IControl

Sub SetItems(Byval items() As String)
End Interface

Interface IComboBox
Inherits ITextBox, ILiSstBox
End Interface

An interface inherits all members of its base fidegs. In other words, tliEcomboBox interface above inherits
memberssetText andSetItems as well aPaint.

A class or structure that implements an interfdse implicitly implements all of the interface'sdgainterfaces.
If an interface appears more than once in theitre@glosure of the base interfaces, it only citmnites its
members to the derived interface once. A type implating the derived interface only has to implenteat

Copyright © Microsoft Corporation 2005. All righteserved. 97

Visual Basic Language Specification
methods of the multiply defined base interface oht¢he following exampleraint only needs to be
implemented once, even though the class implenmusboBox andIControl.
Class ComboBox
Implements IControl, IComboBox

Sub SetText(Byval Text As String) Implements IComboBox.SetText
End Sub

Sub SetItems(Byval items() As String) Implements IComboBox.SetItems
End Sub

Sub Print() Implements IComboBox.Paint
End Sub
End Class

An Inherits clause has no effect on otlerherits clauses. In the following exampiEperived must
gualify the name ofNested with IBase.

Interface IBase
Interface INested
Sub Nested()
End Interface

Sub Base()
End Interface

Interface IDerived
Inherits IBase, INested ' Error: Must specify IBase.INested.
End Interface

The accessibility domain of a base interface maghb same as or a superset of the accessibilitaithoof the
interface itself.

InterfaceBase ::= Inherits InterfaceBases SatementTerminator

InterfaceBases ::=
NonArrayTypeName |
InterfaceBases , NonArrayTypeName

7.8.2 Interface Members

The members of an interface consist of the menibésduced by its member declarations and the mesnbe
inherited from its base interfaces.

Only nested types, methods, properties, and eveayshe members of an interface. Methods and priegert
may not have a body. Interface members are imiglieitb1i c and may not specify an access modifier.
Interface members have no scope, and they musysleaqualified.

98 Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

InterfaceMember Declaration ::=
NonModuleDeclaration |
InterfaceEventMember Declaration |
InterfaceMethodMember Declaration |
I nterfacePropertyMember Declaration

7.9 Arrays

An array is a reference type that contains variables aedassoughindices corresponding in a one-to-one
fashion with the order of the variables in the wrfghe variables contained in an array, also cdhealements
of the array, must all be of the same type, arsltilpe is called thelement type of the array. The elements of
an array come into existence when an array instaneated, and cease to exist when the arragriostis
destroyed. Each element of an array is initialitwethe default value of its type. The typgstem.Array is the
base type of all array types and may not be instiat Every array type inherits the members dedlay the
System.Array type and is convertible to it (amdbject). A one-dimensional array type with elemerdlso
implements the interfaceList(of T); if T is a reference type, then the array type alsoémphtsiList(of
U), whereu is a base type df.

An array has aank that determines the number of indices associatédeach array element. The rank of an
array determines the numberddfensions of the array. For example, an array with a ran&rad is called a
single-dimensional array, and an array with a rgmdater than one is called a multidimensional array

The following example creates a single-dimensiangdy of integer values, initializes the array edeis, and
then prints each of them out:
Module Test
Sub Main()
Dim arr(5) As Integer
Dim i As Integer

For i = 0 To arr.Length - 1
arr(i) =1 * i

Next i

For i = 0 To arr.Length - 1

console.writeLine("arr(" & i & ") =" & arr(i))
Next i
End Sub
End Module

The program outputs the following:

arr(0) =0
arr(l) =1
arr(2) = 4
arr(3) =9
arr(4) = 16
arr(5) = 25

Copyright © Microsoft Corporation 2005. All righteserved. 99

Visual Basic Language Specification

Each dimension of an array has an associated leDgttension lengths are not part of the type ofatray, but
rather are established when an instance of thg Bipa is created at run time. The length of a disnen
determines the valid range of indices for that digten: for a dimension of length) indices can range from
zero toN - 1. If a dimension is of length zero, there are niahiadices for that dimension. The total number
of elements in an array is the product of the leagf each dimension in the array. If any of thaeatisions of
an array has a length of zero, the array is sal@tempty. The element type of an array can beygey

Array types are specified by adding a modifiernceaisting type name. The modifier consists offa le
parenthesis, a set of zero or more commas, amghparenthesis. The type modified is the elemg bf the
array, and the number of dimensions is the numbeormmas plus one. If more than one modifier i,
then the element type of the array is an array.mbdifiers are read left to right, with the leftmhosodifier
being the outermost array. In the example

Module Test
Dim arr As Integer(,)(,,)0
End Module

the element type afrr is a two-dimensional array of three-dimensionedys of one-dimensional arrays of
Integer.

A variable may also be declared to be of an agpg by putting an array type modifier or an arregs
initialization modifier on the variable name. Iratltase, the array element type is the type givehe
declaration, and the array dimensions are detedrbgehe variable name modifier. For clarity, inist valid to
have an array type modifier on both a variable nantka type name in the same declaration.

The following example shows a variety of local edite declarations that use array types witheger as the
element type:

Module Test

Sub Main(Q)
Dim al() As Integer ' Declares 1-dimensional array of integers.
Dim a2(,) As Integer ' Declares 2-dimensional array of integers.

Dim a3(,,) As Integer Declares 3-dimensional array of integers.

Dim a4 As Integer() ' Declares 1-dimensional array of integers.
Dim a5 As Integer(,) ' Declares 2-dimensional array of integers.
Dim a6 As Integer(,,) ' Declares 3-dimensional array of integers.

Declare 1-dimensional array of 2-dimensional arrays of integers
Dim a7() (,) As Integer

Declare 2-dimensional array of 1l-dimensional arrays of integers.
Dim a8(,)() As Integer

Dim a9() As Integer() ' Not allowed.
End Sub
End Module

An array type name modifier extends to all setgapEntheses that follow it. This means that insihetions
where a set of arguments enclosed in parenthezi®vged after a type name, it is not possiblepecify the
arguments for an array type name. For example:

100 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

Module Test
Sub Main()
' This calls the Integer constructor.
Dim x As New Integer(3)

' This declares a variable of Integer().
Dim y As Integer()

This gives an error.

' Array sizes can not be specified in a type name.
Dim z As Integer()(3)

End Sub

End Module

In the last casg(3) is interpreted as part of the type name rather éisaa set of constructor arguments.
ArrayTypeName ::= NonArrayTypeName ArrayTypeModifiers
ArrayTypeModifiers ::= ArrayTypeModifier+
ArrayTypeModifier ::= ([RankList])
RankList ::=

Lt ,
ArrayNameModifier ::=

ArrayTypeModifiers |
ArraySzel nitializationModifier

7.10 Delegates

A delegate is a reference type that refers telared method of a type or to an instance method of gecob

The closest equivalent of a delegate in other laggs is a function pointer, but whereas a fungtiminter can

only referenceshared functions, a delegate can reference lsdthred and instance methods. In the latter case,
the delegate stores not only a reference to theodest entry point, but also a reference to theabhjstance

with which to invoke the method.

The method declaration may not have attributes,ifrecs] aHandTes clause, anmplements clause, a

method body, or aBnd construct. The parameter list of the method datitam may not contaioptional or
ParamArray parameters. The accessibility domain of the retype and parameter types must be the same as
or a superset of the accessibility domain of tHegige itself.

The members of a delegate are the members inh&tedclasssystem.Delegate. A delegate also defines
the following methods:

» A constructor that takes two parameters, one @ oy ect and one of typsystem.IntPtr.
» An Invoke method that has the same signature as the delegate

» A BeginInvoke method whose signature is the delegate signatittethree differences. First, the return
type is changed teystem.IAsyncResult. Second, two additional parameters are addeceterd of the
parameter list: the first of typgystem.AsyncCallback and the second of tymbject. And finally, all
ByRef parameters are changed toByval.

Copyright © Microsoft Corporation 2005. All rightsserved. 101

Visual Basic Language Specification

* An EndInvoke method whose return type is the same as the deléljae parameters of the method are
only the delegate parameters exactly thaggref parameters, in the same order they occur in tregdee
signature. In addition to those parameters, tisea@ additional parameter of type
System.IAsyncResult at the end of the parameter list.

There are three steps in defining and using dedsgdeclaration, instantiation, and invocation.

Delegates are declared using delegate declaratidaxs The following example declares a delegataeth
SimpleDelegate that takes no arguments:

Delegate Sub SimplebDelegate()
The next example createsa@mpleDelegate instance and then immediately calls it:
Module Test
Sub FQ
System.Console.WriteLine("Test.F")
End Sub

Sub Main(Q)
Dim d As SimpleDelegate = Addressof F
dO
End Sub
End Module

There is not much point in instantiating a deledatea method and then immediately calling via dleéegate, as
it would be simpler to call the method directly.l&gates show their usefulness when their anonyisitiged.
The next example showsvalticall method that repeatedly calls@mplebelegate instance:

Sub Multicall(Byval d As SimpleDelegate, Byval count As Integer)
Dim i As Integer

For i = 0 To count - 1
dO
Next i
End Sub
It is unimportant to theu1ticall method what the target method for thienpTeDelegate is, what

accessibility this method has, or whether the nebthshared or nonshared. All that matters is that the
signature of the target method is compatible ®ithpTeDelegate.

DelegateDeclaration ::=
[Attributes] [TypeModifier+] Delegate MethodSgnature SatementTer minator

MethodSgnature ::= SubSgnature | FunctionSgnature

7.11 Partial types

Class and structure declarations campdr¢ial declarations. A partial declaration may or mayfatly describe
the declared type within the declaration. Instéae declaration of the type may be spread acrodispieu
partial declarations within the program; partigleg cannot be declared across program boundarigatial
type declaration specifies tirartial modifier on the declaration. Then, any other datians in the program
for a type with the same fully-qualified name viié merged together with the partial declaratiotoatpile-

102 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

time to form a single type declaration. For examitie following code declares a single classt with
membersrest.Cl andTest.C2.

a.vb:
Public Partial Class Test
PubTic Ssub s1(0)
End Sub
End Class
b.vb:

Public Class Test
PubTic sub s2(0)
End Sub

End Class

When combining partial type declarations, at leas of the declarations must haveaartial modifier,
otherwise a compile-time error results.

Annotation

Although it is possible to speciBartial on only one declaration among many partial detitars, it is better
form to specify it on all partial declarations.thre situation where one partial declaration isbkésbut one or
more partial declarations are hidden (such asdbe of extending tool-generated code), it is aad@pto leave
thepartial modifier off of the visible declaration but specif on the hidden declarations.

Only classes and structures can be declared uamigleclarations. The arity of a type is consédewhen
matching partial declarations together: two clas#ésthe same name but different numbers of tygameters
are not considered to be partial declarations®ftme time. Partial declarations can specifybaities, class
modifiers,Inherits statement oImplements statement. At compile time, all of the piecesh#f partial
declarations are combined together and used ad afghe type declaration. If there are any canslibetween
attributes, modifiers, bases, interfaces, or typentvers, a compile-time error results. For example:

Public Partial Class Testl
Implements IDisposable

End Class

Class Testl
Inherits Object
Implements IComparable

End Class
Public Partial Class Test2
End Class
Private Partial Class Test2
End Class

The previous example declares a tyeatl that isPub1ic, inherits fromobject and implements
System.IDisposable andSystem.IComparable. The partial declarations okst2 will cause a compile-
time error because one of the declarations sayg#sa?2 is Pub1ic and another says thie¢st2 is Private.

Copyright © Microsoft Corporation 2005. All rightsserved. 103

Visual Basic Language Specification

Partial types with type parameters can declaretm@ings on the type parameters, but the constréiois each

partial declaration must match. Thus, constrairgsspecial in that they are not automatically coradilike
other modifiers:

Partial PubTlic Class List(0f T As IEnumerable)
End Class
' Error: Constraints on T don't match
Class List(of T As INullable)
End Class
The fact that a type is declared using multipldipbdeclarations does not affect the name lookigsrwithin

the type. As a result, a partial type declaratian gse members declared in other partial type deimas, or
may implement methods on interfaces declared iergihrtial type declarations. For example:

Public Partial Class Testl
Implements IDisposable
Private IsDisposed As Boolean = False
End Class
Class Testl
Private Sub Dispose() Implements IDisposable.Dispose
If Not IsDisposed Then

End If
End Sub
End Class

Nested types can have partial declarations but toeitaining type, by definition, must be partialveell. For
example:

Public Partial Class Test
Public Partial Class NestedTest
Public Sub s10)
End Sub
End Class
End Class
Public Partial Class Test
Public Partial Class NestedTest
Public Sub s2(Q)
End Sub
End Class
End Class

Initializers within a partial declaration will dttbe executed in declaration order; however, tigerem
guaranteed order of execution for initializers tatur in separate partial declarations.

104 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

7.12 Constructed Types

A generic type declaration, by itself, does notatera type. Instead, a generic type declaratiorbeamsed as a
“blueprint” to form many different types by applgtype arguments. A generic type that has typeraegis
applied to it is called eonstructed type. The type arguments in a constructed type musdysdwsatisfy the
constraints placed on the type parameters theyimeatc

A type name might identify a constructed type etleugh it doesn't specify type parameters diredilyis can
occur where a type is nested within a generic dastaration, and the instance type of the conigini
declaration is implicitly used for name lookup:

Class outer(of T)
Public Class Inner
End Class

Type of i is the constructed type outer(of T).Inner
Public i As Inner
End Class

A constructed type (of T1,..,Tn) is accessible when the generic type and all the &rguments are
accessible. For instance, if the generic tgpePub1ic and all of the type argumenti, .., Tn arePublic,
then the constructed typerabTic. If either the type name or one of the type argusesprivate, however,
then the accessibility of the constructed typerisvate. If one type argument of the constructed type is
Protected and another type argumentrisiend, then the constructed type is accessible onlierctass and
its subclasses in this assembly. In other wordsattessibility domain for a constructed type ésithersection
of the accessibility domains of its constituentipar

Annotation

The fact that the accessibility domain of conseddiype is the intersection of its constituted a#gs the
interesting side effect of defining a new accefigiievel. A constructed type that contains amedat that is
Protected and an element thatiigiend can only be accessed in contexts that can abodssriend and
Protected members. However, there is no way to expressatusssibility level in the language, as the
accessibilityprotected Friend means that an entity can be accessed in a cahtéxtan accessther
Friend or Protected members.

The base, implemented interfaces and members sfraoted types are determined by substituting tipplsed
type arguments for each occurrence of the typenpetex in the generic type.

ConstructedTypeName ::=
Qualifiedidentifier (of TypeArgumentList)

TypeArgumentList ::=
TypeName |
TypeArgumentList , TypeName

7.12.1 Open Types and Closed Types

A constructed type for who one or more type argusiare type parameters of a containing type or oakid
called anopen type. This is because some of the type parametersedf/ge are still not known, so the actual
shape of the type is not yet fully known. In costra generic type whose type arguments are aitypm
parameters is calledctosed type. The shape of a closed type is always fully knokor. example:

Class Base(of T, V)
End Class

Copyright © Microsoft Corporation 2005. All rightsserved. 105

Visual Basic Language Specification

Class Derived(of V)
Inherits Base(Oof Integer, V)
End Class

Class MorebDerived
Inherits Derived(Of Double)
End Class

The constructed typgase (0Of Integer, V) is an open type because although the type paramétes been
supplied, the type parametehas been supplied another type parameter. Thaifylilshape of the type is not
yet known. The constructed typerived(0f Double), however, is a closed type because all type pdeame
in the inheritance hierarchy have been supplied.

Open types are defined as follows:

« Atype parameter is an open type.

* An array type is an open type if its element tygpan open type.

» A constructed type is an open type if one or mdiiesaype arguments are an open type.
» Aclosed type is a type that is not an open type.

Because the program entry point cannot be in arigetype, all types used at run-time will be closgges.

7.13 Special Types

The .NET Framework contains a humber of classdsatieatreated specially by the .NET Framework anthb
Visual Basic language:

* The typesystem.Vvoid, which represents a void type in the .NET Framéwecan be directly referenced
only inGetType expressions.

e The typesystem.RuntimeArgumentHandle, System.ArgIterator andSystem.TypedReference
all can contain pointers into the stack and so caappear on the .NET Framework heap. Therefoey, th
cannot be used as array element types, return, tiiplestypes, generic type argumerggref parameter
types or the type of a value being convertedidpect or System.valueType.

106 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

8. Conversions

Conversion is the process of changing a value fsomtype to another. Conversions may either beninideor
narrowing. Awidening conversion is a conversion from one type to another typeithgtiaranteed to be able to
contain it. Widening conversions never failnarrowing conversion may fall into one of two categories. One
category is a conversion from one type to anotyyee that is not guaranteed to be able to contairhi¢ other
category is a conversion between types that afeigutly unrelated as to have no obvious conversio
Narrowing conversions, which entail loss of infotioa, may fail.

The identity conversion (i.e. a conversion fronygetto itself) is defined for all types.

8.1 Implicit and Explicit Conversions

Conversions can be eithienplicit or explicit. Implicit conversions occur without any speciahtsk. The
following is an example of implicit conversion af anteger value to a.ong value:

Module Test
Sub Main(Q)
Dim intvalue As Integer = 123
Dim longvalue As Long = intvalue

console.WriteLine(intvalue & " = " & Tongvalue)
End Sub
End Module

Explicit conversions, on the other hand, requirg operators. Attempting to do an explicit convamsbn a
value without a cast operator causes a compile-¢ima. The following example uses an explicit carsion to
convert aLong value to arinteger value.

Module Test
Sub Main(Q)
Dim longvalue As Long = 134
Dim intvalue As Integer = CInt(longvalue)

console.WriteLine(longvalue & " = " & 1intvalue)
End Sub
End Module

The set of implicit conversions depends on the dlatipn environment and th@tion Strict statement. If
strict semantics are being used, only widening eosions may occur implicitly. If permissive semastare
being used, all widening and narrowing conversioay occur implicitly.

8.2 Boolean Conversions

AlthoughBooTean is not a numeric type, it does have conversiortbfrom the numeric types as if it were
an enumerated type. The litemalue converts to the literal55 for Byte, 65535 for ushort, 4294967295 for
UInteger, 18446744073709551615 for ULong, and to the expressioil for SByte, Short, Integer

Copyright © Microsoft Corporation 2005. All rightsserved. 107

Visual Basic Language Specification

Long, Decimal, Single, andbouble. The literalFalse converts to the literdl. A zero numeric value
converts to the literatalse. All other numeric values convert to the litetalue.

8.3 Numeric Conversions

Numeric conversions are conversions between tresBgte, SByte, UShort, Short, UInteger, Integer,
uLong, Long, Decimal, Single andbouble, and enumerated types. Enumerated types aredrasiéthey
were their underlying types for the purpose of @rions. When converting from a humeric type to an

enumerated type, the numeric type is never reqairednform to the set of values defined in thenearated

type.

Numeric conversions are processed at run-time|ksvis

» For a conversion from a numeric type to a wider exiotype, the value is simply converted to theewid
type. Conversions fromInteger, Integer, ULong, Long, orDecimal to Single orbouble are
rounded to the nearesingle or Double value. While this conversion may cause a losge€ipion, it will
never cause a loss of magnitude.

» For a conversion from an integral type to anothegral type, or fronrsingle, DoubTe, orbecimal to an
integral type, the result depends on whether imtegerflow checking is on:

If integer overflow is being checked:

If the source is an integral type, the conversigeteseds if the source argument is within the rarige
the destination type. The conversion throvgyatem.overflowException exception if the source
argument is outside the range of the destinatipa.ty

If the source isingle, Double, orbecimal, the source value is rounded up or down to theasta
integral value, and this integral value becomegéilalt of the conversion. If the source valueggadly
close to two integral values, the value is rounietthe value that has an even number in the least
significant digit position. If the resulting integrvalue is outside the range of the destinatipe tya
System.overflowException exception is thrown.

If integer overflow is not being checked:

If the source is an integral type, the conversiarags succeeds and simply consists of discardiag th
most significant bits of the source value.

If the source isingle, Double, orbecimal, the conversion always succeeds and simply cansist
rounding the source value towards the nearestriitgglue. If the source value is equally closéno
integral values, the value is always rounded tovtiee that has an even number in the least sogmifi
digit position.

For a conversion frommouble to Single, thebouble value is rounded to the neareshgle value. If
theDboub1e value is too small to represent asiamgle, the result becomes positive zero or negative
zero. If theDoub1e value is too large to represent asiagle, the result becomes positive infinity or
negative infinity. If theboubTe value is NaN, the result is also NaN.

* For a conversion froraingle orDouble toDecimal, the source value is convertedtacimal
representation and rounded to the nearest numtegrtlaé 28th decimal place if required. If the ssuvalue
is too small to represent a®acimal, the result becomes zero. If the source valueaid,Nhfinity, or too
large to represent adacimal, asystem.overflowException exception is thrown.

» For a conversion fromouble to Single, thebouble value is rounded to the nearsshgle value. If the
DoubTe value is too small to represent asiagle, the result becomes positive zero or negative. 2ttioe
DoubTe value is too large to represent asiagle, the result becomes positive infinity or negaivnity.
If the DoubTe value is NaN, the result is also NaN.

108

Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

8.4 Reference Conversions

A value typed as a reference type may always beerted to a base type. Conversions from a basettype
derived type only succeed at run time if the vddaing converted is a null reference or a referéyype that is
either the derived type itself or a more derivaukty

Within the .NET Framework, it is possible to knotxcampile time whether a class type implementsraquear
interface type. Consequently, a class type canyalla cast to an interface type that it implemesitsilarly,
conversions from an interface type to a class thgpeimplements it only succeed at run time if ¥h&ie being
converted is a null reference or a reference tigpeis either the class type itself or a type d=tifrom the class
type. Because an interface type will always congaiinstance of a class that derives fabject, an interface
type can always be castabject.

However, classes that represent COM classes mayihtrface implementations that are not knownl uat
time. Consequently, a class type may also be ctatén an interface type that it does not implemant
interface type may be converted to a class typedibes not implement it, and an interface type ey
converted to another interface type with whichas Imo inheritance relationship. In all these casebeck is
performed at run time by the .NET Framework to deiee if the class type involved implements theuiezgd
interface types.

If a reference conversion fails at run timesyatem. InvalidCastException exception is thrown.

8.5 Array Conversions
Besides the conversions that are defined on almaysrtue of the fact that they are reference tygeseral
special conversions exist for arrays.

For any two reference typasands, if A is a derived type df or implements®, a conversion exists from an
array of typea to a compatible array of tyge A compatible array is an array of the same rank and type. This
relationship is known aaray covariance. Array covariance in particular means that an elenof an array
whose element type Bsmay actually be an element of an array whose ealetype isA, provided that botia
andB are reference types and tBas a base type af or is implemented bx. In the following example, the
second invocation of causes aystem.ArrayTypeMismatchException exception to be thrown because
the actual element type bfis String, notobject:

Module Test
Sub F(ByRef x As Object)
End Sub

Sub Main(Q)
Dim a(1l0) As Object
Dim b() As Object = New String(10) {}

F(a(0)) ' oK.
F(b(1)) ' Not allowed: System.ArrayTypeMismatchException.
End Sub
End ModuTle

Because of array covariance, assignments to elsmén¢ference type arrays include a run-time clileak
ensures that the value being assigned to the aleayent is actually of a permitted type.

Module Test
Sub Fill(array() As Object, index As Integer, count As Integer, _
value As Object)

Copyright © Microsoft Corporation 2005. All rightsserved. 109

Visual Basic Language Specification

Dim i As Integer

For i = index To (index + count) - 1
array(i) = value
Next i
End Sub

Sub Main()
Dim strings(100) As String

Fill(strings, 0, 101, "undefined™)
Fill(strings, 0, 10, Nothing)
Fill(strings, 91, 10, 0)
End Sub
End Module

In this example, the assignmentatoray (i) in methodri 11 implicitly includes a run-time check that ensures
that the object referenced by the varialdd ue is eithemMothing or an instance of a type that is compatible
with the actual element type of arrayray. In methodvain, the first two invocations of methad 11

succeed, but the third invocation caussystem.ArrayTypeMismatchException exception to be thrown
upon executing the first assignmentitaray (i). The exception occurs becauserameger cannot be stored

in astring array.

Conversions also exist between an array of an eratatbtype and an array of the enumerated type’s
underlying type of the same rank.
Enum Color As Byte
Red
Green
Blue
End Enum

Module Test
Sub Main()
Dim a(1l0) As Color
Dim b() As Integer
Dim c() As Byte

b =a ' Error: Integer 1is not the underlying type of Color
c=a ' 0K
a=c ' 0K
End Sub
End Module

110 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

In this example, an array abTor is converted to and from an arrayByfte, Color’s underlying type. The
conversion to an array ahteger, however, will be an error becauseteger is not the underlying type of
color.

8.6 Value Type Conversions

A value type value can be converted to one ofatelreference types or an interface type thatglements
through a process call&édxing. When a value type value is boxed, the value jsezbfrom the location where
it lives onto the .NET Framework heap. A referetwcthis location on the heap is then returned amdbe
stored in a reference type variable. This referese¢so referred to asbaxed instance of the value type. The
boxed instance has the same semantics as a reddygpecinstead of a value type.

Boxed value types can be converted back to thgjmad value type through a process callidoxing. When a
boxed value type is unboxed, the value is copiedhfthe heap into a variable location. From thahpon, it
behaves as if it was a value type. When unboxingj@e type, the value must be a null referencenonstance
of the value type. Otherwisesgstem.InvalidCastException exception is thrown. A null reference is
treated as if it were the litersbthing.

Because boxed value types behave like referenes tyjas possible to create multiple referenceb¢osame
value. For the primitive types and enumerated tythes is irrelevant because instances of thosestye
immutable. That is, it is not possible to modify a boxedamee of those types, so it is not possible to vese
the fact that there are multiple references tcstrae value.

Structures, on the other hand, may be mutable ihgtance variables are accessible or if its nuttoo

properties modify its instance variables. If onfemence to a boxed structure is used to modifysthecture,
then all references to the boxed structure willtkeechange. Because this result may be unexpeckesh a
value typed asbject is copied from one location to another boxed viypes will automatically be cloned on
the heap instead of merely having their referecopsed. For example:

Class cClassl
Public value As Integer = 0
End Class

Structure Structl
Public value As Integer
End Structure

Module Test
Sub Main(Q)
Dim vall As Object
Dim val2 As Object

New Structl()
vall

val2.value = 123

New Classl()
refl

Dim refl As Object
Dim ref2 As Object

ref2.value = 123

Copyright © Microsoft Corporation 2005. All rightsserved. 111

Visual Basic Language Specification

Console.writeLine("values: " & vall.value & ", " & val2.value)
console.wWriteLine("Refs: " & refl.value & ", " & ref2.value)
End Sub
End Module

The output of the program is:
values: 0, 123
Refs: 123, 123
The assignment to the field of the local varialdé2 does not impact the field of the local variabég 1

because when the boxstdructl was assigned teal2, a copy of the value was made. In contrast, the
assignmentef2.value = 123 affects the object that bottef1 andref2 references.

Annotation

Structure copying is not done for boxed structtlyped assystem.VvalueType because it is not possible to
late bind off ofSystem.valueType.

There is one exception to the rule that boxed velpes will be copied on assignment. If a boxedigaype
reference is storedithin another boxed value type, the inner referencensillbe copied. For example:
Structure Structl
Public value As Object
End Structure

Module Test
Sub Main()
Dim vall As Object
Dim val2 As Object

vall = New Structl()
vall.value = New Structl()
vall.value.value = 10

val2 = vall
val2.value.value = 123
console.WriteLine("values: " & vall.value.value & ", " &
val2.value.value)
End Sub
End ModuTle

The output of the program is:
values: 123, 123

This is because the inner boxed value is not copleeh the outer boxed value is copied. Thus, both
vall.value andval2.value have a reference to the same boxed value type.

Annotation

112 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

The fact that inner boxed value types are not ebigie limitation of the .NET type system — to ensiinat all
inner boxed value types were copied whenever sevaftypeobject was copied would be prohibitively
expensive.

As previously described, boxed value types can balynboxed to their original type. Boxed primitiypes,
however, are treated specially when typedlaiect. They can be converted to any other primitive tifys
they have a conversion to. For example:

Module Test
Sub Main(Q)
Dim o As Object = 5
Dim b As Byte = CByte(o) ' Legal
console.WriteLine(b) ' Prints 5
End Sub
End ModuTle

Normally, the boxednteger value5 could not be unboxed intoey te variable. However, becausateger
andByte are primitive types and have a conversion, thevexsion is legal.

It is important to note that converting a valueetyp an interface is different than a generic argum
constrained to an interface. When accessing irterfaembers on a constrained type parameter (imgall
methods ombject), boxing does not occur as it does when a valpe ty converted to an interface and an
interface member is accessed. For example, sugposgerfacelCounter contains a methoohcrement
which can be used to modify a valueItfounter is used as a constraint, the implementation of the
Increment method is called with a reference to the varidiéIncrement was called on, not a boxed copy:

Interface ICounter
Sub Increment()
End Interface

Structure Counter
Implements ICounter

Public value As Integer

Sub Increment() Implements ICounter.Increment
value += 1
End Sub
End Structure

Module Test
Sub Test(of T As ICounter)(Byval x As T)
console.WriteLine(x.value)
X.Increment() ' Modify x
Console.WriteLine(x.value)

CType(x, ICounter).Increment() Modify boxed copy of x

console.wWriteLine(x.value)

Copyright © Microsoft Corporation 2005. All rightsserved. 113

Visual Basic Language Specification
End Sub

Sub Main()
Dim x As Counter
Test(x)
End Sub
End ModuTle

The first call totncrement modifies the value in the variabte This is not equivalent to the second call to
Increment, which modifies the value in a boxed copyxofl hus, the output of the program is:

0
1
1

8.7 String Conversions

ConvertingChar into String results in a string whose first character is tharacter value. Converting
String into Char results in a character whose value is the firatatter of the string. Converting an array of
Char into string results in a string whose characters are the elenod the array. Convertirgtring into an
array ofcChar results in an array of characters whose elemeattha characters of the string.

The exact conversions betwegtring andBoolean, Byte, SByte, UShort, Short, UInteger, Integer,
ULong, Long, Decimal, Single, Double, Date, and vice versa, are beyond the scope of thisfaion and
are implementation dependent with the exceptioonef detail. String conversions always considectiveent
culture of the run-time environment. As such, theyst be performed at run time.

8.8 Widening Conversions

Widening conversions never overflow but may eraddss of precision. The following conversions are
widening conversions:

» Conversions from any type to itself.
» Conversions from any derived type to one of itelgpes.

e Conversions fronByte to UShort, Short, UInteger, Integer, ULong, Long, Decimal, Single, or
DoubTe.

e Conversions fronsByte to Short, Integer, Long, Decimal, Single, orbouble.

e Conversions fronwshort touInteger, Integer, ULong, Long, Decimal, Single, orbDouble.
e Conversions fronshort to Integer, Long, Decimal, Single orbDouble

e Conversions fronvInteger touULong, Long, Decimal, Single, orboubTe.

e Conversions froninteger to Long, Decimal, Single orDbouble

e Conversions fronuLong tobecimal, Single, orboubTe.

* Conversions fromong tobecimal, Single orDouble.

» Conversions fronbecimal toSingle orDouble.

» Conversions fronsingle toDoubTe.

» Conversions from the literalothing to any type.
114 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

Conversions from the liter@lto any enumerated type.

Conversions from any enumerated type to its uniteylyype, or to any type that its underlying tyes la
widening conversion to.

Conversions from any reference or value type tmtarface type that the value or reference type
implements.

Conversions from any interface typedioject.

Conversions from an array typewith an element typeEe to a covariant-array typewith an element type
TE, provided all of the following are true:

* s andr differ only in element type.
» Bothse andTE are reference types.
» A widening reference conversion exists fremto TE.

Conversions from an array typewith an enumerated element typeto an array typa& with an element
typeTE, provided all of the following are true:

* s andr differ only in element type.
* TE is the underlying type fE.
Conversions fronthar to String.
Conversions fronthar () tostring.

Conversions from a constant expression of tyjpeng, Long, UInteger, Integer, UShort, Short,
Byte, Oor SByte to a narrower type, provided the value of the tanmtsexpression is within the range of the
destination type.

Note Conversions fronwInteger or Integer toSingle, ULong or Long to Single orboubTe, or
Decimal to Single orDouble may cause a loss of precision, but will never eautss of magnitude.
The other widening numeric conversions never losei@formation.

8.9 Narrowing Conversions

Narrowing conversions are conversions that canegrbved to always succeed, conversions that arerkmo
possibly lose information, and conversions acrassains of types sufficiently different to merit nawing
notation. The following conversions are classif@charrowing conversions:

Conversions from any type to a more derived type.

Conversions fronByte to SByte.

Conversions fronsByte toByte, UShort, UInteger, oruLong.

Conversions fronushort toByte, SByte, orShort.

Conversions fronshort toByte, SByte, UShort, UInteger, oruLong.

Conversions fronvInteger toByte, SByte, UShort, Short, orInteger.

Conversions froninteger toByte, SByte, UShort, Short, UInteger, oruLong.
Conversions frontLong toByte, SByte, UShort, Short, UInteger, Integer, or Long.

Conversions fromong to Byte, SByte, UShort, Short, UInteger, Integer, oruLong.

Copyright © Microsoft Corporation 2005. All rightsserved. 115

Visual Basic Language Specification

Conversions fronbecimal toByte, SByte, UShort, Short, UInteger, Integer, ULong, Or Long.

Conversions from Single to ByteByte, UShort, Short, UInteger, Integer, ULong, Long, Or
Decimal.

Conversions from Double to ByteByte, UShort, Short, UInteger, Integer, ULong, Long,
Decimal, orsingle.

Conversions fronBoolean to any numeric type.

Conversions from any numeric typegoolean.

Conversions from any numeric type to any enumersfeel

Conversions from any enumerated type to any tygperitlerlying type has a narrowing conversion to.
Conversions from any enumerated type to any othemerated type.

Conversions from any class type to any interfape tprovided the class type does not implement the
interface type.

Conversions from any interface type to any claps.ty
Conversions from any interface type to any valyetshat implements the interface type.

Conversions from any interface type to any othtarface type, provided there is no inheritancetiatahip
between the two types.

Conversions from an array typewith an element typsE, to a covariant-array typewith an element type
TE, provided that all of the following are true:

* S andrt differ only in element type.
* BothSE andTE are reference types.
* A narrowing reference conversion exists fremto TE.

Conversions from an array typewith an element typeE to an array typ& with an enumerated element
typeTE, provided all of the following are true:

» s andr differ only in element type.

* SE is the underlying type ofE.

Conversions fronstring to char.

Conversions fronstring tochar().

Conversions fronstring toBoolean and fromBoolean to String.

Conversions betweestring andByte, SByte, UShort, Short, UInteger, Integer, ULong, Long,
Decimal, Single, orbouble.

Conversions fronstring tobate and frombDate to String.

8.10 Type Parameter Conversions

For the purposes of determining permitted convessitype parameters without a class constraint are
considered to be a type derived froject. This means that a type paramatean be converted to and from
object and to and from any interface type. Note thatéf typeT is a value type at run-time, converting fram
toobject or an interface type will be a boxing conversiod aonverting fronobject or an interface type to
T will be an unboxing conversion.

116 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

A type parameter with an interface constraint dussdefine any additional conversions, but it doedke
conversions from the type parameter to the intertamstraint into a widening conversion. A typeapaster
with a class constrairt defines additional conversions from the type patamtoC and its base classes, and
vice versa. It also makes conversions from the pgrameter to any interfacesmplements into widening
conversions.

An array whose element type is a type parametdr avitinterface constraimithas the same covariant array
conversions as an array whose element tymeAs array whose element type is a type parameiterarclass
constraintc has the same covariant array conversions as ay\&hose element type @s

The above conversions rules do not permit convessimm unconstrained type parameters to non-euterf
types, which may be surprising. The reason forithie prevent confusion about the semantics afi suc
conversions. For example, consider the followingalation:

Class x(of T)
Public Shared Function F(Byval t As T) As Long
Return CLng(t) ' Error, explicit conversion not permitted
End Function
End Class
If the conversion of to Integer were permitted, one might easily expect thaf Integer).F(7) would
return7L. However, it would not, because the predefinedearigrconversions are only considered when the

types are known to be numeric at compile time.rtfeoto make the semantics clear, the above examp
instead be written:

Class x(of T)
Public Shared Function F(Byval t As T) As Long
Return CLng(CObj(t)) ' OK, conversions permitted
End Function
End Class

8.11 User-defined conversions

User-defined conversions are defined by overloatliegType operator. When converting between types, if no
predefined conversions are applicable then usenettonversions will be considered. If there isar-

defined conversion that isost specific for the source and target types, then the usénatbtonversion will be
used. Otherwise, a compile-time error results. Mbst specific conversion is the one whose operand i
“closest” to the source type and whose result tggelosest” to the target type. When determinirgatwuser-
defined conversion to use, the most specific widgmionversion will be used; if no widening convensis

most specific, the most specific narrowing convarsiill be used. If there is no most specific nairg
conversion, then the conversion is undefined acmhapile-time error occurs.

The following sections cover how the most speabaversions are determined. They use the followengs:

» If a predefined widening conversion exists frony@eta to a types, and if neithel norB are interfaces,
thenA is encompassed by B, andB encompasses A.

* Themost encompassing type in a set of types is the one type that enemsgs all other types in the set. If
no single type encompasses all other types, theeaghhas no most encompassing type. In intuigrred,
the most encompassing type is the “largest” typlénset—the one type to which each of the othsedy
can be converted through a widening conversion.

» Themost encompassed type in a set of types is the one type that i@emassed by all other types in the set.
If no single type is encompassed by all other tyfieen the set has no most encompassed type uitiviat

Copyright © Microsoft Corporation 2005. All rightsserved. 117

Visual Basic Language Specification

terms, the most encompassed type is the “smatigst’in the set—the one type that can be convéoted
each of the other types through a narrowing comwers

At run-time, evaluating a user-defined conversian mvolve up to three steps:

» First, the value is converted from the source typthe operand type using a predefined convergfion,
necessary.

* Then, the user-defined conversion is invoked.

» Finally, the result of the user-defined convers@ooonverted to the target type using a predefined
conversion, if necessary.

It is important to note that evaluation of a usefited conversion will never involve more than aiser-
defined conversion operator.

8.11.1 Most specific widening conversion

Determining the most specific user-defined widergngversion operator between two types is accohmgais
using the following steps:

» First, all of the candidate conversion operatoescatlected. The candidate conversion operatoralbo
the user-defined widening conversion operatorlénsburce type and all of the user-defined widening
conversion operators in the target type.

* Then, all non-applicable conversion operators engoived from the set. A conversion operator is apple
to a source type and target type if there is agineeld widening conversion operator from the sotype to
the operand type and there is a predefined widezongersion operator from the result of the operato
the target type. If there are no applicable congarsperators, then there is no most specific witgn
conversion.

* Then, the most specific source type of the appléecabnversion operators is determined:

» If any of the conversion operators convert direfiityn the source type, then the source type isrtbst
specific source type.

» Otherwise, the most specific source type is thetmosompassed type in the combined set of source
types of the conversion operators. If no most empasved type can be found, then there is no most
specific widening conversion.

» Then, the most specific target type of the appleabnversion operators is determined:

» If any of the conversion operators convert diretdlyhe target type, then the target type is thetmo
specific target type.

» Otherwise, the most specific target type is thetreasompassing type in the combined set of target
types of the conversion operators. If no most enpassing type can be found, then there is no most
specific widening conversion.

* Then, if exactly one conversion operator convedmfthe most specific source type to the most fipeci
target type, then this is the most specific conearsperator. If more than one such operator exisen
there is no most specific widening conversion.

8.11.2 Most specific narrowing conversion

Determining the most specific user-defined narr@xdonversion operator between two types is accamgi
using the following steps:

118 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

» First, all of the candidate conversion operatoescatlected. The candidate conversion operatoralbod
the user-defined conversion operators in the saypmeand all of the user-defined conversion ojpesah
the target type.

* Then, all non-applicable conversion operators engoved from the set. A conversion operator is apple
to a source type and target type if there is agineeld conversion operator from the source typ@éo
operand type and there is a predefined convergierator from the result of the operator to thedatgpe.
If there are no applicable conversion operatoes) there is no most specific narrowing conversion.

* Then, the most specific source type of the applecabnversion operators is determined:

» If any of the conversion operators convert diretiityn the source type, then the source type isribst
specific source type.

» Otherwise, if any of the conversion operators cornfvem types that encompass the source type, then
the most specific source type is the most encongpaype in the combined set of source types ofethos
conversion operators. If no most encompassed tgpde found, then there is no most specific
narrowing conversion.

» Otherwise, the most specific source type is thetmosompassing type in the combined set of source
types of the conversion operators. If no most enpassing type can be found, then there is no most
specific narrowing conversion.

» Then, the most specific target type of the appleabnversion operators is determined:

» If any of the conversion operators convert diretdlyhe target type, then the target type is thetmo
specific target type.

* Otherwise, if any of the conversion operators cornteetypes that are encompassed by the target type
then the most specific target type is the most epassing type in the combined set of source types o
those conversion operators. If no most encompasgigcan be found, then there is no most specific
narrowing conversion.

» Otherwise, the most specific target type is thetraasompassed type in the combined set of target
types of the conversion operators. If no most empassed type can be found, then there is no most
specific narrowing conversion.

* Then, if exactly one conversion operator convedmfthe most specific source type to the most ipeci
target type, then this is the most specific coriearsperator. If more than one such operator exisen
there is no most specific narrowing conversion.

Copyright © Microsoft Corporation 2005. All rightsserved. 119

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

9. Type Members

Type members define storage locations and exeeutalole. They can be methods, constructors, events,
constants, variables, and properties.

9.1 Interface Method Implementation

Methods, events, and properties can implementfadermembers. To implement an interface member, a
member declaration specifies theplements keyword and lists one or more interface membeethiblds and
properties that implement interface members ardiditip Notoverridable unless declared to be
Mustoverride, Overridable, or overriding another member. It is an errordanember implementing an
interface member to I&hared. A member's accessibility has no effect on itéitslio implement interface
members.

For an interface implementation to be valid, thelaments list of the containing type must namenseriace
that contains a compatible member. A compatible begris one whose sighature matches the signatuhe of
implementing member. If a generic interface is gemplemented, then the type argument supplieden t
Implements clause is substituted into the signatdmen checking compatibility. For example:

Interface 1I1(0f T)
Sub F(Byval x As T)
End Interface

Class C1
Implements I1(0f Integer)

Sub F(Byval x As Integer) Implements I1(0f Integer).F
End Sub
End Class

Class c2(of u)
Implements I1(0f U)

Sub F(Byval x As U) Implements I1(0f U).F
End Sub
End Class

If an event declared using a delegate type is impfding an interface event, then a compatible eigemte
whose underlying delegate type is the same typeer@ise, the event uses the delegate type frorimtedace
event it is implementing. If such an event impletsenultiple interface events, all the interfaceregenust
have the same underlying delegate type. For example

Interface ClickEvents
Event LeftClick(Byval x As Integer, Byval y As Integer)
Event RightClick(Byval x As Integer, Byval y As Integer)

Copyright © Microsoft Corporation 2005. All rightsserved. 121

Visual Basic Language Specification

End Interface

Class Button
Implements ClickEvents

' OK. Signatures match, delegate type = ClickEvents.LeftClickHandler.
Event LeftClick(Byval x As Integer, Byval y As Integer) _
Implements ClickEvents.LeftClick

' OK. Signatures match, delegate type = ClickEvents.RightClickHandler.
Event RightClick(Byval x As Integer, Byval y As Integer) _
Implements ClickEvents.RightClick
End Class

Class Label
Implements ClickEvents

' Error. Signatures match, but can't be both delegate types.
Event Click(Byval x As Integer, Byval y As Integer) _
Implements ClickEvents.LeftClick, ClickEvents.RightClick
End Class

An interface member in the implements list is sfiediusing a type name, a period, and an identifibe type
name must be an interface in the implements list lssise interface of an interface in the implemistisand
the identifier must be a member of the specifig¢drince. A single member can implement more than on
matching interface member.

Interface ILeft
sub FO
End Interface

Interface IRight
sub FO
End Interface

Class Test
Implements ILeft, IRight

Sub F() Implements ILeft.F, IRight.F
End Sub
End Class
If the interface member being implemented is uratsé in all explicitly implemented interfaces basa of
multiple interface inheritance, the implementingnniber must explicitly reference a base interfacavbich the

122 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

member is available. For examplelif andI2 contain a membef, and13 inherits fromIl and1i2, a type
implementingz 3 will implementIl.m and12.m. If an interface shadows multiply inherited menshemn
implementing type will have to implement the inledi members and the member(s) shadowing them.

Interface ILeft
sub FO
End Interface

Interface IRight
Ssub FO
End Interface

Interface ILeftRight
Inherits ILeft, IRight

Shadows sub FQ)
End Interface

Class Test
Implements ILeftRight

Sub LeftF() Implements ILeft.F
End Sub

Sub RightF() Implements IRight.F
End Sub

Sub LeftRightF() Implements ILeftRight.F
End Sub
End Sub

If the containing interface of the interface membernmplemented is generic, the same type argunasritse
interface being implements must be supplied. Fangpte:

Interface 1I1(0f T)
Function F() As T
End Interface

Class C1
Implements I1(0f Integer)
Implements I1(0f Double)

Sub F1() As Integer Implements I1(0f Integer).F
End Sub

Copyright © Microsoft Corporation 2005. All rightsserved. 123

Visual Basic Language Specification

Sub F2() As Double Implements I1(0f Double).F
End Sub

" Error: I1(of String) 1is not implemented by C1
Sub F3() As string Implements I1(0f String).F
End Sub

End Class

Class c2(of u)
Implements I1(0of U)

Sub F(O As U Implements I1(0f U).F
End Sub
End Class
ImplementsClause ::= [Implements ImplementsList]

ImplementsList ::=
InterfaceMember Specifier |
ImplementsList , InterfaceMember Specifier

InterfaceMember Specifier ::= NonArrayTypeName . |dentifierOrKeyword

9.2 Methods

Methods contain the executable statements of agmgVethods, which have an optional list of parerse
and an optional return value, are either sharewoshared. Shared methods are accessed througlasker
instances of the class. Nonshared methods, alkm¢gastance methods, are accessed through instahdee
class. The following example shows a clasack that has several shared methatkope andF11p), and
several instance method=ugh, Pop, andToString):

Public Class Stack
Public shared Function Clone(Byval s As Stack) As Stack
End Function

Public shared Function Flip(Byval s As Stack) As Stack
End Function

Public Function Pop() As Object
End Function

Public sub Push(Byval o As Object)
End Sub

Public overrides Function ToString() As String

124 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

End Function
End Class

Module Test
Sub Main()
Dim s As Stack = New Stack()
Dim i As Integer

while i < 10
s.Push(i)
End while

Dim flipped As Stack = Stack.Flip(s)
Dim cloned As Stack = Stack.Clone(s)

Console.wWriteLine("original stack: " & s.ToString())
Console.WriteLine("Flipped stack: " & flipped.ToString())
console.WriteLine("Cloned stack: " & cloned.ToString())
End Sub
End Module

Methods can be overloaded, which means that melii@thods may have the same name so long as they ha
unique signatures. The signature of a method dsnsigshe name of the method and the number arebstgpits
parameters. The signature of a method specificals not include the return type or parameter mesdifThe
following example shows a class with a number afethods:

Module Test

sub FQ
Console.writeLine("FQO™)

End Sub

Sub F(Byval o As Object)
Console.writeLine("F(Object)")
End Sub

Sub F(Byval value As Integer)
Console.wWriteLine("F(Integer)")
End Sub

Sub F(Byval a As Integer, Byval b As Integer)

console.WriteLine("F(Integer, Integer)")
End Sub

Copyright © Microsoft Corporation 2005. All rightsserved. 125

Visual Basic Language Specification

Sub F(Byval values() As Integer)
Console.wWriteLine("F(Integer()")
End Sub

Sub Main()
FO
F(L
F(CType(l, Object))
F(1, 2)
F(New Integer() {1, 2, 3 1
End Sub
End Module

The output of the program is:
FO
F(Integer)
F(Object)
F(Integer, Integer)
F(Integer())
MethodMemberDeclaration ::= MethodDeclaration | ExternalMethodDeclaration

InterfaceMethodMemberDeclaration ::= InterfaceMethodDeclaration

9.2.1 Regular Method Declarations

There are two types of methodabroutines, which do not return values, afuhctions, which do. The body and
End construct of a method may only be omitted if thethnod is defined in an interface or has the
Mustoverride modifier. If no return type is specified on a ftino and strict semantics are being used, a
compile-time error occurs; otherwise the type iplinitly object or the type of the method's type character.
The accessibility domain of the return type andpaater types of a method must be the same asupesset of
the accessibility domain of the method itself.

Subroutine and function declarations are specidiantheir beginning and end statements must stachat the
beginning of a logical line. Additionally, the bodya non-MustOverride subroutine or function deatian
must start at the beginning of a logical line. Erample:

Module Test
' ITlegal: Subroutine doesn’t start the 1line
Public x As Integer : Sub F() : End Sub

' ITlegal: First statement doesn’t start the line
Sub G() : console.writeLine("G")
End Sub

' ITlegal: End Sub doesn’t start the Tine
Sub H(Q) : End Sub

126 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.
End Module

MethodDeclaration ::=
SubDeclaration |
MustOverrideSubDeclaration |
FunctionDeclaration |
MustOverrideFunctionDeclaration

InterfaceMethodDeclaration ::=
InterfaceSubDeclaration |
I nterfaceFunctionDeclaration

SubSgnature ::= Identifier [TypeParameterList | [([ParameterList])]
FunctionSgnature ::= SubSgnature [As [Attributes] TypeName]

SubDeclaration ::=
[Attributes | [ProcedureModifier+] Sub SubSgnature [HandlesOrlmplements] LineTerminator
Block
End Sub StatementTerminator

MustOverrideSubDeclaration ::=
[Attributes] [MustOverrideProcedureModifier+] Sub SubSignature [HandlesOrlmplements]
SatementTerminator

InterfaceSubDeclaration ::=
[Attributes] [InterfaceProcedureModifier+ | Sub SubSgnature StatementTerminator

FunctionDeclaration ::=
[Attributes] [ProcedureModifier+] Function FunctionSgnature [HandlesOrlmplements]
LineTerminator
Block
End Function SatementTerminator

MustOverrideFunctionDeclaration ::=
[Attributes] [MustOverrideProcedureModifier+] Function FunctionSgnature
[HandlesOrImplements | StatementTerminator

InterfaceFunctionDeclaration ::=
[Attributes] [InterfaceProcedureModifier+] Function FunctionSgnature StatementTerminator

ProcedureModifier ::=
AccessModifier |
Shadows |
Shared |
overridable
NotOverridable |

overrides
overloads

MustOverrideProcedureModifier ::= ProcedureModifier | Mustoverride
InterfaceProcedureModifier ::= Shadows | Overloads

HandlesOrImplements ::= HandlesClause | ImplementsClause

Copyright © Microsoft Corporation 2005. All rightsserved. 127

Visual Basic Language Specification

9.2.2 External Method Declarations

An external method declaration introduces a nevhotketvhose implementation is provided external & th
program. Because an external method declarationd®® no actual implementation, it has ho methadiybay
End construct. External methods are implicitly sharady not have type parameters, and may not handle
events or implement interface members. If no retype is specified on a function and strict sentandire
being used, a compile-time error occurs. Othertfiseype is implicitlyobject or the type of the method's
type character. The accessibility domain of tharretype and parameter types of an external mathat be
the same as or a superset of the accessibility idoofizhe external method itself.

The library clause of an external method declanagigecifies the name of the external file that enpénts the
method. The optional alias clause is a string $patifies the numeric ordinal (prefixed b@ aharacter) or
name of the method in the external file. A singhem@acter set modifier may also be specified, wigaerns the
character set used to marshal strings during daéile external method. Theicode modifier marshals all
strings to Unicode values, thasi modifier marshals all strings to ANSI values, éinelauto modifier
marshals the strings according to .NET Framewoldsrbased on the name of the method, or the adie rif
specified. If no modifier is specified, the defaslinsi.

If Ansi orunicode is specified, then the method name is looked uperexternal file with no modification. If
Auto is specified, then method name lookup dependb@platform. If the platform is considered to be IN
(for example, Windows 95, Windows 98, Windows Mtgn the method name is looked up with no
modification. If the lookup fails, am is appended and the lookup tried again. If théqulian is considered to be
Unicode (for example, Windows NT, Windows 2000, déws XP), then & is appended and the name is
looked up. If the lookup fails, the lookup is triadain without th&. For example:

Module Test
' A1l platforms bind to "Externsub".
Declare Ansi Sub ExternSub Lib "ExternbDLL" ()

' A1l platforms bind to "Externsub".
Declare Unicode Sub ExternSub Lib "ExternbDLL" ()

' ANSI platforms: bind to "ExternSub" then "ExternSubA".
' Unicode platforms: bind to "ExternSubw" then "ExternSub".
Declare Auto Sub ExternSub Lib "ExternDLL" ()

End ModuTle
Data types being passed to external methods ashalad according to the .NET Framework data mdisgal
conventions with one exception. String variables Hre passed by value (thatagval x As String) are
marshaled to the OLE Automation BSTR type, and ghammade to the BSTR in the external method are
reflected back in the string argument. This is bieeahe typstring in external methods is mutable, and this
special marshalling mimics that behavior. Stringapaeters that are passed by referencegyref x As
String) are marshaled as a pointer to the OLE Automdai®mR type. It is possible to override these special
behaviors by specifying th&ystem.Runtime.InteropServices.MarshalAsAttribute attribute on the
parameter.

The example demonstrates use of external methods:
Class Path
Declare Function CreateDirectory Lib "kernel32" (_
Byval Name As String, Byval sa As SecurityAttributes) As Boolean
Declare Function RemoveDirectory Lib "kernel32" (_
128 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

Byval Name As String) As Boolean
Declare Function GetCurrentDirectory Lib "kernel32" (_
Byval BufSize As Integer, Byval Buf As String) As Integer
Declare Function SetCurrentDirectory Lib "kernel32" (_
Byval Name As String) As Boolean
End Class

ExternalMethodDeclaration ::=
External SubDeclaration |
External FunctionDeclar ation

ExternalSubDeclaration ::=
[Attributes] [ExternalMethodModifier+] Declare [CharsetModifier | sub Identifier
LibraryClause [AliasClause | [([ParameterList |)] SatementTerminator

External FunctionDeclaration ::=
[Attributes] [ExternalMethodModifier+] Declare [CharsetModifier | Function Identifier
LibraryClause [AliasClause] [([ParameterList])] [As [Attributes] TypeName]
StatementTerminator

ExternalMethodModifier ::= AccessModifier | shadows | overloads
CharsetModifier ::= Ansi | Unicode | Auto

LibraryClause ::= Lib StringLiteral

AliasClause ::= Alias StringLiteral

9.2.3 Overridable Methods

Theoverridable modifier indicates that a method is overridablee®verrides modifier indicates that a
method overrides a base-type overridable methddhtsathe same signature. TNetoverridable modifier
indicates that an overridable method cannot b&adurdbverridden. ThBustoverride modifier indicates that a
method must be overridden in derived classes.

Certain combinations of these modifiers are natlval
 overridable andNotoverridable are mutually exclusive and cannot be combined.

* Mustoverride impliesoverridable (and so cannot specify it) and cannot be combividd
NotOverridable. MustOverride methods cannot override other methods, and satéencombined
with overrides.

e NotOverridable cannot be combined wittverridable orMustOverride and must be combined with
overrides.

* overrides impliesoverridable (and so cannot specify it) and cannot be combivitu
Mustoverride.

There are also additional restrictions on overrigabethods:

* A Mustoverride method may not include a method body oead construct, may not override another
method, and may only appeamastInherit classes.

* If a method specifiegverrides and there is no matching base method to overidempile-time error
occurs. An overriding method may not spechadows.

Copyright © Microsoft Corporation 2005. All rightsserved. 129

Visual Basic Language Specification

» A method may not override another method if theridgdimg method's accessibility domain is not ed¢oal
the accessibility domain of the method being odelen. The one exception is that a method overriding
Protected Friend method in another assembly must speeifgtected (notProtected Friend).

* Private methods may not b@verridable, NotOverridable, orMustOverride, nor may they
override other methods.

* Methods inNotInheritable classes may not be decladerridable orMustoverride.

The following example illustrates the differencetvieen overridable and nonoverridable methods:
Class Base
PubTic Ssub FQ)
console.WriteLine("Base.F")
End Sub

PubTlic overridable sub GQ)
console.WriteLine("Base.G")
End Sub
End Class

Class Derived
Inherits Base

Pub1ic shadows Sub F()
console.writeLine("Derived.F")
End Sub

PubTlic overrides Sub GQ)
console.WriteLine("Derived.G")
End Sub
End Class

Module Test
Sub Main(Q)
Dim d As Derived = New Derived()
Dim b As Base = d

b.FO
d.FO
b.cO
d.cQ
End Sub
End ModuTe

130 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

In the example, claggse introduces a methodand aroverridable methodg. The clas®erived
introduces a new methad thus shadowing the inheriteéd and also overrides the inherited metlsod he
example produces the following output:

Base.F

Derived.F
Derived.G
Derived.G

Notice that the statemebt G() invokesberived.G, notBase.G. This is because the run-time type of the
instance (which iserived) rather than the compile-time type of the instafvdeich isBase) determines the
actual method implementation to invoke.

9.2.4 Shared Methods

Theshared modifier indicates a method isslaared method. A shared method does not operate on a specific
instance of a type and may be invoked directly feotgpe rather than through a particular instaricetgpe. It

is valid, however, to use an instance to qualifhared method. It is invalid to referMe, MyClass, orMyBase
in a shared method. Shared methods may novberidable, NotOoverridable, orMustoverride, and
they may not override methods. Methods definedandard modules and interfaces may not spetiffed,
because they are implicithared already.

A method declared in a structure or class withastt@-ed modifier is aninstance method. An instance method
operates on a given instance of a type. Instan¢leats can only be invoked through an instancetgpa and
may refer to the instance through treexpression.
The following example illustrates the rules for @ssing shared and instance members:
Class Test
Private x As Integer
Private Shared y As Integer

Sub FQ

Xx =1 "' ok, same as Me.x = 1.

y =1 " ok, same as Test.y = 1.
End Sub

Shared sub G(Q)
x =1 ' Error, cannot access Me.X.
y =1 ' ok, same as Test.y = 1.
End Sub

Shared sub Main(Q)
Dim t As Test = New Test()

t.x =1 "' ok.
t.y = 1" ok.
Test.x = 1 ' Error, cannot access instance member through type.

Copyright © Microsoft Corporation 2005. All rightsserved. 131

Visual Basic Language Specification

Test.y = 1 ' ok.
End Sub
End Class

MethodF shows that in an instance function member, artifiiemcan be used to access both instance members
and shared members. Meth®@dhows that in a shared function member, it israor €0 access an instance
member through an identifier. Methwdin shows that in a member access expression, instagg®ers must

be accessed through instances, but shared menarebe @accessed through types or instances.

9.2.5 Method Parameters

A parameter is a variable that can be used to pass informatimnand out of a method. Parameters of a method
are declared by the method's parameter list, wttclsists of one or more parameters separated bsnaenif

no type is specified for a parameter and strictessdits are used, a compile-time error occurs. @tiserthe
default type i©bject or the type of the parameter's type charactem Eweler permissive semantics, if one
parameter includes as clause, all parameters must specify types.

Parameters are specified as value, reference natior paramarray parameters by the modifégngal,
ByRef, Optional, andParamArray, respectively. A parameter that does not spaeyBef or Byval defaults
toByval.

Parameter names are scoped to the entire bodg afiethod and are always publicly accessible. A atkth
invocation creates a copy, specific to that inviocatof the parameters, and the argument list @frtkiocation
assigns values or variable references to the nenglgted parameters. Because external method dewhsrand
delegate declarations have no body, duplicate petegmames are allowed in parameter lists, bubdisged.

ParameterList ::=
Parameter |
ParameterList , Parameter
Parameter ::=
[Attributes | ParameterModifier+ Parameteridentifier [As TypeName] [= ConstantExpression]

ParameterModifier ::= Byval | ByRef | Optional | ParamArray
Parameterldentifier ::= Identifier [ArrayNameModifier]

9.2.5.1 Value Parameters

A value parameter is declared with an explicByval modifier. If theByval modifier is used, thByRef
modifier may not be specified. A value parametenes into existence with the invocation of the menthe
parameter belongs to, and is initialized with taéue of the argument given in the invocation. Aueal
parameter ceases to exist upon return of the member

A method is permitted to assign new values to aevparameter. Such assignments only affect thé semaage
location represented by the value parameter; thgg ho effect on the actual argument given in théhod
invocation.

A value parameter is used when the value of amaegtiis passed into a method, and modificatiortbef
parameter do not impact the original argument. Wes@arameter refers to its own variable, oneithdistinct
from the variable of the corresponding arguments Vhriable is initialized by copying the valuetbé
corresponding argument. The following example shawsethod- that has a value parameter named

Module Test
Sub F(Byval p As Integer)
console.writeLine("p = " & p)

132 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

p+=1
End Sub
Sub MainQ)

Dim a As Integer =1

console.WriteLine("pre: a =" & a)
F(a)
console.writeLine("post: a = " & a)
End Sub
End Module

The example produces the following output, evemigihathe value parameteris modified:
pre: a =1
p=1
post: a =1

9.2.5.2 Reference Parameters

A reference parameter is a parameter declaredamsgiRef modifier. If theByRef modifier is specified, the
Byval modifier may not be used. A reference parametes thot create a new storage location. Instead, a
reference parameter represents the variable givéimeaargument in the method or constructor invocat
Conceptually, the value of a reference parametaliiays the same as the underlying variable.

A reference parameter is used when the paramdteas@n alias for a caller-provided argument.féremce
parameter does not itself define a variable, bilierarefers to the variable of the correspondirmarent.
Modifications of a reference parameter directly anthediately impact the corresponding argument. The
following example shows a methsdap that has two reference parameters:

Module Test
Sub swap(ByRef a As Integer, ByRef b As Integer)

Dim t As Integer = a
a=»>b
b=t
End Sub
Sub Main(Q)
Dim x As Integer =1
Dim y As Integer = 2
console.WriteLine("pre: x =" & x & ", y =" &y)
Swap(x, y)
console.WriteLine("post: x =" & x & ", y =" & y)
End Sub
End Module

Copyright © Microsoft Corporation 2005. All rightsserved. 133

Visual Basic Language Specification

The output of the program is:
pre: x =1, y =2
post: x =2, y=1

For the invocation of methalap in classvain, a representg, andb representg. Thus, the invocation has
the effect of swapping the values»oéndy.

In a method that takes reference parameterspdssible for multiple names to represent the saorage
location:
Module Test
Private s As String

Sub F(ByRef a As String, ByRef b As String)

s = "One
a = "Two"
b = "Three"
End Sub
sub GQ
F(s, s)
End Sub
End ModuTe

In the example the invocation of metheth G passes a referenceddor botha andb. Thus, for that
invocation, the names, a, andb all refer to the same storage location, and threetassignments all modify the
instance variabls.

If the type of the variable being passed to a exfee parameter is not compatible with the refergacameter's
type, or if a non-variable is passed as an argutoemteference parameter, a temporary variablebwaay
allocated and passed to the reference parametenalbe being passed in will be copied into thisgerary
variable before the method is invoked and will bpied back to the original variable (if there ispwhen the
method returns. Thus, a reference parameter mayaoatssarily contain a reference to the exactggavfthe
variable being passed in, and any changes to theenee parameter may not be reflected in the biariantil
the method exits. For example:

Class Base
End Class

Class Derived
Inherits Base
End Class

Module Test
Sub F(ByRef b As Base)
b = New Base()
End Sub

134 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

Property G() As Base
Get
End Get
Set
End Set
End Property

Sub Main()
Dim d As Derived

F(G) ' OK.
F(d) ' Throws TypeMismatchException after F returns.
End Sub
End Module

In the case of the first invocation Bf a temporary variable, is created and the valubepropertyG is

assigned to it and passed imtdJpon return fron¥, the value in the temporary variable is assigreazk o the
property ofG. In the second case, another temporary varialdeested and the value éfis assigned to it and
passed int&. When returning fron, the value in the temporary variable is cast liadke type of the variable,
Derived, and assigned t Since the value being passed back cannot béodastived, an exception is
thrown at run time.

9.2.5.3 Optional Parameters

An optional parameter is declared with thetional modifier. Parameters that follow an optional paggenin
the formal parameter list must be optional as wWailure to specify theptional modifier on the following
parameters will trigger a compile-time error. Artiopal parameter must specify a constant expregsibe
used as a replacement value if no argument isfegukcl he expression must be implicitly convertitidehe
type of the parameter, and the result of the cawemMust be a constant expression. Consequeatigneters
typed as structures cannot be optional paramedgtsonal parameters are the only situation in wiich
initializer on a parameter is valid. The initialian is always done as a part of the invocatiorresgion, not
within the method body itself.

Module Test
Sub F(Byval x As Integer, Optional y As Integer = 20)
Console.WriteLine("x = " & x & ", y =" & y)
End Sub

Sub Main(Q)
F(10)
F(30,40)

End Sub

End ModuTe

The output of the program is:
x = 10, y = 20
x =30, y =40

Copyright © Microsoft Corporation 2005. All rightsserved. 135

Visual Basic Language Specification

Optional parameters may not be specified in detegatvent declarations.

9.2.5.4 ParamArray Parameters

ParamArray parameters are declared with #e-amArray modifier. If theparamArray modifier is present,
theByval modifier must be specified, and no other paramasgr use the@aramArray modifier. The
ParamArray parameter's type must be a one-dimensional aaral/it must be the last parameter in the
parameter list.

A ParamArray parameter represents an indeterminate numberaineders of the type of ttraramarray.
Within the method itself, aRaramArray parameter is treated as its declared type anddapecial semantics.
A ParamArray parameter is implicitly optional, with a defautilue of an empty one-dimensional array of the
type of theparamArray.

A ParamArray permits arguments to be specified in one of twgsaa a method invocation:

* The argument given formaramArray can be a single expression of a type that widetisgParamArray
type. In this case, thearamArray acts precisely like a value parameter.

» Alternatively, the invocation can specify zero asmmarguments for thearamArray, where each
argument is an expression of a type that is intpficonvertible to the element type of theramarray. In
this case, the invocation creates an instanceedfahamarray type with a length corresponding to the
number of arguments, initializes the elements efdiray instance with the given argument valued uses
the newly created array instance as the actuahagu

Except for allowing a variable number of argumeéntan invocation, ®aramArray is precisely equivalent to
a value parameter of the same type, as the follpeiample illustrates.
Module Test
Sub F(Byval ParamArray args As Integer)
Dim i As Integer

console.write("Array contains " & args.Length & " elements:")
For Each i In args
console.write(" " & 1)
Next 1
console.WriteLine()
End Sub

Sub Main(Q)
Dim a As Integer() = {1, 2, 3}

F(a)
F(10, 20, 30, 40)
FO
End Sub
End Module
The example produces the output
Array contains 3 elements: 1 2 3

136 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

Array contains 4 elements: 10 20 30 40
Array contains 0 elements:

The first invocation of simply passes the arrayas a value parameter. The second invocation of
automatically creates a four-element array withgiven element values and passes that array irstsa
value parameter. Likewise, the third invocatiorF areates a zero-element array and passes thaicesta a
value parameter. The second and third invocatiompi@cisely equivalent to writing:

F(New Integer() {10, 20, 30, 403})
F(New Integer() {})

ParamArray parameters may not be specified in delegate onteexlarations.

9.2.6 Event Handling

Methods can declaratively handle events raisedogcts in instance or shared variables. To handiats, a
method declaration specifies thend1es keyword and lists one or more events. An evetitétandles list
is specified by two identifiers separated by aquéri

» The first identifier must be an instance or shasatiable in the containing type that specifies the
withEvents modifier or themyBase or Me keyword; otherwise, a compile-time error occutisisivariable
contains the object that will raise the events kethtly this method.

* The second identifier must specify a member otype of the first identifier. The member must be an
event, and may be shared. If a shared variablgeigified for the first identifier, then the eventish be
shared, or an error results.

For a handler to be valid, the handled event'srparar types must exactly match those of the evamdlier. A
single member can handle multiple matching evemd, multiple methods may handle a single event. A
method's accessibility has no effect on its abtlithandle events. The following example shows hanethod
can handle events:

Class Raiser
Public Event Constructed()

Public Sub New()
RaiseEvent Constructed
End Sub
End Class

Module Test
Private withEvents x As Raiser

Public sub cConstructed() Handles x.Constructed
Console.writeLine("Constructed™)
Public End Sub

Public sub Main()
X = New Raiser()
X = New Raiser()

Copyright © Microsoft Corporation 2005. All rightsserved. 137

Visual Basic Language Specification
End Sub
End Module
This will print out:
constructed

constructed

A type inherits all event handlers provided bybigse type. A derived type cannot in any way altergvent
mappings it inherits from its base types, but mé@y additional handlers to the event.

HandlesClause ::= [Handles EventHandlesList]

EventHandlesList ::=

EventMember Specifier |

EventHandlesList , EventMember Specifier
EventMember Specifier ::=

Qualifiedidentifier . IdentifierOrKeyword |
MyBase . ldentifierOrKeyword |
Me . ldentifierOrKeyword

9.3 Constructors

Constructors are special methods that allow control over itigé&ion. They are run after the program begins or
when an instance of a type is created. Unlike atteambers, constructors are not inherited and dintroiduce

a name into a type's declaration space. Constsuntay only be invoked by object-creation expressmmby

the .NET Framework; they may never be directly kaa

Note Constructors have the same restriction on llaegment that subroutines have. The beginning
statement, end statement and block must all agtehe beginning of a logical line.

ConstructorMemberDeclaration ::=
[Attributes] [ConstructorModifier+] sub New [([ParameterList])] LineTerminator
[Block]
End Sub SatementTerminator

ConstructorModifier ::= AccessModifier | shared

9.3.1 Instance Constructors

Instance constructors initialize instances of a type and are run by.NMET Framework when an instance is
created. The parameter list of a constructor igestibo the same rules as the parameter list ofthoal.
Instance constructors may be overloaded.

All constructors in reference types must invokethaoconstructor. If the invocation is explicitpiust be the
first statement in the constructor method body. Jlatement can either invoke another of the tyipstance
constructors — for exampl®e.New(. ..) orMyClass.New(...) — or if it is not a structure it can invoke
an instance constructor of the type's base typereXampleMyBase.New(. . .). Itis invalid for a
constructor to invoke itself. If a constructor osrit call to another constructaiBase . New() is implicit. If
there is no parameterless base type constructomaile-time error occurs. Becauseis not considered to be
constructed until after the call to a base classiractor, the parameters to a constructor invonatatement
cannot referenciee, MyClass, orMyBase implicitly or explicitly.

When a constructor's first statement is of the fagmase.New(. . .), the constructor implicitly performs the
initializations specified by the variable initiadizs of the instance variables declared in the tJpis
corresponds to a sequence of assignments thaxecated immediately after invoking the direct bage

138 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.
constructor. Such ordering ensures that all bastarice variables are initialized by their varidhlgalizers
before any statements that have access to theaestaie executed. For example:

Class A
Protected x As Integer =1
End Class

Class B
Inherits A

Private y As Integer = x

Public Sub New()
console.WriteLine("x = " & x & ", y =" &vy)
End Sub
End Class

WhenNew B() is used to create an instancespthe following output is produced:

x=1, y=1
The value ofy is 1 because the variable initializer is executed dfterbase class constructor is invoked.
Variable initializers are executed in the textualay they appear in the type declaration.

When a type declares oryivate constructors, it is not possible in general fdreottypes to derive from the
type or create instances of the type; the only gtk@e is types nested within the tygaivate constructors are
commonly used in types that contain oshared members.

If a type contains no instance constructor dedtamat a default constructor is automatically preddThe
default constructor simply invokes the parametsrtemstructor of the direct base type. If the dibese type
does not have an accessible parameterless coosfractompile-time error occurs. The declared actgse for
the default constructor is alwapsb1ic.

In the following example a default constructor ieyided because the class contains no constructor
declarations:

Class Message
Private sender As Object
Private text As String
End Class
Thus, the example is precisely equivalent to ttleviong:
Class Message
Private sender As Object
Private text As String

Public sub New()

End Sub
End Class

Copyright © Microsoft Corporation 2005. All rightsserved. 139

Visual Basic Language Specification

9.3.2 Shared Constructors

Shared constructors initialize a type's shared variables; they areafter the program begins executing, but
before any references to a member of the type.afeshconstructor specifies theared modifier, unless it is
in a standard module in which case shared modifier is implied.

Unlike instance constructors, shared constructave mplicit public access, have no parameters naaginot
call other constructors. Before the first stateniera shared constructor, the shared constructolidithy
performs the initializations specified by the vat@initializers of the shared variables declarethi type. This
corresponds to a sequence of assignments thatecated immediately upon entry to the construdtbe
variable initializers are executed in the textualen they appear in the type declaration.

The following example shows @mployee class with a shared constructor that initializetared variable:

Imports System.Data

Class Employee
Private Shared ds As DataSet

Shared Sub New()
ds = New DataSet()
End Sub

Public Name As String
Public salary As Decimal
End Class

A separate shared constructor exists for eachalgseeric type. Because the shared constructaeisuésd
exactly once for each closed type, it is a convdrpéace to enforce run-time checks on the typarpater that
cannot be checked at compile-time via constraks.example, the following type uses a shared coctstr to
enforce that the type parameterlisteger orDouble:

Class Integerorbouble(of T)
Shared sub New()
If safeCast(T, Integer) Is Nothing AndAlso _
SafeCast(T, Double) Is Nothing Then
Throw New ArgumentException("T must be Integer or Double")
End If
End Sub
End Class

Exactly when shared constructors are run is masghementation dependent, though several guaraatees
provided if a shared constructor is explicitly eefd:

* Shared constructors are run before the first adoessy static field of the type.
» Shared constructors are run before the first inioeaf any static method of the type.

» Shared constructors are run before the first intiogaf any constructor for the type.

140 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

The above guarantees do not apply in the situatioere a shared constructor is implicitly createdstrared
initializers. The output from the following exampgeuncertain, because the exact ordering of |@adird
therefore of shared constructor execution is nbhee:

Module Test
Ssub Main(Q)
A.FQ
B.FO
End Sub
End Module

Class A
Shared Sub New()
console.WriteLine("Init A")
End Sub

PubTlic Shared sub FQ)
console.writeLine("A.F")
End Sub
End Class

Class B
Shared sub New()
console.WriteLine("Init B")
End Sub

PubTlic Shared sub FQ)
console.writeLine("B.F")
End Sub
End Class

The output could be either of the following:
Init A
A.F
Init B
B.F
or
Init B
Init A
A.F
B.F

Copyright © Microsoft Corporation 2005. All rightsserved. 141

Visual Basic Language Specification
By contrast, the following example produces prexdile output. Note that ttshared constructor for the class
A never executes, even though clasterives from it:
Module Test
Sub Main(Q)
B.GQ
End Sub
End ModuTe

Class A
Shared sub New()
console.WriteLine("Init A")
End Sub
End Class

Class B
Inherits A

Shared Sub New()
console.writeLine("Init B")
End Sub

PubTlic Shared sub GQ)
console.WriteLine("B.G")
End Sub
End Class
The output is:
Init B
B.G

It is also possible to construct circular dependenthat allowshared variables with variable initializers to be
observed in their default value state, as in thieviang example:

Class A
Public shared X As Integer = B.Y + 1
End Class
Class B
Public Shared Y As Integer = A.X + 1
Shared sub Main(Q)
console.writeLine("Xx =" & A.X & ", Y =" & B.Y)

End Sub

142 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.
End Class

This produces the output:

X=1,Y=2
To execute th®ain method, the system first loads clas3heshared constructor of class proceeds to
compute the initial value of, which recursively causes clas$o be loaded because the value oX is
referenced. Thehared constructor of class in turn proceeds to compute the initial valuegnd in doing so

fetches thalefault value ofy, which is zeroA. X is thus initialized td.. The process of loadimgthen
completes, returning to the calculation of thei@hitalue ofy, the result of which becomes

Had themain method instead been located in clasthe example would have produced the followingatit
X=2,Yy=1

Avoid circular references ighared variable initializers since it is generally impitds to determine the order
in which classes containing such references acetha

9.4 Events

Events are used to notify code of a particular oernce. An event declaration consists of an idiemtieither a
delegate type or a parameter list, and an optiomal ements clause. If a delegate type is specified, the
delegate type may not have a return type. If amater list is specified, it may not contaiptional or
ParamArray parameters. The accessibility domain of the patantgpes and/or delegate type must be the
same as, or a superset of, the accessibility doofahe event itself. Events may be shared by $yiagithe
Shared modifier.

In addition to the member name added to the tyfeetaration space, an event declaration implicidglares
several other members. Given an event naxpelde following members are added to the declanajmce:

» If the form of the declaration is a method deciargta nested delegate class naxedentHandler is
introduced. The nested delegate class matchesdtt@ddeclaration and has the same accessibilityeas
event. The attributes in the parameter list applhe parameters of the delegate class.

* A Private instance variable typed as the delegate, natednt.
» A method nameddd_x, which takes the delegate type and has the satessatype as the event.
* A method namedemove_X, which takes the delegate type and has the sapesstype as the event.

If a type attempts to declare a name that matche®bthe above names, a compile-time error walile and
the implicitadd_X andremove_x declarations are ignored for the purposes of raim#ing. It is not possible
to override or overload any of the introduced mempalthough it is possible to shadow them in dtitypes.
For example, the class declaration

Class Raiser
Public Event Constructed(Byval i As Integer)
End Class

is equivalent to the following declaration
Class Raiser
Public Delegate Sub ConstructedeEventHandler(Byval i As Integer)

Protected ConstructedEvent As ConstructedEventHandler

Public Sub add_cConstructed(Byval d As ConstructedEventHandler)

Copyright © Microsoft Corporation 2005. All rightsserved. 143

Visual Basic Language Specification

constructedEvent = _
CType(_
[Delegate] .Combine(ConstructedEvent, d), _
Raiser.ConstructedEventHandler)
End Sub

Public Sub remove_cConstructed(Byval d As ConstructedEventHandler)
constructedeEvent = _
CType(_
[Delegate] .Remove(ConstructedEvent, d), _
Raiser.ConstructedEventHandler)
End Sub
End Class

Declaring an event without specifying a delegapetis the simplest and most compact syntax, butheas
disadvantage of declaring a new delegate typedoh event. For example, in the following examgies¢
hidden delegate types are created, even thougfira# events have the same parameter list:

Public Class Button
Public Event Click(sender As Object, e As System.EventArgs)
Public Event DoubleClick(sender As Object, e As System.EventArgs)
Public Event RightClick(sender As Object, e As System.EventArgs)
End Class

In the following example, the events simply useshme delegat&ventHandler:
Delegate Sub EventHandler(sender As Object, e As System.EventArgs)
Public Class Button
PubTlic Event Click As EventHandler
PubTlic Event DoubleClick As EventHandler
Public Event RightClick As EventHandler
End Class

Events can be handled in one of two ways: stayicalidynamically. Statically handling events is glar and
only requires aithEvents variable and @aandles clause. In the following example, clemssrml statically
handles the evetlick of objectButton:

Public Class Forml
Public withEvents Buttonl As Button = New Button()
Public Sub Buttonl_Click(sender As Object, e As System.EventArgs) _
Handles Buttonl.Click
console.WriteLine("Buttonl was clicked!")
End Sub
End Class

Dynamically handling events is more complex becdhsesvent must be explicitly connected and diseoted
to in code. The statememtidHandTer adds a handler for an event, and the staterRemiveHandler

144 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.
removes a handler for an event. The next examplesh classorml that addsuttonl_cl11ick as an event
handler forButtonl'sClick event:

Public Class Forml
PubTic Sub New()
' Add Buttonl_Click as an event handler for Buttonl's Click event.
AddHandler Buttonl.Click, Addressof Buttonl_Click
End Sub

Private Buttonl As Button = New Button()

Sub Buttonl_Click(sender As Object, e As EventArgs)
console.writeLine("Buttonl was clicked!™)
End Sub

Public Sub Disconnect()
RemoveHandler Buttonl.Click, Addressof Buttonl_cClick
End Sub
End Class

In methoddisconnect, the event handler is removed.

EventMember Declaration ::=
Regular EventMember Declaration |
CustomEventMember Declar ation

Regular EventMember Declaration ::=
[Attributes] [EventModifiers+ | Event Identifier ParametersOrType [ImplementsClause]
SatementTerminator

InterfaceEventMember Declaration ::=
[Attributes] [InterfaceEventModifiers+ | Event Identifier ParametersOrType StatementTerminator

ParametersOrType ::=
[C [ParameterList])] |
As NonArrayTypeName

EventModifiers ::= AccessModifier | Shadows | Shared

InterfaceEventModifiers ::= shadows

9.4.1 Custom Events

As discussed in the previous section, event deaaasaimplicitly define a field, aadd_ method, and a
remove_ method that are used to keep track of event hesxdilesome situations, however, it may be desgrabl
to provide custom code for tracking event handleos.example, if a class defines forty events oiciionly a
few will ever be handled, using a hash table irstd@dorty fields to track the handlers for eaclesvmay be
more efficientCustom events allow theadd_x andremove_x methods to be defined explicitly, which enables
custom storage for event handlers.

Custom events are declared in the same way thatstheat specify a delegate type are declared, thvith
exception that the keywoxtlstom must precede thevent keyword. A custom event declaration contains

Copyright © Microsoft Corporation 2005. All rightsserved. 145

Visual Basic Language Specification

three declarations: axddHand1er declaration, ®emoveHandler declaration and RaiseEvent declaration.
None of the declarations can have any modifietepabh they can have attributes. For example:

Class Test
Private Handlers As EventHandler

Public Custom Event TestEvent() As EventHandler
AddHandTler(Byval value As EventHandler)
HandTlers = CType([Delegate].Combine(Handlers, value), _
EventHandler)
End AddHandler

RemoveHandler(Byval value as EventHandler)
HandTlers = CType([Delegate].Remove(Handlers, value), _
EventHandler)
End RemoveHandler

RaiseEvent(Byval sender As Object, Byval e As EventArgs)
Dim TempHandlers As EventHandler = Handlers

If TempHandlers IsNot Nothing Then
TempHandlers(sender, e)
End If
End RaiseEvent
End Event
End Class

TheAddHandTer andrRemoveHandTer declaration take orgyval parameter, which must be of the delegate
type of the event. When anidHandler or RemoveHandler statement is executed (oHandles clause
automatically handles an event), the correspond@udgration will be called. TheaiseEvent declaration
takes the same parameters as the event delegatéllnel called when &aiseEvent statement is executed.
All of the declarations must be provided and amsatered to be subroutines.

Note AddHandler, RemoveHandler andRaiseEvent declarations have the same restriction on line
placement that subroutines have. The beginningrettt, end statement and block must all appebeat t
beginning of a logical line.

In addition to the member name added to the tyfeetaration space, a custom event declaration citlgli
declares several other members. Given an eventdhantiee following members are added to the declamatio
space:

* A method nameddd_X, corresponding to theddHand1er declaration.
* A method namedemove_X, corresponding to theemoveHandler declaration.
* A method namedi re_X, corresponding to theaiseEvent declaration.

If a type attempts to declare a name that matche®obthe above names, a compile-time error wélle and
the implicit declarations are all ignored for theposes of name binding. It is not possible to Keeror
overload any of the introduced members, althoughpbssible to shadow them in derived types.

Note custom is not a reserved word.

CustomEventMember Declaration ::=
[Attributes] [EventModifiers+ | custom Event ldentifier As TypeName [ImplementsClause |
SatementTer minator
EventAccessor Declar ation+
End Event SatementTerminator

EventAccessorDeclaration ::=
AddHandlerDeclaration |

146 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

RemoveHandlerDeclaration |
Rai seEventDeclaration

AddHandlerDeclaration ::=
[Attributes] AddHandler (ParameterList) LineTerminator
[Block]
End AddHandler SatementTerminator

RemoveHandlerDeclaration ::=
[Attributes] RemoveHandler (ParameterList) LineTerminator
[Block]
End RemoveHandler SatementTerminator

RaiseEventDeclaration ::=
[Attributes] RaiseEvent (ParameterList) LineTerminator
[Block]
End RaiseEvent SatementTerminator

9.5 Constants

A constant is a constant value that is a member of a typastats are implicitly shared. If the declaration
contains aris clause, the clause specifies the type of the membreduced by the declaration. If the type is
omitted and strict semantics are being used, a ite+time error occurs; otherwise the type of thagtant is
implicitly object. The type of a constant may only be a primitiyeetprobject. If a constant is typed as
object and there is no type character, the real typhetobnstant will be the type of the constant e)gioes
Otherwise, the type of the constant is the typiefconstant's type character.
The following example shows a class namedstants that has two public constants:
Class Constants
Public A As Integer
Public B As Integer

End Class

1
A+ 1

Constants can be accessed through the classthasfillowing example, which prints out the valads
Constants.A andConstants.B.

Module Test
Sub Main(Q)
Console.WriteLine(Constants.A & ", " & Constants.B)
End Sub
End ModuTe

A constant declaration that declares multiple camistis equivalent to multiple declarations of Bngpnstants.
The following example declares three constantsimndeclaration statement.

Class A
Protected Const x As Integer
End Class

1, y As Long = 2, z As Short = 3

This declaration is equivalent to the following:
Class A
Protected Const x As Integer
Protected Const y As Long = 2

I
=

Copyright © Microsoft Corporation 2005. All rightsserved. 147

Visual Basic Language Specification

Protected Const z As Short = 3
End Class
The accessibility domain of the type of the conistanst be the same as or a superset of the actigssib
domain of the constant itself. The constant exjwassust yield a value of the constant's type aa tfpe that

is implicitly convertible to the constant's typéhelconstant expression may not be circular; that e®nstant
may not be defined in terms of itself.

The compiler automatically evaluates the constantagtations in the appropriate order. In the folluyv

example, the compiler first evaluatesthenz, and finallyx, producing the values 10, 11, and 12, respectively
Class A

B.Z +1

10

Public Const X As Integer

Public Const Y As Integer
End Class

Class B
Public Const Z As Integer
End Class

Ay + 1

When a symbolic name for a constant value is dislinet the type of the value is not permitted toastant
declaration or when the value cannot be computedrapile time by a constant expression, a read-eaulable
may be used instead.

ConstantMember Declaration ::=
[Attributes] [ConstantModifier+] Const ConstantDeclarators SatementTerminator

ConstantModifier ::= AccessModifier | Shadows

ConstantDeclarators ::=
ConstantDeclarator |
ConstantDeclarators , ConstantDeclarator

ConstantDeclarator ::= Identifier [As TypeName] = ConstantExpression StatementTer minator

9.6 Instance and Shared Variables

An instance or shared variable is a member of @ tigat can store information. Thém modifier must be
specified if no modifiers are specified, but mayoeitted otherwise. A single variable declaratioayrinclude
multiple variable declarators; each variable det@rintroduces a new instance or shared member.

If an initializer is specified, only one instanaeshiared variable may be declared by the variadtéadator:
Class Test
Dim a, b, c, d As Integer = 10
End Class

Invalid: multiple initialization

This restriction does not apply to object initialig:
Class Test
Dim a, b, ¢, d As New Collection() ' OK
End Class

A variable declared with thehared modifier is ashared variable. A shared variable identifies exactly one
storage location regardless of the number of in&swof the type that are created. A shared var@btess into
existence when a program begins executing, aneés¢aexist when the program terminates.

148 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

A shared variable is shared only among instancespafiticular closed generic type. For example:
Class c(of v)
Shared InstanceCount As Integer = 0

Public Sub New()
InstanceCount += 1
End Sub

Public Shared Readonly Property Count() As Integer
Get
Return InstanceCount
End Get
End Property
End Class

Class Application
Shared Sub Main()
Dim x1 As New C(of Integer)()
console.writeLine(Cc(0of Integer).Count) " Prints 1

Dim x2 As New C(of Double) ()
console.writeLine(Cc(0of Integer).Count) " Prints 1

Dim x3 As New C(Of Integer)()
console.writeLine(Cc(0of Integer).Count) " Prints 2
End Sub
End Class

A variable declared without thrghared modifier is called ainstance variable. Every instance of a class
contains a separate copy of all instance variaiflése class. An instance variable of a referegpe tomes

into existence when a new instance of that tymegated, and ceases to exist when there are memeés to

that instance and theinalize method has executed. An instance variable of @evigipe has exactly the same
lifetime as the variable to which it belongs. Ih@twords, when a variable of a value type comeséristence
or ceases to exist, so does the instance varidlihe alue type.

If the declarator contains a3 clause, the clause specifies the type of the mesnbgoduced by the
declaration. If the type is omitted and strict satits are being used, a compile-time error ocddtkerwise the
type of the members is implicitbject or the type of the members' type character.

Note There is no ambiguity in the syntax: if a deatar omits a type, it will always use the type of a
following declarator.

The accessibility domain of an instance or shaegthbile's type or array element type must be thresss or a
superset of the accessibility domain of the instasrcshared variable itself.

Copyright © Microsoft Corporation 2005. All rightsserved. 149

Visual Basic Language Specification
The following example shows@Tor class that has internal instance variables namddart, greenPart,
andbluePart:
Class color
Friend redPart As Short
Friend bluePart As Short
Friend greenPart As Short

Public Sub New(red As Short, blue As Short, green As Short)
redPart = red
bluepart = blue
greenPart = green
End Sub
End Class

VariableMemberDeclaration ::=
[Attributes] VariableModifier+ VariableDeclarators SatementTer minator

VariableModifier ::=
AccessModifier |
Shadows |
Shared |
Readonly
withEvents |
Dim
VariableDeclarators ::=
VariableDeclarator |
VariableDeclarators , VariableDeclarator

VariableDeclarator ::=
Variableldentifiers [As [New] TypeName [(ArgumentList)]] |
Variableldentifier [As TypeName | [= Variablelnitializer |

Variableldentifiers ::=
Variableldentifier |
Variableldentifiers , Variableldentifier

Variableldentifier ::= Identifier [ArrayNameModifier |

9.6.1 Read-Only Variables

When an instance or shared variable declaratidodes aReadon1y modifier, assignments to the variables
introduced by the declaration may only occur as @ithe declaration or in a constructor in the saass.
Specifically, assignments to a read-only instarrcghared variable are permitted only in the follogyi
situations:

* Inthe variable declaration that introduces théainse or shared variable (by including a variabigsilizer
in the declaration).

e For an instance variable, in the instance congiracif the class that contains the variable detteral he
instance variable can only be accessed in an ufigdahanner or throughe ormycClass.

« For a shared variable, in the shared constructtte€lass that contains the shared variable deiclar

150 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

A shared read-only variable is useful when a syiob@me for a constant value is desired, but whenype of
the value is not permitted in a constant declamato when the value cannot be computed at cortimie by a
constant expression.

An example of the first such application follows which color shared variables are declaeddonly to
prevent them from being changed by other programs:

Class color

Friend redPart As Short
Friend bluePart As Short
Friend greenPart As Short

Public Sub New(red As Short, blue As Short, green As Short)
redPart = red
bluePart = blue
greenPart = green

End Sub

Public shared Readonly Red As Color = New Color(&HFF, 0, 0)

Public Shared Readonly Blue As Color = New Color(0, &HFF, 0)

Public shared Readonly Green As Color = New Color(0, 0, &HFF)
Public shared Readonly White As Color = New Color(&HFF, &HFF, &HFF)

End Class

Constants and read-only shared variables haveaeliffesemantics. When an expression referencessaacin
the value of the constant is obtained at compihetibut when an expression references a read-baled
variable, the value of the shared variable is mbaioed until run time. Consider the following apption,
which consists of two separate programs.

filel.vb:

Namespace Programl

Public Class Utils
Public Shared Readonly X As Integer = 1
End Class

End Namespace

file2.vb:

Namespace Program2

Module Test
Sub Main(Q)
Console.writeLine(Programl.utils.X)
End Sub
End Module

End Namespace

Copyright © Microsoft Corporation 2005. All rightsserved. 151

Visual Basic Language Specification

The namespaces-ograml andProgram2 denote two programs that are compiled separdelgause variable
Programl.uUtils.Xis declared ashared Readonly, the value output by theonsoTle.writeLine
statement is not known at compile time, but raitb@btained at run time. Thus, if the valuexaé changed and
Programl is recompiled, theonsole.writeLine statement will output the new value everitbgram?2 is
not recompiled. However, ¥ had been a constant, the valu&afould have been obtained at the time
Program2 was compiled, and would have remained unaffecyechbnges iPrograml until Program2 was
recompiled.

9.6.2 WithEvents Variables

A type can declare that it handles some set oftswarsed by one of its instance or shared varsaiye
declaring the instance or shared variable thagsdise events with thei thEvents modifier. For example:

Class Raiser
Public Event Constructed()

PubTic Sub New()
RaiseEvent Constructed
End Sub
End Class

Module Test
Private WithEvents x As Raiser

Private Sub HandleConstructed() Handles x.Constructed
console.writeLine("Constructed™)
End Sub

PubTic Sub Main()
X = New Raiser()
End Sub
End ModuTe

In this example, the methethndleConstructed handles the evebnstructed that is raised by the
instance of the typraiser stored in the instance variable

ThewithEvents modifier causes the variable to be renamed widading underscore and replaced with a
property of the same name that does the event lpo&lar example, if the variable's name jst is renamed to
_F and a property is implicitly declared. If there is a collisiontaeen the variable's new name and another
declaration, a compile-time error will be reportédy attributes applied to the variable are carogdr to the
renamed variable.

The implicit property created bywa thEvents declaration takes care of hooking and unhookieg¢hevant
event handlers. When a value is assigned to thablay the property first calls theemove method for the
event on the instance currently in the variabldhfuking the existing event handler, if any). Nd»d t
assignment is made, and the property callsatitemethod for the event on the new instance in thiabie
(hooking up the new event handler). The followinge is equivalent to the code above for the stahatadule
Test:

Module Test
152 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

Private _x As Raiser

Public Property x() As Raiser
Get
Return _X
End Get

Set (Byval value As Raiser)
' Unhook any existing handlers.
If _x IsNot Nothing Then
RemoveHandler _x.Constructed, Addressof HandleConstructed
End If

Change value.
x = Value

Hook-up new handlers.
If _x IsNot Nothing Then
AddHandTer _x.Constructed, Addressof HandleConstructed
End If
End Set
End Property

Sub HandleConstructed()
console.writeLine("Constructed™)
End Sub

Sub Main(Q)
X = New Raiser()
End Sub
End Module
It is not valid to declare an instance or sharathisée aswithEvents if it does not raise any events or if the

variable is typed as a structure. In additieitthEvents may not be specified in a structure, aridhEvents
andrReadonly cannot be combined.

9.6.3 Variable Initializers

Instance and shared variable declarations in cdaesse instance variable declarations (but not shaagable
declarations) in structures may include variabitsgilizers. Forshared variables, variable initializers
correspond to assignment statements that are exkafier the program begins, but beforeshared variable
is first referenced. For instance variables, vaeiatitializers correspond to assignment statemiraisare
executed when an instance of the class is cre@tatttures cannot have instance variable initisdib®cause
their parameterless constructors cannot be modified

Copyright © Microsoft Corporation 2005. All rightsserved. 153

Visual Basic Language Specification

Consider the following example:
Class Test
Public Shared x As Double = Math.sqrt(2.0)
Public i As Integer = 100
Public s As String = "Hello"
End Class

Module TestModule
Sub Main()
Dim a As Test = New Test()

console.writeLine("x =" & x & ", i =" & a.i &", s =" & a.s)
End Sub
End Module

The example produces the following output:
x = 1.414213562373095, i = 100, s = Hello

An assignment ta occurs when the class is loaded, and assignnemtarids occur when a new instance of
the class is created.

It is useful to think of variable initializers assignment statements that are automatically indéntéhe block
of the type's constructor. The following examplatains several instance variable initializers.
Class A

Private x As Integer

1
-1
Private count As Integer

Private y As Integer

Public sub New()
count = 0
End Sub

Public Sub New(n As Integer)
count = n
End Sub
End Class

Class B
Inherits A

Private sqrt2 As Double = Math.sqrt(2.0)
Private items As ArrayList = New ArrayList(100)
Private max As Integer

154 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

Public Sub New()
Me.New(100)
items.Add("default")

End Sub

Public Sub New(n As Integer)
MyBase.New(n - 1)
max = n
End Sub
End Class

The example corresponds to the code shown beloererdach comment indicates an automatically ingerte
statement.

Class A
Private x, y, count As Integer

Public Sub New()

MyBase.New ' Invoke object() constructor.

X =1 "' This is a variable initializer.

y = -1 ' This is a variable initializer.
count = 0

End Sub

Public Sub New(n As Integer)
MyBase.New ' Invoke object() constructor.
x =1 " This is a variable initializer.

y = -1 " This is a variable initializer.
count = n
End Sub

End Class

Class B
Inherits A

Private sqrt2 As Double
Private items As ArraylList
Private max As Integer

Public Sub New()
Me.New(100)

Copyright © Microsoft Corporation 2005. All rightsserved. 155

Visual Basic Language Specification

items.Add("default™)
End Sub

Public Sub New(n As Integer)
MyBase.New(n - 1)

sqrt2 = Math.sqrt(2.0) ' This is a variable initializer.
items = New ArrayList(100) ' This is a variable initializer.
max = n
End Sub
End Class

All variables are initialized to the default valaktheir type before any variable initializers aseecuted. For
example:

Class Test
Public Shared b As Boolean
Public i As Integer

End Class

Module TestModule

Sub Main(Q)
Dim t As Test = New Test()
console.WriteLine("b =" & b & ", i =" & t.1i)
End Sub
End Module

Becausé is automatically initialized to its default valudnen the class is loaded ands automatically
initialized to its default value when an instan¢¢he class is created, the preceding code prodhee®llowing
output:

b = False, i =0
Each variable initializer must yield a value of tregiable's type or of a type that is implicitlyraertible to the
variable's type. A variable initializer may be cilar or refer to a variable that will be initialiafter it, in

which case the value of the referenced variablks idefault value for the purposes of the initiafizSuch an
initializer is of dubious value.

There are four forms of variable initializers: réggunitializers, array-element initializers, arfaize initializers,
and object initializers. The first two forms appa#ter an equal sign that follows the type name |after two
are part of the declaration itself. Only one forhindtializer may be used on any particular dediara

Variablelnitializer ::= Regularlnitializer | ArrayElementlnitializer

9.6.3.1 Regular Initializers

A regular initializer is an expression that is imjly convertible to the type of the variablealppears after an
equal sign that follows the type name and mustdssified as a value. For example:
Module Test
Dim X As Integer 10
20

156 Copyright © Microsoft Corporation 2005. All rightsserved.

Dim y As Integer

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

Sub Main()
Console.WriteLine("x = " & x & ", y =" & y)
End Sub
End Module

This program produces the output:
x =10, y = 20
Regularinitializer ::= Expression

9.6.3.2 Object Initializers

An object initializer is specified using tivew keyword before the type name and an optional patemtist
after the type name. An object initializer is eqlént to a regular initializer of the formmNew T(A), whereT
is the type name amnxdis the supplied formal parameter list, if any. So

Module TestModule
Sub Main(Q)
Dim x As New Test(10)
End Sub
End ModuTe

is equivalent to
Module TestModule
Sub Main(Q)
Dim x As Test = New Test(10)
End Sub
End ModuTle

The parenthesis in an object initializer is alwaysrpreted as the parameters to the constructbnawver as
array type modifiers.

9.6.3.3 Array-Size Initializers

An array-size initializer is a modifier on the naofeahe variable that gives a set of dimension ufyoends
denoted by expressions. The upper bound expressiosisbe classified as values and must be impficitl
convertible tarnteger. The set of upper bounds is equivalent to a vhrititializer of an array-creation
expression with the given upper bounds. The nurobdimensions of the array type is inferred frora thray
size initializer. So

Module Test
Sub Main(Q)
Dim x(5, 10) As Integer
End Sub
End ModuTe
is equivalent to
Module Test
Sub Main(Q)
Dim x As T(,) = new Integer(5, 10) {}
Copyright © Microsoft Corporation 2005. All rightsserved. 157

Visual Basic Language Specification

End Sub
End Module
All upper bounds must be equal to or greater thaand all dimensions must have an upper boundfigzedf

the element type of the array being initializeddslf an array type, the array-type modifiers gahte right of
the array-size initializer. For example

Module Test
Sub Main(Q)
Dim x(5,10)(,,) As Integer
End Sub
End ModuTe
declares a local variablewhose type is a two-dimensional array of threeettigional arrays afnteger,

initialized to an array with bounds 0f . 5 in the first dimension an@l. . 10 in the second dimension. It is not
possible to use an array size initializer to itigethe elements of a variable whose type is eayasf arrays.

A variable declaration may not include both anasiae initializer and an array type modifier ontigpe or an
array-element initializer.

ArraySzelnitializationModifier ::=
(BoundList) [ArrayTypeModifiers]

BoundList::=
Expression |
0 To Expression |
UpperBoundList , Expression

9.6.3.4 Array-Element Initializers

An array-element initializer consists of a sequenfoeariable initializers, enclosed by curly bra¢g$ and
separated by commas. Each variable initializeniexression or, in the case of a multidimensianaly, a
nested array-element initializer. Each expressiastrbe classified as a value. Array-element indess may
also be used in array-creation expressions.

The type of expression or statement in which aayagtement initializer is used determines the typhe array
being initialized. In an array-creation expressibte, array type immediately precedes the initialirea
variable declaration, the array type is the typthefvariable being declared. When an array-elemérlizer

is used in a variable declaration, such as:

Private a As Integer() = { 0, 2, 4, 6, 8 }
it is simply shorthand for an equivalent array-tiGaexpression:

Private a As Integer() = New Integer() { 0, 2, 4, 6, 8 }
In an array-element initializer, the outermost mgstevel corresponds to the leftmost dimensiowl, e
innermost nesting level corresponds to the rightrdmsension. The initializer must have the same loem
levels of nesting as there are dimensions in tfeyaAll of the elements in the innermost nestiexel must be

implicitly convertible to the element type of theay. The number of elements in each nested ateagent
initializer must always be consistent with the Sz¢he other array-element initializers at the sdevel.

The following example creates a two-dimensionadyawith a length of five for the leftmost dimensiand a
length of two for the rightmost dimension:

Module Test
Sub Main()

158 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

Dim b As Integer(,) = _
{{o, 113, {2,3%}, {4,5},{6,7%} {8 911}
End Sub
End ModuTle
The example is equivalent to the following:
Module Test
Sub Main(Q)
Private b(4, 1) As Integer

b(0, 0) = 0: b(0, 1) =1
b(1, 0) = 2: b(1, 1 =3
b(2, 0) = 4: b(2, 1) =5
b(3, 0) = 6: b(3, 1) =7
b(4, 0) = 8: b(4, 1) =9
End Sub
End ModuTe

If the array-creation expression specifies the bswf the dimensions, the bounds must be speciSet)
constant expressions and the number of elemeatsygiarticular level must be the same as the $iteeo
corresponding dimension. If the bounds are unsigecithe length of each dimension is the numbelerhents
in the corresponding level of nesting.
Some valid and invalid examples follow:

' OK.

Private x() As Integer = New Integer(2) {0, 1, 2}

Error, Tlength/initializer mismatch.
Private y() As Integer = New Integer(2) {0, 1, 2, 3}

Here, the initializer foy is in error because the length and the numbeleaients in the initializer do not agree.

An empty array-element initializer (that is, onatthontains curly braces but no initializer listpiways valid
regardless of the number of dimensions of the atfalye size of the dimensions of the array bemgalized is
known in an array-creation expression, the empyaelement initializer represents an array insgtasfche
specified size where all the elements have beéalined to the element type's default value. & thmensions
of the array being initialized are not known, timepgy array-element initializer represents an amayance in
which all dimensions are size zero.

Because context is required to determine the t§a@ array initializer, it is not possible to usearay
initializer in an expression context. Therefore tbllowing code is not valid:

Module Test
sub F(Byval a() As Integer)

End Sub

Sub Main(Q)
' Error, can't use without array creation expression.
F({1, 2, 3D

Copyright © Microsoft Corporation 2005. All rightsserved. 159

Visual Basic Language Specification

' OK.
F(New Integer() {1, 2, 3})
End Sub
End Module

At run time, the expressions in an array-elemeitielizer are evaluated in textual order from leftright.
ArrayElementlnitializer ::= { [VariablelnitializerList] }

VariablelnitializerList ::=
Variablelnitializer |
VariablelnitializerList , Variablelnitializer

Variablelnitializer ::= Expression | ArrayElementlnitializer

9.6.4 System.MarshalByRefObject Classes

Classes that derive from the classtem.MarshalByRefObject are marshaled across context boundaries
using proxies (that is, by reference) rather thmaugh copying (that is, by value). This means #minstance
of such a class may not be a true instance buwgadsnay just be a stub that marshals variable sesasd
method calls across a context boundary.

As a result, it is not possible to create a refeedn the storage location of variables definedueh classes.
This means that variables typed as classes defriggtusystem.MarshalByRefobject cannot be passed to
reference parameters, and methods and variabiesiables typed as value types may not be accesstead,
Visual Basic treats variables defined on such ekss if they were properties (since the restristire the
same on properties).

There is one exception to this rule: a member ioitptior explicitly qualified withme is exempt from the above
restrictions, becausee is always guaranteed to be an actual object, poby.

9.7 Properties

Properties are a natural extension of variables; both areetamembers with associated types, and the syntax
for accessing variables and properties is the sbimike variables, however, properties do not dersbbrage
locations. Instead, properties hageessors, which specify the statements to execute in cr@leead or write
their values.

Properties are defined with property declaratidme first part of a property declaration resembldield
declaration. The second part includesea accessor and/orset accessor. In the example below, Buxton
class defines aaption property.

Public Class Button
Private captionvalue As String

Public Property Caption() As String
Get
Return captionvalue
End Get

Set (Byval value As String)
captionvalue = value

160 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

Repaint()
End Set
End Property
End Class
Based on theutton class above, the following is an example of usitn@€aption property:
Dim okButton As Button = New Button()

okButton.Caption = "OK" ' Invokes Set accessor.
Dim s As String = okButton.Caption ' Invokes Get accessor.

Here, theset accessor is invoked by assigning a value to thpeasty, and th&et accessor is invoked by
referencing the property in an expression.

If no type is specified for a property and strietrantics are being used, a compile-time error ggaherwise
the type of the property is implicitiybject or the type of the property's type character. dpprty declaration
may contain either @aet accessor, which retrieves the value of the prgpaget accessor, which stores the
value of the property, or both. Because a proganpficitly declares methods, a property may be aesd with
the same modifiers as a method. If the propertieisied in an interface or defined with testoverride
modifier, the property body and tEad construct must be omitted; otherwise, a compiteeterror occurs.

The index parameter list makes up the signatutheoproperty, so properties may be overloaded dexin
parameters but not on the type of the property.ifitiex parameter list is the same as for a regn&thod.
However, none of the parameters may be modified thieByref modifier and none of them may be named
value (which is reserved for the implicit value parametetheset accessor).

A property may be declared as follows:

» If the property specifies no property type modifitne property must have botlgat accessor andset
accessor. The property is said to be a read-writpgnty.

» If the property specifies ttreadon1y maodifier, the property must havesat accessor and may not have a
Set accessor. The property is said to be read-onlgegsty. It is a compile-time error for a read-only
property to be the target of an assignment.

» If the property specifies theriteonTy modifier, the property must havesat accessor and may not have
aGet accessor. The property is said to be write-onbpprty. It is a compile-time error to reference a
write-only property in an expression except astéinget of an assignment or as an argument to aotheth

TheGet andset accessors of a property are not distinct memia@idjt is not possible to declare the accessors
of a property separately. The following examplesioet declare a single read-write property. Raihdeclares
two properties with the same name, one read-ordyose write-only:

Class A
Private namevalue As String

' Error, contains a duplicate member name.
Public Readonly Property Name() As String
Get
Return namevalue
End Get
End Property

Copyright © Microsoft Corporation 2005. All rightsserved. 161

Visual Basic Language Specification

Error, contains a duplicate member name.
Public writeonly Property Name() As String
Set (Byval value As String)
namevalue = value
End Set
End Property
End Class

Since two members declared in the same class chametthe same name, the example causes a comple-t
error.

By default, the accessibility of a propertgst andset accessors is the same as the accessibility of the
property itself. However, theet andset accessors can also specify accessibility sepgriateh the property.
In that case, the accessibility of an accessor brighe same or more restrictive than the accdissiti the
property. At least one of the accessors must Ha/edme accessibility as the property. Access tgmes
considered more or less restrictive as follows:

* Private is more restrictive thapub1ic, Protected Friend, Protected, orFriend.

* Friend is more restrictive thaProtected Friend or Public.

* Protected is more restrictive thaProtected Friend or PubTic.

* Protected Friend is more restrictive thapub1ic.

When one of a property’s accessors is accessilbltbwther one is not, the property is treateif iasvas read-

only or write-only. For example:

Class A_
Public Property P() As Integer
Get

End Get
Private Set (Byval value As Integer)
End Set
End Property
End Class

Module Test
Sub Main(Q)
Dim a As A = New AQ

Error: A.P 1is read-only in this context.
a.p = 10
End Sub
End Module

When a derived type shadows a property, the depveplerty hides the shadowed property with resgebbth
reading and writing. In the following example, theroperty inB hides ther property ina with respect to both
reading and writing:

Class A
Public writeonly Property P() As Integer
Set (Byval value As Integer)
End Set

162 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

End Property
End Class

Class B
Inherits A

Public shadows Readonly Property P() As Integer
Get
End Get
End Property
End Class

Module Test
Sub Main()
Dim X As B = New B

B.P = 10 ' Error, B.P is read-only.
End Sub
End Module

The accessibility domain of the return type or paeter types must be the same as or a supersed of th
accessibility domain of the property itself. A peoty may only have onget accessor and orget accessor.

Except for differences in declaration and invoaasgntaxoverridable, NotOoverridable, Overrides,
Mustoverride, andMustInherit properties behave exactly likeerridable, Notoverridable,
overrides, MustOverride, andMustInherit methods. When a property is overridden, the odiergi
property must be of the same type (read-write,-aadg, write-only). Anoverridable property cannot
contain aPrivate accessor.

In the following exampl& is anoverridable read-only propertyy is anoverridable read-write property,
andz is aMustoverride read-write property

MustInherit Class A
Private y As Integer

Public overridable Readonly Property X() As Integer
Get
Return 0
End Get
End Property

Public overridable Property Y() As Integer
Get
Return vy
End Get

Copyright © Microsoft Corporation 2005. All rightsserved. 163

Visual Basic Language Specification

Set (Byval value As Integer)
y = value
End Set
End Property

Public Mustoverride Property z() As Integer
End Class

Because isMustOverride, the containing class must be declaredustInherit.

By contrast, a class that derives from class shown below:
Class B
Inherits A

Private zvalue As Integer

Public overrides Readonly Property X() As Integer
Get
Return MyBase.X + 1
End Get
End Property

Public overrides Property Y() As Integer
Get
Return MyBase.Y
End Get
Set (Byval value As Integer)
If value < 0 Then

MyBase.Y = 0
Else

MyBase.Y = Value
End If

End Set
End Property

Public overrides Property z() As Integer
Get
Return zvalue
End Get
Set (Byval value As Integer)
zvalue = value
End Set

164 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

End Property
End Class

Here, the declarations of propertiesy, andz override the base properties. Each property detabar exactly
matches the accessibility modifiers, type, and nafrite corresponding inherited property. Tet accessor
of propertyx and theset accessor of propertyuse thevyBase keyword to access the inherited properties.
The declaration of proper/overrides thelustoverride property — thus, there are no outstanding
Mustoverride members in class, ands is permitted to be a regular class.

Properties can be used to delay initialization césource until the moment it is first referendeok. example:
Imports System.IO

Public Class ConsoleStreams
Private Shared reader As TextReader
Private Shared writer As TextWriter
Private Shared errors As TextWriter

Public shared Readonly Property [In]() As TextReader
Get
If reader Is Nothing Then
reader = New StreamReader(File.OpenStandardInput())
End If
Return reader
End Get
End Property

Public shared Readonly Property out() As Textwriter
Get
If writer Is Nothing Then
writer = New Streamwriter(File.OpenStandardoutput())
End If
Return writer
End Get
End Property

Public shared Readonly Property [Error]() As TextwWriter
Get
If errors Is Nothing Then
errors = New Streamwriter(File.OpenStandarderror())
End If
Return errors
End Get
End Property

Copyright © Microsoft Corporation 2005. All rightsserved. 165

Visual Basic Language Specification
End Class

TheconsoleStreams class contains three propertigs, out, anderror, that represent the standard input,
output, and error devices, respectively. By exppdmese members as properties,dbesoleStreams class
can delay their initialization until they are adtyaused. For example, upon first referencing dla& property,

as inconsoleStreams.out.writeLine("hello, world"), the underlyingrextwriter for the output
device is created. But if the application makeseference to th&n anderror properties, then no objects are
created for those devices.

PropertyMember Declaration ::=
RegularPropertyMemberDeclaration |
MustOverridePropertyMember Declaration

Regular PropertyMemberDeclaration ::=
[Attributes] [PropertyModifier+] Property FunctionSgnature [ImplementsClause]
LineTerminator
PropertyAccessor Declar ation+
End Property SatementTerminator

MustOverridePropertyMember Declaration ::=
[Attributes] [MustOverridePropertyModifier+] Property FunctionSgnature [ImplementsClause |
SatementTerminator

InterfacePropertyMemberDeclaration ::=
[Attributes] [InterfacePropertyModifier+] Property FunctionSgnature SatementTerminator

PropertyModifier ::= ProcedureModifier | befault | Readonly | Writeonly
MustOverridePropertyModifier ::= PropertyModifier | MustOverride

InterfacePropertyModifier ::=
Shadows |
overloads
Default

Readonly |
writeonly

PropertyAccessor Declaration ::= PropertyGetDeclaration | PropertySetDeclaration

9.7.1 Get Accessor Declarations

A Get accessor (getter) is declared by using a progertydeclaration. A propertget declaration consists of
the keywordset followed by a statement block. Given a propertynadp, aGet accessor declaration
implicitly declares a method with the namet_pP with the same modifiers, type, and parameteaksthe
property. If the type contains a declaration withtthame, a compile-time error results, but thdiaitp
declaration is ignored for the purposes of nameibmn

A special local variable, which is implicitly dectal in theGet accessor body's declaration space with the same
name as the property, represents the return véline @roperty. The local variable has special nasselution
semantics when used in expressions. If the logédbig is used in a context that expects an exjmeslat is
classified as a method group, such as an invocasipression, then the name resolves to the funcaitbrer

than to the local variable. For example:

Readonly Property F(Byval i As Integer) As Integer
Get
If i = 0 Then
F=1 ' Sets the return value.

166 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.
Else
F=F(- 1) ' Recursive call.
End If
End Get
End Property
The use of parentheses can cause ambiguous gisiédiach as (1) whereF is a property whose type is a one-

dimensional array). In all ambiguous situations, tlame resolves to the property rather than thad l@riable.
For example:

Readonly Property F(Byval i As Integer) As Integer()
Get
If i = 0 Then

F = new Integer(3) {1, 2, 3}
Else

F=F(- 1) " Recursive call, not index.
End If

End Get
End Property

When control flow leaves theet accessor body, the value of the local variabpmssed back to the invocation
expression. Because invokingsat accessor is conceptually equivalent to readingéthiee of a variable, it is
considered bad programming style @t accessors to have observable side effects, atdtad in the
following example:

Class Counter
Private value As Integer

Public Readonly Property Nextvalue() As Integer

Get
value += 1
Return value
End Get
End Property
End Class

The value of thelextvaTlue property depends on the number of times the ptppeais previously been
accessed. Thus, accessing the property produagssarvable side effect, and the property shoulgausbe
implemented as a method.

The "no side effects" convention feet accessors does not mean that accessors should always be written
to simply return values stored in variables. Indeed accessors often compute the value of a property by
accessing multiple variables or invoking methodswelver, a properly designeét accessor performs no
actions that cause observable changes in theddttite object.

Note Get accessors have the same restriction on line plaethat subroutines have. The beginning
statement, end statement and block must all agtehe beginning of a logical line.

PropertyGetDeclaration ::=
[Attributes] [AccessModifier] Get LineTerminator

Copyright © Microsoft Corporation 2005. All rightsserved. 167

Visual Basic Language Specification

[Block]
End Get SatementTerminator

9.7.2 Set Accessor Declarations

A set accessor (setter) is declared by using a progettgeclaration. A property set declaration coasithe
keywordset, an optional parameter list, and a statement biGoken a property namey a setter declaration
implicitly declares a method with the namet_P with the same modifiers and parameter list aptbperty. If
the type contains a declaration with that nameyrapile-time error results, but the implicit deckioa is
ignored for the purposes of name binding.

If a parameter list is specified, it must have or@mber, that member must have no modifiers exe@pd1,
and its type must be the same as the type of thigefly. The parameter represents the property \ading set.
If the parameter is omitted, a parameter nawekle is implicitly declared.

Note Set accessors have the same restriction on line plagethat subroutines have. The beginning
statement, end statement and block must all agtehe beginning of a logical line.

PropertySetDeclaration ::=
[Attributes] [AccessModifier] set [(ParameterList)] LineTerminator
[Block]
End Set StatementTerminator

9.7.3 Default Properties

A property that specifies the modifieefault is called adefault property. Any type that allows properties may
have a default property, including interfaces. @b&ault property may be referenced without havingualify
the instance with the name of the property. Thivgrga class

Class Test
PubTic Default ReadoOnly Property Item(Byval i As Integer) As Integer
Get
Return i
End Get
End Property
End Class
the code
Module TestModule
Sub Main(Q)

Dim x As Test = New Test()
Dim y As Integer

y = x(10)
End Sub
End ModuTe
is equivalent to
Module TestModule
Sub Main(Q)
Dim x As Test = New Test()

168 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

Dim y As Integer

y = x.Item(10)
End Sub
End Module
Once a property is declaredfault, all of the properties overloaded on that nam#éninheritance hierarchy
become the default property, whether they have deelarebefault or not. Declaring a propertefault
in a derived class when the base class declarethaltproperty by another name does not requiyeodmer

modifiers such ashadows oroverrides. This is because the default property has noiijemt signature and
so cannot be shadowed or overloaded. For example:

Class Base
PubTlic Readonly Default Property Item(Byval i As Integer) As Integer
Get
console.writeLine("Base = " & 1)
End Get
End Property
End Class

Class Derived
Inherits Base
' This hides Item, but does not change the default property.
Public shadows Readonly Property Item(Byval i As Integer) As Integer
Get
console.writeLine("Derived = " & 1)
End Get
End Property
End Class

Class MorebDerived
Inherits Derived

This declares a new default property, but not Item.
' This does not need to be declared Shadows
Public Readonly Default Property Vvalue(Byval i As Integer) As Integer
Get
console.writeLine("MoreDerived = " & 1)
End Get
End Property

End Class

Copyright © Microsoft Corporation 2005. All rightsserved. 169

Visual Basic Language Specification
Module Test
Sub Main()
Dim x As MoreDerived = New MoreDerived()
Dim y As Integer

Dim z As Derived = x
y = x(10) ' calls MoreDerived.value.
y = x.Item(10) ' calls Derived.Item
y = z(10) ' calls Base.Item
End Sub
End Module

This program will produce the output:

MoreDerived = 10

Derived = 10

Base = 10
All default properties declared within a type mhave the same name and, for clarity, must speluéfy t
Default modifier. Because a default property with no ingexameters would cause an ambiguous situation
when assigning instances of the containing clasfsuit properties must have index parameters. Eurtore, if
one property overloaded on a particular name iredutieDefault modifier, all properties overloaded on that

name must specify it. Default properties may noskered, and at least one accessor of the property must no
bePrivate.

9.8 Operators

Operators are methods that define the meaning of an existingal Basic operator for the containing class.
When the operator is applied to the class in amesgmon, the operator is compiled into a call ®dperator
method defined in the class. Defining an operaipafclass is also known egerloading the operator. It is not
possible to overload an operator that already &xistpractice, this primarily applies to conversimperators.
For example, it is not possible to overload theveosion from a derived class to a base class:

Class Base
End Class

Class Derived
]

Error: Cannot redefine conversion from Derived to Base
Public Shared widening Operator CType(Byval s As Derived) As Base

End Operator
End Class

Operators can also be overloaded in the commore sdérike word:
Class Base
Public Shared widening Operator CType(Byval b As Base) As Integer

End Operator

170 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

Public Shared Narrowing Operator CType(Byval i As Integer) As Base

End Operator
End Class

Operator declarations do not explicitly add nansethé containing type’s declaration space, howéwey do
implicitly declare a corresponding method startivith the characters “op_". The following sectioist the
corresponding method names with each operator.

There are three classes of operators that canfinedieunary operators, binary operators and caioBr
operators. All operator declarations share cergsirictions:

» Operator declarations must alwaysHub11ic andshared. Thepub1ic modifier can be omitted in
contexts where the modifier will be assumed.

* The parameters of an operator cannot be deckyeef, Optional or ParamArray.
* The type of at least one of the operands or themetalue must be the type that contains the operat

* There is no function return variable defined foegors. Therefore, ttreturn statement must be used to
return values from an operator body.

The precedence and associativity of an operataratdre modified by an operator declaration.

Note Operators have the same restriction on linegpient that subroutines have. The beginning
statement, end statement and block must all agtehe beginning of a logical line.

OperatorDeclaration ::=
UnaryOperatorDeclaration |
BinaryOperatorDeclaration |
ConversionOperator Declaration

OperatorModifier ::= Public | Shared | overloads | Sshadows
Operand ::= [Byval] ldentifier [As TypeName]

9.8.1 Unary Operators
The following unary operators can be overloaded:

* The unary plus operater(corresponding methodp_unarypPlus)
* The unary minus operater(corresponding methodp_unaryNegation)
* The logicalNot operator (corresponding methaghi_onesComplement)

Note The .NET Framework distinguishes between overlggbitwise and logical operators, while
Visual Basic does not. Overloading tiet operator will overload only the bitwise operatmm the
perspective of other languages that make thisndisbin.

 TheIsTrue andisFalse operators (corresponding methods._True, op_False)

All overloaded unary operators must take a singlaqmeter of the containing type and may returntgpe,
except forIsTrue andisFalse, which must returBoolean. If the containing type is a generic type, theetyp
parameters must match the containing type’s typanpeters. For example,

Structure Complex
Public Shared operator +(Byval v As Complex) As Complex

Copyright © Microsoft Corporation 2005. All rightsserved. 171

Visual Basic Language Specification

Return v
End Operator
End Structure

If a type overloads one akTrue or IsFalse, then it must overload the other as well. If cohe is
overloaded, a compile-time error results.

Note IsTrue andIsFalse are notreserved words.

UnaryOperatorDeclaration ::=
[Attributes] [OperatorModifier+] operator OverloadableUnaryOperator (Operand)
[As [Attributes] TypeName] LineTerminator
[Block]
End Operator SatementTerminator

OverloadableUnaryOperator ::= + | - | Not | IsTrue | IsFalse

9.8.2 Binary Operators
The following binary operators can be overloaded:

* The addition+, subtraction-, multiplication*, division/, integral division\, modulomod and
exponentiatiom operators (corresponding methog,_Addition, op_Subtraction, op_Multiply,
op_Division, op_IntegerDivision, op_Modulus, op_Exponent)

« The relational operatoes <>, <, >, <=, >= (corresponding methodsp_Equality, op_Inequality,
op_LessThan, op_GreaterThan, op_LessThanOreEqual, op_GreaterThanorequal)

Note While the equality operator can be overloadedagsgnment operator (used only in assignment
statements) cannot be overloaded.

* ThelLike operator (corresponding methagh_L1ke)
» The concatenation opera®icorresponding methodp_Concatenate)

* The logicaland, or andxor operators (corresponding methodg:_BitwiseAnd, op_Bitwiseor,
op_Exclusiveor)

Note The .NET Framework distinguishes between overlggbitwise and logical operators, while
Visual Basic does not. Overloading thed, or andxor operators will overload only the bitwise
operators from the perspective of other languagatsnhake this distinction.

» The shift operators< and>> (corresponding methodsp_Leftshift, op_Rightshift)

Note The .NET Framework distinguishes between overlugadigned and unsigned shift operators,
while Visual Basic does not. Overloading theand>> operators will overload only the signed
operators from the perspective of other languagatsnhake this distinction.

All overloaded binary operators must take the dairtg type as one of the parameters. If the comgitype is
a generic type, the type parameters must matcbahigining type’s type parameters. The shift opesafurther
restrict this rule to require the first parametebé of the containing type; the second parametst always be
of typeInteger.

The following binary operators must be declaregdirs:
e Operator= and operatog>

¢ Operator> and operatog

» Operator>= and operatok=

172 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

If one of the pair is declared, then the other nalst be declared with matching parameter andnéyges, or a
compile-time error will result.

Annotation

The purpose of requiring paired declarations daftiehal operators is to try and ensure at leasnamm level
of logical consistency in overloaded operators.

In contrast to the relational operators, overlogdioth the division and integral division operatsrstrongly
discouraged, although not an error. Because atinguges may not distinguish between division atetjral
division as separate operators, defining an intetjvésion overload will automatically define a ndgr division
operator (usable only from other languages) thitoail the integral division operator.

Annotation

In general, the two types of division should bereht distinct: a type that supports division igheir integral (in
which case it should suppox} or not (in which case it should suppg)t We considered making it an error to
define both operators, but because their langudge®t generally distinguish between two typesiastn the
way Visual Basic does, we felt it was safest tovalthe practice but strongly discourage it.

Compound assignment operators cannot be overladicedly. Instead, when the corresponding binargrafor
is overloaded, the compound assignment operatbusel the overloaded operator. For example:
Structure Complex
Public Shared oOperator +(Byval x As Complex, Byval y As Complex) _
As CompTlex

End Operator
End Structure

Module Test
Sub Main(Q)
Dim cl, c2 As Complex
' calls the overloaded + operator
cl += c2
End Sub
End Module

BinaryOperatorDeclaration ::=
[Attributes] [OperatorModifier+] operator OverloadableBinaryOperator
(Operand , Operand) [As [Attributes | TypeName | LineTerminator
[Block]
End Operator SatementTerminator

OverloadableBinaryOperator ::=
+|-1*1/]1\|&]|Like |Mod | And | Or | Xor |
A< > =< |>]<]|>=|<=

Copyright © Microsoft Corporation 2005. All rightsserved. 173

Visual Basic Language Specification

9.8.3 Conversion Operators

Conversion operators define new conversions betwg®s. These new conversions are calkstd-defined
conversions. A conversion operator converts from a source,tipicated by the parameter type of the
conversion operator, to a target type, indicatetheyreturn type of the conversion operator. Casivas must
be classified as either widening or narrowing. Agrsion operator declaration that includesitheéening
keyword introduces a user-defined widening coneargtorresponding methodp_Imp1icit). A conversion
operator declaration that includes e rowing keyword introduces a user-defined narrowing cosiear
(corresponding methodp_Exp1icit).

In general, user-defined widening conversions shbeldesigned to never throw exceptions and neser |
information. If a user-defined conversion can caeseptions (for example, because the source argLimeut
of range) or loss of information (such as discagdiigh-order bits), then that conversion shouldi&ined as a
narrowing conversion. In the example:

Structure Digit
Dim value As Byte

PubTic Sub New Digit(Byval value As Byte)
if value < 0 OrElse value > 9 Then Throw New ArgumentException()
Me.value = value

End Sub

Public Shared widening Operator CType(Byval d As Digit) As Byte
Return d.value
End Operator

PubTic shared Narrowing Operator CType(b As Byte) As Digit
Return New Digit(b)
End Operator
End Structure

the conversion frorpigit toByte is a widening conversion because it never throwggions or loses
information, but the conversion froByte toDig1it is a narrowing conversion sinbégit can only represent
a subset of the possible values @fyae.

Unlike all other type members that can be overldatiee signature of a conversion operator includegarget
type of the conversion. This is the only type menfbewhich the return type participates in thensiture. The
widening or narrowing classification of a conversaperator, however, is not part of the operateigsature.
Thus, a class or structure cannot declare bottdaning conversion operator and a narrowing coneersi
operator with the same source and target types.

A user-defined conversion operator must convelneeito or from the containing type — for examplés i

possible for a class to define a conversion fromto Integer and fromInteger to C, but not fromrnteger

to Boolean. If the containing type is a generic type, thestpgarameters must match the containing type’s type
parameters. Also, it is not possible to redefinenénmsic (i.e. non-user-defined) conversion. A®sault, a type
cannot declare a conversion where:

» The source type and the destination type are tine sa

» Both the source type and the destination type ar¢he type that defines the conversion operator.

174 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

* The source type or the destination type is anfatertype.
» The source type and destination types are relgtégsheritance (includingbject).

ConversionOperator Declaration ::=
[Attributes] [ConversionOperatorModifier+ | operator CType (Operand)
[As [Attributes] TypeName] LineTerminator
[Block]
End Operator SatementTerminator

ConversionOperatorModifier ::= widening | Narrowing | ConversionModifier

Copyright © Microsoft Corporation 2005. All rightsserved. 175

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

10. Statements

Statements represent executable code.

A method is executed by first initializing all aéiparameters to their correct values and initraiall of its
local variables to the default value of their typ&fier parameter and local variable initializati¢ine method
body block is executed. After the method block Imesn executed, execution returns to the calldiefiethod.

Satement ::=
Label DeclarationSatement |
Local DeclarationSatement |
WithSatement |
SyncLockSatement |
EventSatement |
AssignmentSatement |
InvocationStatement |
Conditional Satement |
LoopSatement |
ErrorHandlingSatement |
BranchSatement |
ArrayHandlingStatement |
UsingStatement

10.1 Blocks and Labels

A group of executable statements is called a setéivlock. Execution of a statement block begirth wie
first statement in the block. Once a statementleas executed, the next statement in lexical asdexecuted,
unless a statement transfers execution elsewhene @xception occurs.

Within a statement block, the division of statersemt logical lines is not significant with the egtien of label
declaration statements. A label is an identifiat identifies a particular position within the staient block that
can be used as the target of a branch statemédntisacTo.

Label declaration statements must appear at thariag of a logical line and labels may be eitheidentifier
or an integer literal. Because both label declamagtatements and invocation statements can carisistingle
identifier, a single identifier at the beginningaofocal line is always considered a label dedlanattatement.
Label declaration statements must always be foldblayea colon, even if no statements follow on thes
logical line.

Labels have their own declaration space and dinterfere with other identifiers. The following exale is
valid and uses the name variaklboth as a parameter and as a label.

Function F(Byval x As Integer) As Integer
If x >= 0 Then
GoTo X
End If

X = =X

Return x

Copyright © Microsoft Corporation 2005. All rightsserved. 177

Visual Basic Language Specification
End Function
The scope of a label is the body of the methodainimy it.

For the sake of readability, statement producttbasinvolve multiple substatements are treatea siagle
production in this specification, even though thbstatements may each be by themselves on a ldbeded

Block ::= [Satementst+ |
LabelDeclarationSatement ::= LabelName :
LabelName ::= Identifier | IntLiteral

Satements ::=
[Satement | |
Satements : [Statement]

10.1.1 Local Variables and Parameters

A method invocation creates a copy, specific td itneocation, of the local variables and parametétse
method. A local variable or parameter comes inisterce when control enters the method body thataaws
the local variable declaration or parameter detitaraand ceases to exist when control leaves thbhadeAll
locals are initialized to their type's default vallLocal variables and parameters are always pyllocessible.
It is an error to refer to a local variable in &ttsl position that precedes its declaration, afdlowing
example illustrates:

Class A
Private i As Integer = 0

sub FQ
i=1
Dim
i=2

End Sub

—

As Integer ' Error, use precedes declaration.

sub GQO
Dim a As Integer

Il
QO

Dim b As Integer This is valid.

End Sub
End Class

In theF method above, the first assignment tgpecifically does not refer to the field declamethe outer
scope. Rather, it refers to the local variable, iaigdin error because it textually precedes tbelaration of the
variable. In thes method, a subsequent variable declaration redeaddcal variable declared in an earlier
variable declaration within the same local variat#elaration.

Each block in a method creates a declaration djpadecal variables. Names are introduced into this
declaration space through local variable declamatin the method body and through the parameterflihe
method, which introduces names into the outermioskis declaration space. Blocks do not allow skadg of
names through nesting: once a name has been deirlaadlock, the name may not be redeclared imasyed
blocks.

178 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

Thus, in the following example, ttreandG methods are in error because the narisedeclared in the outer
block and cannot be redeclared in the inner blblckvever, thed andI methods are valid because the tit®
are declared in separate non-nested blocks.

Class A
sub FQ
Dim i As Integer =0
If True Then
Dim i As Integer =1
End If
End Sub

Ssub GO
If True Then
Dim i As Integer = 0

End If
Dim i As Integer = 1
End Sub
Sub HO
If True Then
Dim i As Integer =0
End If
If True Then
Dim i As Integer =1
End If
End Sub
Ssub 10

Dim i As Integer

For i = 0 To 9
HO

Next I

Dim i As Integer
For i = 0 To 9

HO
Next I
End Sub
End Class

When the method is a function, a special localakdei is implicitly declared in the method body'sldeation
space with the same name as the method represémtimgturn value of the function. The local valgalas

Copyright © Microsoft Corporation 2005. All rightsserved. 179

Visual Basic Language Specification

special name resolution semantics when used iresgjans. If the local variable is used in a contlext
expects an expression classified as a method gsoep,as an invocation expression, then the nasetves to
the function rather than to the local variable. &xample:

Function F(Byval i As Integer) As Integer
If i = 0 Then

F=1 ' Sets the return value.
Else

F=F@G - 1) ' Recursive call.
End If

End Function

The use of parentheses can cause ambiguous situéiach as (1), whereF is a function whose return type
is a one-dimensional array); in all ambiguous situe, the name resolves to the function rather tha local
variable. For example:

Function F(Byval i As Integer) As Integer()
If i = 0 Then
F = new Integer(3) {1, 2, 3}
Else
F=F(@ - 1) ' Recursive call, not an index.
End If
End Function

When control flow leaves the method body, the valiune local variable is passed back to the intiona
expression. If the method is a subroutine, themmisuch implicit local variable, and control simpéturns to
the invocation expression.

10.2 Local Declaration Statements

A local declaration statement declares a new leaahble, local constant, or static varialllecal variables and
local constants are equivalent to instance variables and conssaojsed to the method and are declared in the
same wayStatic variables are similar tcshared variables and are declared usingsheatic modifier.

Static variables are locals that retain their vaaess invocations of the method. Static variatéézsared
within non-shared methods are per instance: eathrine of the type that contains the method hasiitscopy
of the static variable. Static variables declarétiiw Sshared methods are per type; there is only one copy of
the static variable for all instances. While locatiables are initialized to their type's defawdtue upon each
entry into the method, static variables are onityalized to their type's default value when thpeayor type
instance is initialized. Static variables may netdeclared in structures or generic methods.

Local variables, local constants, and static véemhblways have public accessibility and may necgp
accessibility modifiers. If no type is specified afocal declaration statement and strict semaatiedeing
used, a compile-time error occurs. Otherwise tpe tyf the property is implicitlpbject or the type of the
property's type character.

Variable initializers on local declaration statertsesre equivalent to assignment statements pladed gextual
location of the declaration. Thus, if executionrmiaes over the local declaration statement, thalviar
initializer is not executed. If the local declaoatistatement is executed more than once, the \eimbalizer is
executed an equal number of times. Static varialmigsexecute their initializer the first time.dh exception
occurs while initializing a static variable, thatit variable is considered initialized with thdaidt value of the
static variable's type.

180 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

The following example shows the use of initializers
Module Test
Ssub FQ
Static x As Integer = 5

Console.WriteLine("Static variable x = " & x)
X +=1
End Sub

Sub Main(Q)
Dim i As Integer

For i = 1 to 3
FO

Next i

Tabel:
Dim y As Integer = 8

If i > 0 Then
console.wWriteLine("Local variable y = " & y)
y =1
i-=1
Goto Tlabel
End If
End Sub
End ModuTle

This program prints:

Static variable x = 5
Static variable x = 6
Static variable x = 7

Local variable y = 8
Local variable y = 8
Local variable y = 8

Initializers on static locals are thread-safe aradgeted against exceptions during initializatibran exception
occurs during a static local initializer, the stdtical will have its default value and not beialized. A static
local initializer

Module Test
sub FO

Copyright © Microsoft Corporation 2005. All rightsserved. 181

Visual Basic Language Specification

Static x As Integer = 5
End Sub
End Module
is equivalent to
Module Test
Class InitFlag
PubTic State As Short
End Class

Private xInitFlag As InitFlag = New InitFlag(Q)

Ssub FQ
Dim x As Integer

If xInitFlag.State <> 1 Then
Monitor.Enter(xInitFlag)

Try
If xInitFlag.State = 0 Then
xInitFlag.State = 2
X =5
Else If xInitFlag.State = 2 Then
Throw New IncompleteInitializationException()
End If
Finally
xInitFlag = 1
Monitor.Leave(xInitFlag)
End Try
End If
End Sub
End Module

Local variables, local constants, and static véembre scoped to the statement block in which déney
declared. Static variables are special in that theenes may only be used once throughout the engtbod.
For example, it is not valid to specify two statariable declarations with the same name evereyf ére in
different blocks.

Local DeclarationStatement ::= LocalModifier VariableDeclarators SatementTer minator
LocalModifier ::= Static | Dim | Const

10.2.1 Implicit Local Declarations

In addition to local declaration statements, la@alables can also be declared implicitly through.lA simple
name expression that uses a name that has notbekaned in the current method declares a locahbiar by
that name. For example:

182 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

Option Explicit off
Module Test
Sub Main()
x =10
y = 20
console.wWriteLine(x + y)
End Sub
End ModuTle

Implicit local declaration only occurs in expregsimntexts that can accept an expression classified
variable. The exception to this rule is that a laaiable may not be implicitly declared whensitthe target of
a function invocation expression, indexing expr@ssor a member access expression.

Implicit locals are treated as if they are declagthe beginning of the containing method. Thiasytare
always scoped to the entire method body. Implazitls are typed asbject if no type character was attached
to the variable name; otherwise the type of théabée is the type of the type character.

If explicit local declaration is specified by themapilation environment or byption Explicit, all local
variables must be explicitly declared and imph@tiable declaration is disallowed.

10.3 With Statement

A with statement allows multiple references to an exma'ssmembers without specifying the expression
multiple times. The expression must be classified &alue and is evaluated once, upon entry irtdolck.
Within thewi th statement block, a member access expressiontmrdicy access expression starting with a
period or an exclamation point is evaluated alsaiti th expression preceded it. For example:

Structure Test
Public x As Integer

Function F() As Integer
Return 10
End Sub
End Structure

Module TestModule
Sub Main()
Dim y As Test

with y
.x = 10
console.writeLine(.x)
X = .FO
End with
End Sub
End Module
It is invalid to branch into &i th statement block from outside of the block.
Copyright © Microsoft Corporation 2005. All rightsserved. 183

Visual Basic Language Specification

WithSatement ::=
with Expresson SatementTerminator
[Block]
End with SatementTerminator

10.4 SyncLock Statement

A syncLock statement allows statements to be synchronizexha@xpression, which ensures that multiple
threads of execution do not execute the same statsrat the same time. The expression must befddsss a
value and is evaluated once, upon entry to thekbMihen entering theyncLock block, theshared method
System.Threading.Monitor.Enter is called on the specified expression, which bdogitil the thread of
execution has an exclusive lock on the object netdiby the expression. The type of the expressian i
syncLock statement must be a reference type. For example:

Class Test
Private count As Integer = 0

Public Function Add() As Integer
SyncLock Me
count += 1
Add = count
End SyncLock
End Function

Public Function Subtract() As Integer
SyncLock Me
count -= 1
Subtract = count
End SyncLock
End Function
End Class

The example above synchronizes on the specifiariast of the claseest to ensure that no more than one
thread of execution can add or subtract from thentweariable at a time for a particular instance.

ThesyncLock block is implicitly contained by @ry statement whoseinally block calls theshared
methodsystem.Threading.Monitor.Exit on the expression. This ensures the lock is fesed when an
exception is thrown. As a result, it is invaliddanch into ayncLock block from outside of the block, and a
SyncLock block is treated as a single statement for thpqees oResume andResume Next. The above
example is equivalent to the following code:

Class Test
Private count As Integer = 0

Public Function Add() As Integer

Try
System.Threading.Monitor.Enter (Me)

184 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

count += 1
Add = count
Finally
System.Threading.Monitor.Exit(Me)
End Try
End Function

Public Function Subtract() As Integer
Try
System.Threading.Monitor.Enter (Me)

count -= 1
Subtract = count
Finally
System.Threading.Monitor.Exit(Me)
End Try
End Function
End Class

SyncLockStatement ::=
SyncLock Expression SatementTerminator
[Block]
End SyncLock SatementTerminator

10.5 Event Statements
TheRaiseEvent, AddHandTer, andrRemoveHandler statements raise events and handle events dyrimica
EventSatement ::=

Rai seEventStatement |

AddHandler Satement |
RemoveHandl er Satement

10.5.1 RaiseEvent Statement

A RaiseEvent statement notifies event handlers that a parti@uent has occurred. The simple name
expression in &aiseEvent statement is interpreted as a member lookupeoThus,RaiseEvent X is
interpreted as if it werRaiseEvent Me.x. The result of the expression must be classifeedraevent access
for an event defined in the class itself; evenfade on base types cannot be usedRaBseEvent statement.

TheRaiseEvent statement is processed as a call tartheke method of the event's delegate, using the
supplied parameters, if any. If the delegate’s &#@dmothing, no exception is thrown. If there are no
arguments, the parentheses may be omitted. Forpdeam

Class Raiser
Public Event Constructed(Byval Count As Integer)

Public Sub New()
Static CreationCount As Integer = 0

Copyright © Microsoft Corporation 2005. All rightsserved. 185

Visual Basic Language Specification

CreationCount += 1
RaiseEvent Constructed(CreationCount)
End Sub
End Class

Module Test
Private withEvents x As Raiser

Private Sub Constructed(Byval Count As Integer) Handles x.Constructed
console.WriteLine("Constructed instance #" & Count)
End Sub

Public sub Main()
X = New Raiser

Causes "Constructed instance #1" to be printed.

X = New Raiser Causes "Constructed instance #2" to be printed.
X = New Raiser ' Causes "Constructed instance #3" to be printed.
End Sub
End ModuTe

The clasRaiser above is equivalent to:
Class Raiser
Public Event Constructed(Byval Count As Integer)

Public Sub New()
Static CreationCount As Integer = 0
Dim TemporaryDelegate As ConstructedEventHandler

CreationCount += 1
' Use a temporary to avoid a race condition.
TemporaryDelegate = ConstructedEvent

If Not TemporaryDelegate Is Nothing Then
TemporaryDelegate.Invoke(CreationCount)
End If
End Sub
End Class

RaiseEventSatement ::= RaiseEvent ldentifierOrKeyword [([ArgumentList])]
SatementTerminator

186 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

10.5.2 AddHandler and RemoveHandler Statements

Although most event handlers are automatically ledakp throughvi thEvents variables, it may be necessary
to dynamically add and remove event handlers atimg AddHandTer andRemoveHandler statements do
this.

Each statement takes two arguments: the first asgtmust be an expression that is classified &veant
access and the second argument must be an exprdsatidgs classified as a value. The second argtisntype
must be the delegate type associated with the exxerss. For example:

Public Class Forml
Public Sub New()
' Add Buttonl_Click as an event handler for Buttonl's Click event.
AddHandTer Buttonl.Click, AddressOof Buttonl _Click
End Sub

Private Buttonl As Button = New Button()

Sub Buttonl_Click(sender As Object, e As EventArgs)
Console.writeLine("Buttonl was clicked!™)
End Sub

Public Sub Disconnect()
RemoveHandler Buttonl.Click, Addressof Buttonl_cClick
End Sub
End Class

Given an event, the statement calls the relevaid_E or remove_E method on the instance to add or
remove the delegate as a handler for the evens, The above code is equivalent to:

Public Class Forml
Public Sub New()
Buttonl.add_cClick(Addressof Buttonl_cCT1ick)
End Sub

Private Buttonl As Button = New Button()

Sub Buttonl_Click(sender As Object, e As EventArgs)
console.wWriteLine("Buttonl was clicked!™)
End Sub

PubTlic Sub Disconnect()
Buttonl.remove_Click(Addressof Buttonl_Click)
End Sub
End Class
AddHandler Satement ::= AddHandler Expression , Expression StatementTerminator

Copyright © Microsoft Corporation 2005. All rightsserved. 187

Visual Basic Language Specification

RemoveHandlerSatement ::= RemoveHandler Expression , Expression SatementTerminator

10.6 Assignment Statements
An assignment statement assigns the value of aie&sipn to a variable. There are several typessifament.
AssignmentSatement ::=

Regular AssignmentSatement |

CompoundAssignmentSatement |
MidAss gnmentStatement

10.6.1 Regular Assignment Statements

A simple assignment statement stores the resalh @xpression in a variable. The expression otethside of
the assignment operator must be classified asiablaor a property access, while the expressiothemight
side of the assignment operator must be classifiegl value. The type of the expression must bddithpl
convertible to the type of the variable or propextgess.

If the variable being assigned into is an arraynelet of a reference type, a run-time check wilpbgformed to
ensure that the expression is compatible with threygelement type. In the following example, thetla
assignment causesgstem.ArrayTypeMismatchException to be thrown, because an instance of
ArrayList cannot be stored in an element cftaring array.

Dim sa(1l0) As String

Dim oa As Object() = sa

oa(0) Nothing ' This is allowed.

oa(1l) = "Hello" ' This 1is allowed.

oa(2) New ArrayList() ' ArrayTypeMismatchException 1is thrown.

If the expression on the left side of the assigrtroperator is classified as a variable, then tisggament
statement stores the value in the variable. letkgression is classified as a property access thgeassignment
statement turns the property access into an iniacaf theset accessor of the property with the value
substituted for the value parameter. For example:

Module Test
Private Pvalue As Integer

Public Property P As Integer
Get
Return Pvalue
End Get

Set (Byval value As Integer)
Pvalue = value
End Set
End Property

Sub Main(Q)
' The following two lines are equivalent.
P =10

188 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.
set_P(10)
End Sub
End Module
If the associated instance expression of the Variabproperty access is typed as a value typadiutiassified
as a variable, a compile-time error occurs. Fongta:
Structure S
Public F As Integer
End Structure

Class C
Private Pvalue As S

Public Property P As S
Get
Return Pvalue
End Get

Set (Byval value As S)
Pvalue = value
End Set
End Property
End Class

Module Test
Sub Main(Q)
Dim ct As C = New CQ)
Dim rt As Object = new C()
' Compile-time error: ct.P not classified as variable.
ct.P.F = 10
' Run-time exception.
rt.P.F = 10
End Sub
End Module

Note The semantics of the assignment depend on pleeafythe variable or property to which it is being
assigned. If the variable to which it is being gsed is a value type, the assignment copies the\aflthe
expression into the variable. If the variable tdchtit is being assigned is a reference type, fsiggament
copies the reference, not the value itself, ineowriable. If the type of the variabledsject, the

assignment semantics are determined by whethemathe's type is a value type or a reference typerat
time.

Copyright © Microsoft Corporation 2005. All rightsserved. 189

Visual Basic Language Specification

Annotation

For intrinsic types such anteger andbate, reference and value assignment semantics asathe because
the types are immutable. As a result, the langimfee to use reference assignment on boxed sntrigpes as
an optimization. From a value perspective, theltésthe same.

Because the equals charactérig used both for assignment and for equalityeli® an ambiguity between a
simple assignment and an invocation statementuatsins such as = y.Tostring(). In all such cases, the
assignment statement takes precedence over thiétygparator. This means that the example expoasisi
interpreted ag = (y.Tostring()) rather than(x = y).ToSstring().

Regular AssignmentSatement ::= Expression = Expression SatementTerminator

10.6.2 Compound Assignment Statements

A compound assignment statement takes the fornv OP= E (whereOP is a valid binary operator). The
expression on the left side of the assignment ogenaust be classified as a variable or propertgess, while
the expression on the right side of the assignmpatator must be classified as a value. The congoun
assignment statement is equivalent to the statevhery OP E with the difference that the variable on the left
side of the compound assignment operator is ordjuated once. The following example demonstratiss th
difference:

Module Test
Function GetIndex() As Integer
console.WriteLine("Getting index")
Return 1
End Function

Sub Main()
Dim a(2) As Integer

console.WriteLine("SimpTle assignment™)
a(Getindex()) = a(GetIndex()) + 1

console.WriteLine("Compound assignment")
a(GetIndex()) +=1
End Sub
End Module

The expression(GetIndex()) is evaluated twice for simple assignment but amge for compound
assignment, so the code prints:

Simple assignment
Getting index
Getting index
Compound assignment
Getting index

190 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

The rule for predefined operators is simply t@P= E is permitted if both/ OP E andV = E are permitted.
Thus, in the following example, the reason for eahr is that a corresponding simple assignmeniavalso
have been an error.

Option Strict On
Module Test
Private b As Byte = 0
Private ch As Char = ControlcChars.NullcChar
Private i As Integer = 0
Sub Main()
b += 1 ' This is allowed.
b += 1000 ' Error; b = 1000 is not permitted.
b += i ' Error, b = i is not permitted.
b += CcByte(i) ' This is allowed.
ch += 1 ' Error, ch = 1 is not permitted.
ch += chrw(1) ' This 1is allowed.
End Sub
End ModuTe

CompoundAssignmentSatement ::= Expression CompoundBinaryOperator Expression StatementTer minator
CompoundBinaryOperator ::= A= | *= | /= | \= | += | -= | &= | <<= | >>=

10.6.3 Mid Assighment Statement

A Mid assignment statement assigns a string into ansttieg. The left side of the assignment has tiheesa
syntax as a call to the functiericrosoft.visualBasic.Strings.Mid. The first argument is the target of
the assignment and must be classified as a vamalagroperty access whose type is implicitly atible to
and fromstring. The second parameter is the 1-based start positad corresponds to where the assignment
should begin in the target string and must be ifladsas a value whose type must be implicitly cemile to
Integer. The optional third parameter is the number ofatizrs from the right-side value to assign int th
target string and must be classified as a valuese/itype is implicitly convertible tonteger. The right side is
the source string and must be classified as a walhose type is implicitly convertible ®tring. The right side
is truncated to the length parameter, if speciféad replaces the characters in the left-sidegststarting at the
start position. If the right side string contairfedier characters than the third parameter, onlgh@@acters
from the right side string will be copied.

The following example displaysb123fg:
ModuTle Test
Sub Main()
Dim sl As String

"abcdefg"

Dim s2 As String "1234567"

Mid$(sl, 3, 3) = s2
console.WriteLine(sl)
End Sub
End Module

Copyright © Microsoft Corporation 2005. All rightsserved. 191

Visual Basic Language Specification

Note Mid is not a reserved word.

MidAssignmentStatement ::=
Mid [$] (Expresson , Expression [, Expresson]) = Expresson StatementTerminator

10.7 Invocation Statements

An invocation statement invokes a method precegdtddoptional keywordal1. The invocation statement is
processed in the same way as the function invatattpression. The invocation expression must tesiiad
as a value or void. Any value resulting from thalaation of the invocation expression is discarded.

InvocationSatement ::= [call] InvocationExpression StatementTerminator

10.8 Conditional Statements
Conditional statements allow conditional executidstatements based on expressions evaluated &trmein

Conditional Satement ::= IfSatement | SelectSatement

10.8.1 If...Then...Else Statements

An1If...Then...Else statement is the basic conditional statement. Eaphession in an
1f...Then...Else statement must be classified as a value and biecitiypconvertible toBooTean. If the
expression in th&f statement iSrue, the statements enclosed by 1ifeblock are executed. If the expression
is False, each of th&1seIf expressions is evaluated. If one of HFlseIf expressions evaluatestoue, the
corresponding block is executed. If no expressi@iuates tarrue and there is ap1se block, thee1se block
is executed. Once a block finishes executing, ei@tpasses to the end of thé. . . Then. . .ET1se statement.

The line version of thef statement has a single set of statements to loeitexkif ther f expression iSrue
and an optional set of statements to be executbd éxpression isalse. For example:
Module Test
Sub Main()
Dim a As Integer
Dim b As Integer

10
20

' Block If statement.
If a < b Then

a=>b
Else

b =a
End If

Line If statement
If a < b Then a =b Else b = a
End Sub
End Module

IfSatement ::= BlocklfStatement | LinelfThenStatement

BlocklfStatement ::=
If BooleanExpression [Then] SatementTerminator

192 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

[Block]

[ElselfStatement+ |

[ElseStatement |

End If SatementTerminator

ElselfSatement ::=
ElseIf BooleanExpression [Then] SatementTerminator
[Block]
ElseSatement ::=
Else SatementTerminator
[Block]

LinelfThenStatement ::=
If BooleanExpression Then Satements [Else Satements | StatementTer minator

10.8.2 Select...Case Statements

A select Case statement executes statements based on the Jalneegpression. The expression must be
classified as a value. Whersalect Case statement is executed, thelect expression is evaluated first, and
theCase statements are then evaluated in order of texkeghration. The firstase statement that evaluates to
True has its block executed. If mase statement evaluates toue and there is aase E1se statement, that
block is executed. Once a block has finished exeguéxecution passes to the end ofsbhéect statement.

Execution of aase block is not permitted to "fall through" to thextewitch section. This prevents a common
class of bugs that occur in other languages whessa terminating statement is accidentally omitted. The
following example illustrates this behavior:

Module Test
Sub Main(Q)
Dim x As Integer = 10

Select Case x
Case 5
console.writeLine("x = 5")

Case 10
console.writeLine("x = 10")
Case 20 - 10
console.writeLine("x = 20 - 10™)
Case 30
console.writeLine("x = 30")
End Select
End Sub
End ModuTe

The code prints:
x = 10

Althoughcase 10 andcase 20 - 10 select for the same valuggse 10 is executed because it precedes
Case 20 - 10 textually. When the nextase is reached, execution continues aftergbéect statement.

Copyright © Microsoft Corporation 2005. All rightsserved. 193

Visual Basic Language Specification

A case clause may take two forms. One form is an optiasateyword, a comparison operator, and an
expression. The expression is converted to thedjpieeSelect expression; if the expression is not implicitly
convertible to the type of th&elect expression, a compile-time error occurs. Ifsle@ect expression ig,

the comparison operator@p, and thecase expression i€1, the case is evaluated BOP E1. The operator
must be valid for the types of the two expressiatiserwise a compile-time error occurs.

The other form is an expression optionally followsdthe keywordro and a second expression. Both
expressions are converted to the type ofSikect expression; if either expression is not implicitiynvertible
to the type of theselect expression, a compile-time error occurs. If sedect expression ig, the firstCase
expression i€1, and the secontase expression i€2, theCase is evaluated either &= E1 (if noE2 is
specified) oE >= E1) And (E <= E2). The operators must be valid for the types ofttlwexpressions;
otherwise a compile-time error occurs.

SlectSatement =
Select [Case | Expression SatementTerminator
[CaseSatement+ |
[CaseElseSatement]
End Select SatementTerminator

CaseSatement ::=
Case CaseClauses SatementTer minator
[Block]

CaseClauses ::=
CaseClause |
CaseClauses , CaseClause

CaseClause ::=
[Is] ComparisonOperator Expression |
Expression [To Expression]

ComparisonOperator = = | <> | < | > | => | =<
CaseElseSatement ::=

Case Else SatementTerminator

[Block]

10.9 Loop Statements
Loop statements allow repeated execution of statene

LoopStatement ::=
WhileStatement |
DolLoopSatement |
ForSatement |
ForEachSatement

10.9.1 While...End While and Do...Loop Statements

A wh1iTe orDo loop statement loops based oBoa1ean expression. Avhile loop statement loops as long as
theBoolean expression evaluatest@ue; aDo loop statement may contain a more complex comditio
either case, the expressions must be classifigelass and must be implicitly convertiblegoolean.

An expression may be placed after tloekeyword or after theoop keyword, but not after both. It is also valid
to specify no expression at all; in that case]dbe will never exit. If the expression is placdteabo, it will be
evaluated before the loop block is executed on &acdhtion. If the expression is placed atteop, it will be

194 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.
evaluated after the loop block has executed on iéa@tion. Placing the expression afteop will therefore
generate one more loop than placement afteil he following example demonstrates this behavior:

Module Test
Sub Main(Q)
Dim x As Integer

X =3

Do while x =1
console.writeLine("First loop")

Loop

Do
Console.writeLine("second loop")
Loop While x = 1
End Sub
End ModuTe

The code produces the output:
Second Loop
Third Loop
Third Loop

In the case of the first loop, the condition isleated before the loop executes. In the case asehend loop,
the condition is executed after the loop execuibs.conditional expression must be prefixed withezia
while keyword or arunti1 keyword. The former breaks the loop if the comditevaluates tealse, the
latter when the condition evaluatesrttcue.

WhileSatement ::=
while BooleanExpression SatementTerminator
[Block]

End while StatementTerminator
DolLoopSatement ::= DoToplLoopSatement | DoBottomlLoopStatement

DoTopLoopSatement ::=
Do [WhileOrUntil BooleanExpression | SatementTerminator
[Block]
Loop StatementTerminator

DoBottomLoopStatement ::=
Do StatementTerminator
[Block]
Loop WhileOrUntil BooleanExpression StatementTerminator

WhileOrUntil ::= while | until

10.9.2 For...Next Statements

A For...Next statement loops based on a set of bound® Astatement specifies a loop control variable, a
lower bound expression, an upper bound expresaiahan optional step value expression.

Copyright © Microsoft Corporation 2005. All rightsserved. 195

Visual Basic Language Specification

The loop control variable is specified either thgbwan identifier followed by ams clause or an expression. In
the case of an identifier, the identifier defineseav local variable of the type specified in feclause, scoped
to the entirecor loop. In the case of an expression, the expressigst be classified as a variable.

The loop control variable of eor statement must be of a primitive numeric typgte, SByte, Ushort,
Short, UInteger, Integer, ULong, Long, Decimal, Single, bouble), Object, or a typer that has the
following operators:

Public Shared operator >= (Byval opl As T, Byval op2 As T) As B
Public Shared operator <= (Byval opl As T, Byval op2 As T) As B
Public Shared Operator - (Byval opl As T, Byval op2 As T) As T
Public Shared operator + (Byval opl As T, Byval op2 As T) As T

Wheres is a type that can be used in a Boolean expregiséoris convertible tBoolean or overloadgsTrue
andIsFalse).

The bound and step expressions must be impliaithvertible to the type of the loop control. Enuntedstypes
are treated as their underlying type, which alloxss of enumerated typesHnr loops. The bounds and step
expressions must be classified as values.

A loop control variable cannot be used by anotinetasingFor. . .Next statement. A-or statement must be
closed by a matchingext statement. Alext statement without a variable matches the inneroostFor
statement. Alext statement with one or more loop control varialdk from left to right, match the&or
loops that match each variable. If a variable megcFor loop that is not the most nested loop at thattpain
compile-time error results.

At the beginning of the loop, the three expressimesevaluated in textual order and the lower baxmtession
is assigned to the control value. If the step vadummitted, it is implicitly the literal. The three expressions are
only ever evaluated at the beginning of the loop.

If the For loop variable is of typebject, then the loop control type is determined at fnmetas follows:

» If at least one of the expressions at run timepsritive numeric type or enumerated type, thenltdop
control type is the widest numeric type among them.

» If one or more of the types was an enumerated Blpthe enumerated types are the same, and the
underlying type of the common enumerated typedsittdest numeric type, then the loop control type
is the enumerated type.

» Otherwise, if all three expressions are typedasing, then the loop control type i®ubTe.

» Otherwise, if the most encompassing type of theetlexpressions implements the overloaded operators
listed above, then the most encompassing typeiktp control type.

If at run time no loop control type can be detemior if any of the expressions cannot be convedéle loop
control type, asystem.InvalidCastException will occur. Once a loop control type has been ehast the
beginning of the loop, the same type will be usedughout the iteration, regardless of changes rnatie
value in the loop control variable.

At the beginning of each loop, the control varialbleompared to see if it is greater than the emdtpf the step
expression is positive, or less than the end pbihe step expression is negative. If it is, Hua loop
terminates; otherwise the loop block executeddfloop control variable is not a primitive typlee ttomparison
operator is determined by whether the expressimp >= step - stepis true or false. At theext
statement, the step value is added to the cordr@die and execution returns to the top of th@loo

It is not valid to branch into eor loop from outside the loop.

196 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

ForSatement ::=
For LoopControlVariable = Expression To Expresson [Step Expression] StatementTerminator
[Block]

Next [NextExpressionList | SatementTerminator

LoopControl Variable ::=
Identifier [ArrayNameModifier | As TypeName |
Expression
NextExpressionList ::=
Expression |
NextExpressionList , Expression

10.9.3 For Each...Next Statements
A For Each. . .Next statement loops based on the elements in an expneé\For Each statement specifies
a loop control variable and an enumerator exprassio

The loop control variable is specified either thgbwan identifier followed by ams clause or an expression. In
the case of an identifier, the identifier defineseav local variable of the type specified in weclause, scoped
to the entirecor Each loop. In the case of an expression, the expressigt be classified as a variable. The
enumerator expression must be classified as a aaldiéts type must be a collection typeobrject. If the type
of the enumerator expressiomisject, then all processing is deferred until run-timé¢héwise, a conversion
must exist from the element type of the collectothe type of the loop control variable.

The loop control variable cannot be used by anahelosingFor Each statement. Aor Each statement must
be closed by a matchimgxt statement. Alext statement without a loop control variable matdhes
innermost opemor Each. A Next statement with one or more loop control varialldk from left to right,
match theror Each loops that have the same loop control variabla.V&riable matchesror Each loop that

is not the most nested loop at that point, a cogrjihe error occurs.

A typec is said to be aollection typeif:
* All of the following are true:
* Ccontains an accessible instance method with gre&gireGetEnumerator () that returns a type.
* E contains an accessible instance method with gre&gireMoveNext () and the return typBoolean.

* E contains an accessible instance property natnedent that has a getter. The type of this property is
the element type of the collection type.

* Itimplements the interfacgystem.Collections.Generic.IEnumerable(0f T), in which case the
element type of the collection is considered ta be

* Itimplements the interfacgystem.Collections.IEnumerable, in which case the element type of the
collection is considered to b ject.

Following is an example of a class that can be emated:
Public Class IntegercCollection
Private integers(10) As Integer

Public Class IntegercCollectionEnumerator
Private collection As Integercollection
Private index As Integer = -1

Copyright © Microsoft Corporation 2005. All rightsserved. 197

Visual Basic Language Specification

Friend Sub New(Byval c As IntegercCollection)
collection = c
End Sub

Public Function MoveNext() As Boolean
index += 1

Return index <= 10
End Function

Public Readonly Property Current As Integer
Get
If index < 0 OrElse index > 10 Then
Throw New System.InvalidOperationException()
End If

Return integers(index)
End Get
End Property
End Class

PubTlic Sub New()
Dim i As Integer

For i = 0 To 10
integers(i) = I
Next i
End Sub

Public Function GetEnumerator() As IntegercCollectionEnumerator
Return New IntegercCollectionEnumerator(Me)
End Function
End Class

Before the loop begins, the enumerator expressienaluated. If the type of the expression doesaify the
design pattern, then the expression is casystem.ColTlections.IEnumerable or
System.Collections.IEnumerable(of T). If the expression type implements both the geremd non-
generic interface, the generic interface is prefitat compile-time but the non-generic interfagaréferred at
run-time. If the expression type implements theegennterface multiple times, the statement isscdered
ambiguous and a compile-time error occurs.

Annotation

198 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

The non-generic interface is preferred in the letend case, because picking the generic interfacgdwnean
that all the calls to the interface methods wouolblve type parameters. Since it is not possibkntow the
matching type arguments at run-time, all such eadlald have to be made using late-bound calls. iMoisld
be slower than calling the non-generic interfacealise the non-generic interface could be callatusi
compile-time calls.

GetEnumerator is called on the resulting value and the retuloe/af the function is stored in a temporary.
Then at the beginning of each lospyveNext is called on the temporary. If it returfalse, the loop
terminates. If it returngrue, theCurrent property is retrieved, coerced to the type ofithator variable
(regardless of whether the conversion is impliciexplicit), and assigned to the iterator variakien the loop
block executes.

Annotation

The current element of the iteration is convertethe type of the loop control variable even if do@version is
explicit because there is no convenient placettoduce a conversion operator in the statemens B&came
particularly troublesome when working with the mosinmon collection type,
System.Collections.ArrayList, because its element typeoisject. This would have required casts in a
great many loops, something we felt was not ideal.

Ironically, generics enabled the creation of argjtg-typed collection,
System.Collections.Generic.List(of T), which might have made us rethink this design fpdiat for
compatibility’s sake, this cannot be changed now.

When theNext statement is reached, execution returns to thefttge loop. If a variable is specified after the
Next keyword, it must be the same as the first variaftler theFor Each. For example, consider the following
code:

Module Test
Sub Main(Q)
Dim i As Integer
Dim c As IntegerCollection = New IntegercCollection()

For Each i In c
console.wWriteLine(i)
Next i
End Sub
End Module
It is equivalent to the following code:
Module Test
Sub Main()
Dim i As Integer
Dim c As IntegerCollection = New Integercollection()

Dim e As IntegercCollectionEnumerator

e = c.GetEnumerator()
while e.MoveNext()
i = e.Current
Copyright © Microsoft Corporation 2005. All rightsserved. 199

Visual Basic Language Specification

Console.writeLine(i)
End while
End Sub
End Module

If the typeE of the enumerator implemerdgstem.IDisposable, then the enumerator is disposed upon
exiting the loop by calling theispose method. This ensures that resources held by theermator are
released. If the method containing e Each statement does not use unstructured error handhag the
For Each statement is wrapped inray statement with theispose method called in theinally to ensure
cleanup.

Note Thesystem.Array type is a collection type, and since all arrayesyderive fronsystem.Array,
any array type expression is permitted io& Each statement. For single-dimensional arrays,Fibe
Each statement enumerates the array elements in incgei@slex order, starting with index 0 and ending
with index Length - 1. For multidimensional arraifee indices of the rightmost dimension are inaedas
first.
For example, the following code prirts2 3 4:
Module Test
Sub Main()
Dim x(,) As Integer = { {1, 2}, {3, 41} 1}
Dim i As Integer

For Each i In x
console.wWrite(i & " ")
Next i
End Sub
End ModuTe

It is not valid to branch into Bor Each statement block from outside the block.

ForEachSatement ::=
For Each LoopControlVariable In Expression SatementTerminator
[Block]

Next [Expression] SatementTerminator

10.10 Exception-Handling Statements

Visual Basic supports structured exception handling unstructured exception handling. Only one=sifl
exception handling may be used in a method, but tirer statement may be used in structured exception
handling. If a method uses both styles of exceptiammdling, a compile-time error results.

ErrorHandlingSatement ::=
SructuredError Satement |
UnstructuredError Satement

10.10.1 Structured Exception-Handling Statements

Structured exception handling is a method of hawgddirrors by declaring explicit blocks within whicértain
exceptions will be handled. Structured exceptiamdtiag is done through ary statement.

200 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

For example:
Module Test
Sub ThrowException()
Throw New Exception()
End Sub

Sub Main(Q)
Try
ThrowException()
Catch e As Exception
Console.writeLine("Caught exception!™)
Finally
Console.writeLine("Exiting try.")
End Try
End Sub
End ModuTe

A Try statement is made up of three kinds of blocksblogks, catch blocks, and finally blocksi block is

a statement block that contains the statements txecuted. Aatch block is a statement block that handles an
exception. Afinally block is a statement block that contains statements toio when thery statement is
exited, regardless of whether an exception hasratand been handled. &y statement, which can only
contain one try block and one finally block, mushtin at least one catch block or finally blodkslinvalid to
explicitly transfer execution into a try block eptdérom within a catch block in the same statement.

StructuredError Satement ::=
ThrowSatement |
TrySatement

TryStatement ::=
Try SatementTerminator
[Block]
[CatchStatement+]
[FinallyStatement]
End Try SatementTerminator

10.10.1.1 Finally Blocks

A Finally block is always executed when execution leavegantyof therry statement. No explicit action is
required to execute tireinally block; when execution leaves they statement, the system will automatically
execute the&inally block and then transfer execution to its intendestination. Th&inally block is
executed regardless of how execution leaves tlyestatement: through the end of they block, through the
end of acatch block, through amExit Try statement, through@To statement, or by not handling a thrown
exception.

It is invalid to explicitly transfer execution intoFinalTy block; it is also invalid to transfer executiort ofi a
Finally block except through an exception.
FinallyStatement ::=

Finally SatementTerminator

[Block]

Copyright © Microsoft Corporation 2005. All rightsserved. 201

Visual Basic Language Specification

10.10.1.2 Catch Blocks

If an exception occurs while processing the block, eaclcatch statement is examined in textual order to
determine if it handles the exception. The idestifipecified in @atch clause represents the exception that has
been thrown. If the identifier contains as clause, then the identifier is considered to beaged within the

catch block's local declaration space. Otherwise, teatifier must be a local variable (not a staticatale)

that was defined in a containing block.

A catch clause with no identifier will catch all except®derived fronmsystem.Exception. A Catch clause
with an identifier will only catch exceptions whasggpes are the same as or derived from the typleeof
identifier. The type must b@bject (or System.Object), System.Exception, or a type derived from
System.Exception. When an exception is caught that derives feymitem. Exception, a reference to the
exception object is stored in the object returngthie function
Microsoft.visualBasic.Information.Err.

Annotation

Allowing exceptions derived frombject to be caught is necessary to handle the facstitae languages
(such as C++) allow any object to be thrown. Beedbhe more common case is that an exception wiNele
from System.Exception, that is the default case when no type is spetifie

A catch clause with athen clause will only catch exceptions when the expoessvaluates torue; the type
of the expression must be implicitly convertibledt1ean. A when clause is only applied after checking the
type of the exception, and the expression may teftire identifier representing the exception has ¢xample
demonstrates:

Module Test
Sub Main(Q)
Dim i As Integer = 5

Try
Throw New ArgumentException()

Catch e As overflowException when i = 5
console.writeLine("First handler™)

Catch e As ArgumentException wWhen i = 4
console.writeLine("second handler")

Catch when i =5
console.writeLine("Third handler")

End Try

End Sub

End Module

This example prints:
Third handler

If a catch clause handles the exception, execution transfatseecatch block. At the end of theatch block,
execution transfers to the first statement follapiheTry statement. Th&ry statement will not handle any
exceptions thrown in @atch block. If nocatch clause handles the exception, execution trangfeadocation
determined by the system.

It is invalid to explicitly transfer execution intxCatch block.
202 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

CatchSatement ::=
Catch [Identifier As NonArrayTypeName | [when BooleanExpression | StatementTerminator
[Block]

10.10.1.3 Throw Statement

TheThrow statement raises an exception, which is repreddmtan instance of a type derived from
System.Exception. If the expression is not classified as a valuis oot a type derived from
System.Exception, then a compile-time error occurs. If the exp@ssivaluates to a null reference at run
time, then asystem.NulTReferenceException exception is raised instead.

A Throw statement may omit the expression within a catobkof aTry statement, as long as there is no
intervening finally block. In that case, the stagatrethrows the exception currently being handigdin the
catch block. For example:

Sub Test(Byval x As Integer)

Try
Throw New Exception()
Catch
If x = 0 Then
Throw ' 0K, rethrows exception from above.
Else
Try
If x = 1 Then
Throw ' OK, rethrows exception from above.
End If
Finally
Throw ' Invalid, inside of a Finally.
End Try
End If
End Try
End Sub

ThrowStatement ::= Throw [Expression | SatementTerminator

10.10.2 Unstructured Exception-Handling Statements

Unstructured exception handling is a method of kiagcrrors by indicating statements to branch tewan
exception occurs. Unstructured exception handBrigiplemented using three statementseitwor statement,
theon Error statement, and ttresume statement. For example:

Module Test
Sub ThrowException()
Error 5
End Sub

Sub Main(Q)
On Error Goto GotException

Copyright © Microsoft Corporation 2005. All rightsserved. 203

Visual Basic Language Specification

ThrowException()
Exit Sub

GotException:
console.WriteLine("Caught exception!™)
Resume Next
End Sub

End Module
When a method uses unstructured exception handlismpgle structured exception handler is estadstigbr the
entire method that catches all exceptions. (Nateithconstructors this handler does not extend theecall to
the call toNew at the beginning of the constructor.) The metlin@ohtkeeps track of the most recent exception-
handler location and the most recent exceptionitaatbeen thrown. At entry to the method, the etkmep
handler location and the exception are both sebtiing. When an exception is thrown in a method that uses
unstructured exception handling, a reference t@feeption object is stored in the object returbgthe
functionMicrosoft.visualBasic.Information.Err.

UnstructuredError Satement ::=
ErrorSatement |
OnError Satement |
ResumeStatement

10.10.2.1 Error Statement

An Error statement throws system.Exception exception containing a Visual Basic 6 exceptiombar.
The expression must be classified as a value angpieé must be implicitly convertible tmteger.

ErrorSatement ::= Error Expression SatementTerminator

10.10.2.2 On Error Statement
An on Error statement modifies the most recent exception-lagdlate. It may be used in one of four ways:

* OnError GoTo -1 resets the most recent exceptiondahing.
* OnError GoTo 0 resets the most recent exception-handler locatianthing.
* OnError GoTo LabelName establishes the label as the most recent exceptindler location.

e On Error Resume Next, establishes theesume Next behavior as the most recent exception-handler
location.

OnErrorSatement ::= on Error ErrorClause SatementTer minator

ErrorClause ::=
GoTo - 1 |
GoTo 0 |

GotoStatement |
Resume Next

204 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

10.10.2.3 Resume Statement

A Resume statement returns execution to the statementtheged the most recent exception. IfNket
modifier is specified, execution returns to thaestaent that would have been executed after therstatt that
caused the most recent exception. If a label narapédcified, execution returns to the label.

Because thaeyncLock statement contains an implicit structured erraretiag block,Resume andrResume
Next have special behaviors for exceptions that oagtayncLock statementsResume returns execution to
the beginning of theyncLock statement, whil®esume Next returns execution to the next statement
following theSyncLock statement. For example, consider the followingecod

Class LockcClass
End Class

Module Test
Sub Main(Q)
Dim FirstTime As Boolean = False
Dim Lock As LockClass = New LockClass()

on Error Goto Handler

SyncLock Lock
console.writeLine("Before exception™)
Throw New Exception()
Console.writeLine("After exception")
End SyncLock

console.writeLine("After SyncLock")
Exit Sub

Handler:
If FirstTime Then
FirstTime = False
Resume
Else
Resume Next
End If
End Sub
End Module
It prints the following result.
Before exception
Before exception
After SyncLock

Copyright © Microsoft Corporation 2005. All rightsserved. 205

Visual Basic Language Specification

The first time through theyncLock statementResume returns execution to the beginning of yacLock
statement. The second time throughshecLock statementResume Next returns execution to the end of the
SyncLock statementResume andrResume Next are not allowed within ayncLock statement.

In all cases, whenresume statement is executed, the most recent exceisetitaNothing. If aResume
statement is executed with no most recent exceptierstatement raisesgstem. Exception exception
containing the Visual Basic error numi2€r (Resume without error).

ResumeStatement ::= Resume [ResumeClause | StatementTerminator
ResumeClause ::= Next | LabelName

10.11 Branch Statements
Branch statements modify the flow of execution method. There are six branch statements:

* A GoTo statement causes execution to transfer to théfigaelabel in the method.

* An Exit statement transfers execution to the next stateafitar the end of the immediately containing
block statement of the specified kind. If the blackhe method block, execution is transferred ladke
expression that invoked the method. If thea t statement is not contained within the kind of kloc
specified in the statement, a compile-time erraucs.

» A Continue statement transfers execution to the end of timeeidiately containing block loop statement of
the specified kind. If theontinue statement is not contained within the kind of klspecified in the
statement, a compile-time error occurs.

* A Stop statement causes a debugger exception to occur.

* An End statement terminates the program. Finalizerswardefore shutdown, but the finally blocks of any
currently executingry statements are not executed. This statement mdyengsed in programs that are
not executable (for example, DLLS).

* A Return statement returns execution to the expressionritiaked the method. If the method is a
subroutine, the statement is equivalent t@ait Sub statement and no expression may be suppliece If th
method is a function, an expression must be supptiat is classified as a value and whose type is
implicitly convertible to the return type of therfction. This form is equivalent to assigning to thection
return local and then executing exii t Function statement.

BranchSatement ::=
GotoStatement |
ExitSatement |
ContinueStatement |
SopSatement |
EndSatement |
ReturnStatement

GotoStatement ::= GoTo LabelName StatementTerminator

ExitStatement ::= Exit ExitKind SatementTerminator

ExitKind ::= Do | For | while | Select | Sub | Function | Property | Try
ContinueStatement ::= Continue ContinueKind StatementTerminator
ContinueKind ::= Do | For | while

SopSatement ::= Stop StatementTerminator

EndStatement ::= End StatementTerminator

206 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

ReturnSatement ::= Return [Expression]

10.12 Array-Handling Statements
Two statements simplify working with arrayseDim statements anglrase statements.
ArrayHandlingStatement ::=

RedimSatement |
EraseSatement

10.12.1 ReDim Statement

A ReDim statement instantiates new arrays. Each clause istatement must be classified as a variable or a
property access whose type is an array typggbgect, and be followed by a list of array bounds. Thenhar

of the bounds must be consistent with the typ@defariable; any number of bounds is allowedloject. At
run time, an array is instantiated for each expoaedsom left to right with the specified boundsdahien
assigned to the variable or property. If the vdedipe isobject, the number of dimensions is the number of
dimensions specified, and the array element typeject. If the given number of dimensions is incompatible
with the variable or property at run timeSastem.InvalidCastException will be thrown. For example:

Module Test
Sub Main()
Dim o As Object
Dim b() As Byte
Dim i(,) As Integer

' The next two statements are equivalent.
ReDim 0(10,30)
o = New Object(10, 30) {}

' The next two statements are equivalent.
ReDim b(10)
b = New Byte(10) {}

' The following statement throws an InvalidCastException.
ReDim 1i(10, 30, 40)
End Sub
End ModuTe

If the Preserve keyword is specified, then the expressions musst aé classifiable as a value, and the new
size for each dimension except for the rightmost muist be the same as the size of the existing. arhe
values in the existing array are copied into the agray: if the new array is smaller, the existiadues are
discarded; if the new array is bigger, the exteamgnts will be initialized to the default valuetloé element
type of the array. For example, consider the faltmgicode:

Module Test
Sub Main(Q)
Dim x(5, 5) As Integer

Copyright © Microsoft Corporation 2005. All rightsserved. 207

Visual Basic Language Specification
x(3, 3) =3

ReDim Preserve x(3, 6)
console.writeLine(x(3, 3) & ", " & x(3, 6))
End Sub
End Module

It prints the following result:

3, 0
If the existing array reference is null at run tjme error is given. Other than the rightmost digien, if the
size of a dimension changessystem.ArrayTypeMismatchException will be thrown.
RedimSatement ::= ReDim [Preserve] RedimClauses SatementTerminator

RedimClauses ::=
RedimClause |
RedimClauses , RedimClause

RedimClause ::= Expression ArraySzelnitializationModifier

10.12.2 Erase Statement

An Erase statement sets each of the array variables oeptiop specified in the statemenNwthing. Each
expression in the statement must be classifiedvasiable or property access whose type is an aygsg/or
Object. For example:

Module Test
Sub Main(Q)
Dim x() As Integer = New Integer(5) {}
' The following two statements are equivalent.
Erase X
X = Nothing
End Sub
End Module
EraseSatement ::= Erase EraseExpressions SatementTerminator
EraseExpressions ::=

Expression |
EraseExpressions , Expression

10.13 Using statement

Instances of types are automatically released égénbage collector when a collection is run antiveo
references to the instance are found. If a typdshoh a particularly valuable and scarce resosuweh(as
database connections or file handles), it may ealdsirable to wait until the next garbage coltetto clean up
a particular instance of the type that is no lorigarse. To provide a lightweight way of releasiagources
before a collection, a type may implement $ggtem.IDisposabTle interface. A type that does so exposes a
Dispose method that can be called to force valuable ressuto be released immediately, as such:

Module Test

208 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.
Sub Main()

Dim X As DBConnection = New DBConnection("foo")

Do some work

x.Dispose() Free the connection
End Sub

End Module

TheuUsing statement automates the process of acquiringoaimess, executing a set of statements, and then
disposing of the resource. The statement can ved&darms: in one, the resource is a local declaed part of
the statement itself; in the other, the resourd¢bdgesult of an expression.

If the resource is local variable declaration steget then the type of the local variable declaratimust be a

type that can be implicitly convertedsgstem.IDisposable. The declared local variables are read only,
scoped to th&sing statement block and must include an initializethé resource is the result of an expression
then the expression must be classified as a valderast be of a type that can be implicitly coneerto
System.IDisposable. The expression is only evaluated once, at thanhigy of the statement.

Theusing block is implicitly contained by @ry statement whose finally block calls the method
IDisposable.Dispose on the resource. This ensures the resource issgpeven when an exception is
thrown. As a result, it is invalid to branch int@si ng block from outside of the block, andJaing block is
treated as a single statement for the purposeresafme andresume Next. If the resource isothing, then no
call tobispose is made. Thus, the example:

Using f As Foo = New Foo()

End Using
is equivalent to:
Dim f As Foo = New Foo()
Try
Finally
1f f IsNot Nothing Then
f.Dispose()

End If

End Try
A Us1ing statement that has a local variable declaratiatestent may acquire multiple resources at a time,
which is equivalent to nesteding statements. For exampleysing statement of the form:

Using rl As R New R(), r2 As R = New R()
rl.rQ
r2.FQ

End Using

is equivalent to:
New RQ)

Copyright © Microsoft Corporation 2005. All rightsserved. 209

Using rl As R

Visual Basic Language Specification

Using r2 As R = New RQ)
rl.FQ
r2.FQ
End Using
End Using
UsingSatement ::=
Using UsingResources StatementTerminator

[Block]
End Using StatementTerminator

UsingResources ::= VariableDeclarators | Expression

210

Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

11. Expressions

An expression is a sequence of operators and afeethat specifies a computation of a value, or destgnates
a variable or constant. This chapter defines tidasy order of evaluation of operands and operatod
meaning of expressions.

Expression ::=

SmpleExpression |
TypeExpression |

Member AccessExpression |
DictionaryAccessExpression |
IndexExpression |
NewExpression |
CastExpression |

Operator Expression

11.1 Expression Classifications
Every expression is classified as one of the falthgw

A value. Every value has an associated type.
A variable. Every variable has an associated typmely the declared type of the variable.

A namespace. An expression with this classificatiam only appear as the left side of a member actes
any other context, an expression classified asr@espace causes a compile-time error.

A type. An expression with this classification aarly appear as the left side of a member accessiyin
other context, an expression classified as a tgpseas a compile-time error.

A method group, which is a set of methods overldaatethe same name. A method group may have an
associated instance expression and an associgedrtyument list.

A method pointer, which represents the locatioa ofethod. A method pointer may have an associated
instance expression and an associated type arguistent

A property group, which is a set of properties tnaiied on the same name. A property group may aave
associated instance expression.

A property access. Every property access has aciatsd type, nhamely the type of the property. A
property access may have an associated instancessiqn.

A late-bound access, which represents a methotbpepy access deferred until run-time. A late-lwbun
access may have an associated instance expressi@m associated type argument list. The typelatiea
bound access is alwagbject.

An event access. Every event access has an assbiyipe, namely the type of the event. An evenéssc
may have an associated instance expression. An ageess may appear as the first argument of the
RaiseEvent, AddHandler, andRemoveHand1er statements. In any other context, an expression
classified as an event access causes a compilestiore

Void. This occurs when the expression is an invooatf a subroutine. An expression classified dd i®
only valid in the context of an invocation statemen

Copyright © Microsoft Corporation 2005. All rightsserved. 211

Visual Basic Language Specification

The final result of an expression is never a namespype, method group, or property group. Radeenoted
above, these categories of expressions are int&teambnstructs that are only permitted in certaintexts.

Note that expressions whose type is a type paramatebe used in statements and expressions thatee¢he
type of an expression to have certain charactesigsuch as being a reference type, value typajimigifrom
some type, etc.) if the constraints imposed orytpe parameter satisfy those characteristics.

11.1.1 Expression Reclassification

Normally, when an expression is used in a contedtitequires a classification different from thathe
expression, a compile-time error occurs — for examgttempting to assign a value to a literal. Hosvein
many cases it is possible to change an expressias'sification through the processretlassification. The
following types of expressions can be reclassified:

« A variable can be reclassified as a value. Theevatared in the variable is fetched.

* A method group can be reclassified as a value.nméthod group expression is interpreted as an irtiata
expression with the associated type parametearigtempty parentheses (thatfiss interpreted as() and
f(of Integer) isinterpreted ag(0f Integer) ()). This reclassification may actually result in the
expression being reclassified as void.

» A method pointer can be reclassified as a valué fEtlassification can only occur in assignment
statements or as a part of interpreting a parartistewhere the target type is known. The methoishier
expression is interpreted as the argument to gaedénstantiation expression of the approprigte tyith
the associated type argument list. For example:

Delegate Sub D(Byval i As Integer)

Module Test
Ssub F(Byval i As Integer)
End Sub

Sub Main(Q)
Dim del As D
' The next two Tines are equivalent.
del = Addressof F
del = New D(Addressof F)
End Sub
End ModuTle

* A property group can be reclassified as a propertess. The property group expression is intemgeen
index expression with empty parentheses (thdtis interpreted ag()).

» A property access can be reclassified as a vahe pfoperty access expression is interpreted as an
invocation expression of tl@t accessor of the property. If the property hasetteg, then a compile-time
error occurs.

» Alate-bound access can be reclassified as a tateebmethod or late-bound property access. Iruatsin
where a late-bound access can be reclassifiedasaimethod access and as a property access,
reclassification to a property access is preferred.

212 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

* A late-bound access can be reclassified as a value.

A namespace expression, type expression, everdsaegpression, or void expression cannot be réfotaks
Multiple reclassifications can be done at the sime. For example:

Module Test
Ssub F(Byval i As Integer)
End Sub

Readonly Property P() As Integer
Get
End Get

End Sub

Sub Main()
F(P)
End Sub
End Module

In this case, the property group expres#ias first reclassified from a property group toragerty access and
then reclassified from a property access to a vdlhe fewest number of reclassifications are peréat to
reach a valid classification in the context.

11.2 Constant Expressions

A constant expression is an expression whose value can be fully evatiuateompile time. The type of a
constant expression can kgte, SByte, UShort, Short, UInteger, Integer, ULong, Long, Char,
single, Double, Decimal, Boolean, String, or any enumeration type. The following constrants
permitted in constant expressions:

» Literals (includingNothing).

» References to constant type members or constaaisloc
* References to members of enumeration types.

* Parenthesized subexpressions.

» Coercion expressions, provided the target typ@eésas the types listed above. Coercions to and from
String are an exception to this rule and not allowed bsestring conversions are always done in the
current culture of the execution environment attione.

* The+, - andNot unary operators.

e The+, -, *, A, Mod, /,\, <<, >>, & And, Or, Xor, AndATso, OrElse, =, <, >, <>, <=, and=> binary
operators, provided each operand is of a typedliab®ve.

* The following run-time functions:
* Microsoft.visualBasic.Strings.Chrw
* Microsoft.visualBasic.Strings.chr, if the constant value is between 0 and 128

* Microsoft.visualBasic.Strings.Ascw, if the constant string is not empty

Copyright © Microsoft Corporation 2005. All rightsserved. 213

Visual Basic Language Specification

* Microsoft.visualBasic.Strings.Asc, if the constant string is not empty

Constant expressions of an integral typeong, Long, UInteger, Integer, UShort, Short, SByte, or
Byte) can be implicitly converted to a narrower intédype, and constant expressions of tppebTe can be
implicitly converted tasingle, provided the value of the constant expressiavitisin the range of the
destination type. These narrowing conversions lkoeed regardless of whether permissive or stechantics
are being used.

ConstantExpression ::= Expression

11.3 Late-Bound Expressions

When the target of a member access expressiomlex gxpression is of tygghject, the processing of the
expression may be deferred until run time. Defgrprocessing this way is calléate binding. Late binding
allowsobject variables to be used ingpeless way, where all resolution of members is basederatctual
run-time type of the value in the variable. If stisemantics are specified by the compilation emvirent or by
option Strict, late binding causes a compile-time error. NonHpgubhembers are ignored when doing late-
binding, including for the purposes of overloadotagon. Note that, unlike the early-bound casegpking or
accessing ahared member late-bound will cause the invocation tatgdte evaluated at run time. If the
expression is an invocation expression for a merdegned orsystem.0Object, late binding will not take
place.

In general, late-bound accesses are resolved dnmarby looking up the identifier on the actuahtime type
of the expression. If late-bound member lookupsfatirun time, 8ystem.MissingMemberException
exception is thrown. Because late-bound membelpdak done solely off the run-time type of the assed
instance expression, an object's run-time typev&nan interface. Therefore, it is impossibledoess interface
members in a late-bound member access expression.

Because late-bound overload resolution is dondemun-time type of the arguments, it is possibé ain
expression might produce different results basedtwether it is evaluated at compile time or runetirihe
following example illustrates this difference:

Class Base
End Class

Class Derived
Inherits Base
End Class

Module Test
Sub F(Byval b As Base)
console.writeLine("F(Base)")
End Sub

Sub F(Byval d As Derived)
Console.writeLine("F(Derived)")

End Sub

Sub Main()

214 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

Dim b As Base = New Derived()
Dim o As Object = b

F(b)
F(0)
End Sub
End ModuTle
This code displays:
F(Base)
F(Derived)

11.4 Simple Expressions
Simple expressions are literals, parenthesizedesgmns, instance expressions, or simple name &sipns.

SmpleExpression ::=
LiteralExpression |
ParenthesizedExpression |
InstanceExpression |
SmpleNameExpression |
AddressOfExpression

11.4.1 Literal Expressions
Literal expressions evaluate to the value represilny the literal. A literal expression is classifias a value.

LiteralExpression ::= Literal

11.4.2 Parenthesized Expressions

A parenthesized expression consists of an expressidosed in parentheses. A parenthesized expnassi
classified as a value, and the enclosed expressish be classified as a value. A parenthesizecesgmn
evaluates to the value of the expression withirnprentheses.

ParenthesizedExpression ::= (Expression)

11.4.3 Instance Expressions

An instance expression is the keywordie, MyClass, orMyBase. An instance expression, which may only be
used within the body of a non-shared method, coatr, or property accessor, is classified as aevdhstance
expressions cannot be used in the arguments tdrgotms invocations. The three different instangpression
types are:

* The keyworadve represents the instance of the type containingnistod or property accessor being
executed.

* The keywordwyClass is equivalent te, but all method invocations on it are treated dse method
being invoked is non-overridable. Thus, the mettalted will not be affected by the run-time typetioé
value on which the method is being callegclass can only be used as the target expression of sberem
access.

* The keywordwyBase represents the instance of the type containingndhod or property accessor being
executed cast to its direct base type. All metimedéations on it are treated as if the method bigingked

Copyright © Microsoft Corporation 2005. All rightsserved. 215

Visual Basic Language Specification

is non-overridableviyBase can only be used as the target expression of sbereatcess. A member access
usingMyBase is called &base access.
The following example demonstrates how instanceesgioons can be used:
Class Base
PubTlic overridable Sub FQ)
Console.WriteLine("Base.F")
End Sub
End Class

Class Derived
Inherits Base

Public overrides sub FQO)
console.writeLine("Derived.F")
End Sub

PubTic sub GQ)
MyClass.F(Q)
End Sub
End Class

Class MorebDerived
Inherits Derived

Public overrides sub FQ)
console.writeLine("MoreDerived.F")
End Sub

PubTic Sub HQO
MyBase.F()
End Sub
End Class

Module Test
Sub Main(Q)
Dim X As MoreDerived = new MoreDerived()

x.FO
x.GO
x.HO

216 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.
End Sub

End Module

This code prints out:

MoreDerived.F
Derived.F
Derived.F

InstanceExpression ::= Me

11.4.4 Simple Name Expressions

A simple name expression consists of a single identifier followed by aniopal type argument list. The name is
resolved and classified as follows:

Starting with the immediately enclosing block awatmuing with each enclosing outer block (if any}the
identifier matches the name of a local variablatistvariable, constant local, method type paramete
parameter, then the identifier refers to the maigleintity. The expression is classified as a végidlit is a
local variable, static variable, or parameter. €kpression is classified as a type if it is a mdttype
parameter. The expression is classified as a vhiis a constant local with the following except. If the
local variable matched is the implicit functionaert accessor return local variable, and the expression
part of an invocation expression, invocation statietnor armddressof expression, then no match occurs
and resolution continues.

For each nested type containing the expressionirgtdrom the innermost and going to the outermibst
lookup of the identifier in the type produces achatith an accessible member:

» If the matching type member is a type parameten the result is classified as a type and is the
matching type parameter.

» Otherwise, if the type is the immediately enclosiyyge and the lookup identifies a non-shared type
member, then the result is the same as a membessaotthe fornwe . E, wherek is the identifier.

* Otherwise, the result is exactly the same as a reeadress of the form. E, whereT is the type
containing the matching member ands the identifier. In this case, it is an error floe identifier to
refer to a non-shared member.

For each nested namespace, starting from the irms¢rand going to the outermost namespace, do the
following:

* If the namespace contains an accessible namesganbanwith the given name, then the identifier
refers to that member and, depending on the mensbhagssified as a namespace or a type.

* Otherwise, if the namespace contains one or maresaible standard modules, and a member name
lookup of the identifier produces an accessiblecmat exactly one standard module, then the résult
exactly the same as a member access of theMoanwherem is the standard module containing the
matching member arglis the identifier. If the identifier matches acsibte type members in more than
one standard module, a compile-time error occurs.

If the source file has one or more import aliases] the identifier matches the name of one of thikem
the identifier refers to that namespace or type.

If the source file containing the name referencedraé or more imports:

Copyright © Microsoft Corporation 2005. All rightsserved. 217

Visual Basic Language Specification

If the identifier matches the name of an accessite or type member in exactly one import, then th
identifier refers to that type or type memberhi identifier matches the name of an accessibke ayp
type member in more than one import, a compile-tamer occurs.

If the identifier matches the name of a namespaexactly one import, then the identifier refersHat
namespace. If the identifier matches the namenainaespace in more than one import, a compile-time
error occurs.

Otherwise, if the imports contain one or more asitds standard modules, and a member name lookup
of the identifier produces an accessible matctxacty one standard module, then the result istixac
the same as a member access of the famm whereM is the standard module containing the matching
member and is the identifier. If the identifier matches acsibfe type members in more than one
standard module, a compile-time error occurs.

» If the compilation environment defines one or mionport aliases, and the identifier matches the naime
one of them, then the identifier refers to that agpace or type.

* If the compilation environment defines one or mionports:

If the identifier matches the name of an accessyge or type member in exactly one import, then th
identifier refers to that type or type memberhk identifier matches the name of an accessibke dyp
type member in more than one import, a compile-&mer occurs.

If the identifier matches the name of a namespaexactly one import, then the identifier refersHat
namespace. If the identifier matches the namenainaespace in more than one import, a compile-time
error occurs.

Otherwise, if the imports contain one or more asitds standard modules, and a member hame lookup
of the identifier produces an accessible matchxacty one standard module, then the result istixac
the same as a member access of the farmm whereM is the standard module containing the matching
member and is the identifier. If the identifier matches acsiete type members in more than one
standard module, a compile-time error occurs.

» Otherwise, the name given by the identifier is dim#&l and a compile-time error occurs.

If a simple name with a type argument list resobkeeanything other than a type or method, a contjite error
occurs. If a type argument list is supplied, opiyes with the same arity as the type argumenatetconsidered
but type members, including methods with differarities,are still considered. This is because type inference
can be used to fill in missing type arguments. Assallt, names with type arguments may bind diffdyeto
types and methods:

218

Class outer
Class cl(of T)
End Class

shared sub si(of QO
End Sub

Class Inner
Class C1
End Class

Sub s10)
Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

End Sub

Sub Test()
Dim x As C1l(of Integer) ' Binds to outer.cl(of T)
s1(of Integer)() ' Error: Outer.Inner.S1l takes

! no type arguments
End Sub
End Class
End Class

Normally, a name can only occur once in a particnéanespace. However, because namespaces can be
declared across multiple .NET assemblies, it isipts to have a situation where two assemblieqdefitype
with the same fully qualified name. In that casgpe declared in the current set of source fégzreferred
over a type declared in an external .NET assen@itlyerwise, the name is ambiguous and there is yaava
disambiguate the name.

SmpleNameExpression ::= Identifier [(of TypeArgumentList)]

11.4.5 AddressOf Expressions

An Addressof expression is used to produce a method pointer ekpression consists of thedressof
keyword and an expression that must be classiBealraethod group. The method group cannot be taiaeh
and it cannot refer to constructors.

The result is classified as a method pointer apdafisociated instance expression and type arguistgfiftany)
is the same as the associated instance expresaidgme argument list of the method group.

AddressOfExpression ::= Addressof Expression

11.5 Type Expressions
A type expression is aGetType expression, &ypeof. . .Is expression, or abs expression.
TypeExpression ::=

GetTypeExpression |

TypeOflsExpression |

ISExpression

11.5.1 GetType Expressions

A GetType expression consists of the keyw@walt Type and the name of a type. A type expression is ifieds
as a value, and the value of the expression ieeflextion System. Type) class that represents that type. If the
expression is a type parameter, the expressionetilin theSystem. Type object that corresponds to the type
argument supplied for the type parameter at rue-tim

The type name in @etType expression is special in two ways:

* The type name is allowed to bgstem.Vvoid, the only place in the language where this typaenenay be
referenced.

* The type name may be a constructed generic typethégttype arguments omitted. This allows the
GetType expression to return theystem. Type object that corresponds to the generic type itself

The following example demonstrates the GetTypeeasgion:
Module Test

Copyright © Microsoft Corporation 2005. All rightsserved. 219

Visual Basic Language Specification

Sub Main(Q)
Dim t As Type() = { GetType(Integer), GetType(System.Int32), _
GetType(String), GetType(bDouble()) }
Dim i As Integer

For i = 0 To t.Length - 1
console.wWriteLine(t(i).Name)
Next 1
End Sub
End ModuTle
The resulting output is:
Int32
Int32
String
DoubTle()
GetTypeExpression ::= GetType (GetTypeTypeName)

GetTypeTypeName ::=
TypeName |
Qualifiedidentifier (of [TypeArityList])

TypeArityList ::=

|
TypeParameterList ,

11.5.2 TypeOf...Is Expressions

A TypeOf...Is expression is used to check whether the run-type of a value is compatible with a given
type. The first operand must be classified as mevahd must be of a reference type or an unconsttaype
parameter type. The second operand must be a &ype.rThe result of the expression is classifiea esue
and is aBoolean value. The expression evaluategtaie if the run-time type of the operand is derivecdhiror
implements the typesalse otherwise.

TypeOflsExpression ::= Typeof Expression Is TypeName

11.5.3 Is Expressions

An Is or IsNot expression is used to do a reference equality aasgm. Each expression must be classified as
a value and the type of each expression must égence type or an unconstrained type parameter tiythe

type of one expression is an unconstrained typanpater type, however, the other expression musteliteral
Nothing.

The result is classified as a value and is typegba3ean. An Is operation evaluates frue if both values
refer to the same instancerarl se otherwise. ArisNot operation evaluates false if both values refer to
the same instance @rue otherwise.

IsExpression ::=
Expression Is Expression |
Expression IsNot Expression

220 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

11.6 Member Access Expressions

A member access expression is used to access aanefrdn entity. A member access of the fani, where
E is an expression, a built-in type, the keywalabal, or omitted and is an identifier with an optional type
argument list, is evaluated and classified as fdto

* If E is omitted, then the expression from the immedjiatentainingwith statement is substituted ferand
the member access is performed. If there is ncagungwi th statement, a compile-time error occurs.

» If Eis a type parameter, then a compile-time errarltes

» If Eis the keywords1obal, and1 is the name of an accessible type in the globalespace, then the result
is that type.

» If Eis classified as a namespace @ns the name of an accessible member of that naanesghen the
result is that member. The result is classified aamespace or a type depending on the member.

» If Eis a built-in type or an expression classifiecdagpe, and is the name of an accessible member,of
thenk. I is evaluated and classified as follows:

» If 1is the keywordiew, then a compile-time error occurs.

» If 1 identifies a type, then the result is that type.

» If 1 identifies one or more methods, then the reswtrisethod group with the associated type argument

list and no associated instance expression.

» If I identifies one or more properties, then the raswdtproperty group with no associated instance
expression.

» If 1 identifies a shared variable, and if the variableead-only, and the reference occurs outside the
shared constructor of the type in which the vadabldeclared, then the result is the value ofttered
variabler in E. Otherwise, the result is the shared variabile E.

« If 1 identifies a shared event, the result is an execss with no associated instance expression.
« If T identifies a constant, then the result is the valithat constant.
« If I identifies an enumeration member, then the réstite value of that enumeration member.

» Otherwiseg. I is an invalid member reference, and a compile-tnner occurs.

» If E is classified as a variable or value, the type/laith isT, andI is the name of an accessible member of

E, thenkE. I is evaluated and classified as follows:

* If Tis the keywordNew andE is an instance expressiame(MyBase, orMycClass), then the result is a
method group representing the instance construofdhe type of with an associated instance
expression of and no type argument list. Otherwise, a compiteeterror occurs.

» If 1 identifies one or more methods, then the reswatrisethod group with the associated type argument

list and an associated instance expressian of

» If I identifies one or more properties, then the raswdtproperty group with an associated instance
expression of.

» If 1 identifies a shared variable or an instance vijand if the variable is read-only, and the refiee
occurs outside a constructor of the class in wthiehvariable is declared appropriate for the kihd o
variable (shared or instance), then the resultédssalue of the variablein the object referenced lgy
If T is a reference type, then the result is the vigialn the object referenced lgy Otherwise, ifT is a

Copyright © Microsoft Corporation 2005. All rightsserved. 221

Visual Basic Language Specification

value type and the expressibiis classified as a variable, the result is a Wéeiaotherwise the result is
a value.

» If 1 identifies an event, the result is an event ace@bsan associated instance expression. of
« If I identifies a constant, then the result is the &valithat constant.
« |f I identifies an enumeration member, then the réstite value of that enumeration member.

* If Tisobject, then the result is a late-bound member lookugstfied as a late-bound access with an
associated instance expressiort of

» Otherwiseg.I is an invalid member reference, and a compile-tnner occurs.

If the member access expression includes a typeraangt list, then only types or methods with the samity as
the type argument list are considered.

When a member access expression begins with tiveckdy1obal, the keyword represents the outermost
unnamed namespace, which is useful in situatioreseva declaration shadows an enclosing namesphee. T
Global keyword allows “escaping” out to the outermost rapace in that situation. For example:

Class System
End Class

Module Test
Sub Main()

Error: Class System does not contain Console
System.Console.writeLine("Hello, world!")

Legal, binds to System in outermost namespace
Global.system.Console.WriteLine("Hello, world!")
End Sub
End Module
In the above example, the first method call is lisMaecause the identifieystem binds to the classystem,

not the namespacy stem. The only way to access tBgstem namespace is to usdobal to escape out to
the outermost namespace.

If the member being accessed is shared, any expmess the left side of the period is superfluond & not
evaluated unless the member access is done latetbBar example, consider the following code:
Class C
Public Shared F As Integer = 10
End Class

Module Test
PubTlic Function ReturnC() As C
console.WriteLine("Returning a new instance of C.")
Return New C()
End Function

222 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

Public Sub Main()
console.WriteLine("The value of F is: " & ReturnC().F)
End Sub
End Module
It printsThe value of F is: 10 because the functicketurnc does not need to be called to provide an
instance of to access the shared member

Member AccessExpression ::=
[[MemberAccessBase] .] IdentifierOrKeyword

Member AccessBase ::=
Expression |
BuiltinTypeName |
Global |

MyClass
MyBase

11.6.1 Identical Type and Member Names

It is not uncommon to name members using the same ras their type. In that situation, however,
inconvenient name hiding can occur:

Enum Color
Red
Green
Yellow

End Enum

Class Test
Readonly Property Color() As Color
Get
Return Color.Red
End Get
End Property

Shared Function DefaultColor() As Color
Return Color.Green ' Binds to the instance property!
End Function
End Class

In the previous example, the simple namdor in befaultCoTlor binds to the instance property instead of
the type. Because an instance member cannot bemeéal in a shared member, this would normallyrbe a

error.
However, a special rule allows access to the tgphis case. If the base expression of a membesacc
expression is a simple name and binds to a congieldt property, local variable or parameter whbge has
the same name, then the base expression canitefarte the member or the type. This can nevarlras
ambiguity because the members that can be accesackither one are the same.

Copyright © Microsoft Corporation 2005. All rightsserved. 223

Visual Basic Language Specification

11.6.2 Default Instances

In some situations, classes derived from a comnase blass usually or always have only a singlemtst. For
example, most windows shown in a user interfacg emér have one instance showing on the screamyat a

time. To simplify working with these types of classVisual Basic can automatically genedsfault instances

of the classes that provide a single, easily referd instance for each class.

Default instances are always created ftardily of types rather than for one particular type. i&tdad of
creating a default instance for a class Formldieates from Form, default instances are createdlfealasses
derived from Form. This means that each individlasds that derives from the base class does nettbawe
specially marked to have a default instance.

The default instance of a class is representedduyrgiler-generated property that returns the deiiastance
of that class. The property generated as a menflzeclass called thgroup class that manages allocating and
destroying default instances for all classes ddrfvem the particular base class. For examplefate default
instance properties of classes derived framm may be collected in theyForms class. If an instance of the
group class is returned by the expressipnForms, then the following code accesses the defaulaintss of
derived classesorml andForm2:

Class Forml
Inherits Form
Public x As Integer
End Class

Class Form2
Inherits Form
Public y As Integer
End Class

Module Main
Sub Main()
My.Forms.Forml.x = 10
console.WriteLine(My.Forms.Form2.y)
End Sub
End Class
Default instances will not be created until thetfieference to them; fetching the property repréasg the
default instance causes the default instance todaged if it has not already been created or bas bet to
Nothing. To allow testing for the existence of a defandttance, when a default instance is the target ofa

or IsNot operator, the default instance will not be creatduls, it is possible to test whether a defadtance
isNothing or some other reference without causing the deilastiance to be created.

Default instances are intended to make it easgfer to the default instance from outside of tlesglthat has
the default instance. Using a default instance fwithin a class that defines it might cause comfass to

which instance is being referred to, i.e. the défagtance or the current instance. For example following
code modifies only the valuein the default instance, even though it is beialged from another instance. Thus
the code prints the valueinstead ofl0:

Class Forml
Inherits Form

224 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.
Public x As Integer = 5

Public sub changex()
Forml.x = 10
End Sub
End Class

Module Main
Sub Main(Q)
Dim f As Forml = New Forml()
f.Changex()
console.WriteLine(f.x)
End Sub
End Class

To prevent this kind of confusion, it is not valarefer to a default instance from within an imstamethod of
the default instance’s type.

11.6.2.1 Default Instances and Type Names

A default instance may also be accessible dirgbtlyugh its type’s name. In this case, in any esgon

context where the type name is not allowed theesgione, wherek represents the fully qualified name of the
class with a default instance, is changed’tpowheree’ represents an expression that fetches the default
instance property. For example, if default instarfoe classes derived frororm allow accessing the default
instance through the type name, then the followiode is equivalent to the code in the previous gtem

Module Main
Sub Main()
Forml.x = 10
console.wWriteLine(Form2.y)
End Sub
End Class
This also means that a default instance that isssdgle through its type’s name is also assigriabbeigh the
type name. For example, the following code setsl#fault instance aforml toNothing:
Module Main
Sub Main()
Forml = Nothing
End Sub
End Class
Note that the meaning @f. I werek represents a class andepresents a shared member does not change. Such

an expression still accesses the shared membetlgioff of the class instance and does not refegdhe
default instance.

Copyright © Microsoft Corporation 2005. All rightsserved. 225

Visual Basic Language Specification

11.6.2.2 Group Classes
TheMicrosoft.visualBasic.MyGroupColTlectionAttribute attribute indicates the group class for a
family of default instances. The attribute has fparameters:

» The parameterypeTocCollect specifies the base class for the group. All nomege classes that are
declared as deriving from the group’s base typeamilomatically have a default instance.

* The parametetreateInstanceMethodName specifies the method to call in the group classéate a
new instance in a default instance property.

e The parametebisposeInstanceMethodName specifies the method to call in the group clasdispose
of a default instance property if the default ins&property is assigned the valgething.

* The parametebefaultInstanceAlias specifics the expressi@i to substitute for the class name if the
default instances are accessible directly throbgir type name. If this parametemisthing or an empty
string, default instances on this group type ateanoessible directly through their type’s name.

The signature of the create method must be ofdima$hared Function <Name>(0f T As {New,
<Type>}) (Byval Instance of T) As T. The dispose method must be of the fetmared Sub
<Name>(0f T As <Type>) (ByRef Instance Of T). Thus, the group class for the example in the
preceding section could be declared as follows:

<Microsoft.visualBasic.MyGroupAttribute("Form", "Create", _
"Dispose", "My.Forms")> _
Public NotInheritable Class MyForms
Private Shared Function Create(of T As {New, Form}) _
(Byval Instance Oof T) As T
If Instance Is Nothing Then
Return New T(Q)
Else
Return Instance
End If
End Function

Private Shared Sub Dispose(0f T As Form) (ByRef Instance Of T)
Instance.Close()
Instance = Nothing
End Sub
End Class

If a source file declared a derived cla&ss'ml, the generated group class would be equivalent to:
<Microsoft.visualBasic.MyGroupAttribute("Form", "Create", _
"Dispose", "My.Forms")> _
Public NotInheritable Class MyForms
Private Shared Function Create(of T As {New, Form}) _
(Byval Instance Oof T) As T
If Instance Is Nothing Then
Return New T(Q)

226 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

Else
Return Instance
End If
End Function

Private Shared Sub Dispose(0f T As Form) (ByRef Instance Of T)
Instance.Close()
Instance = Nothing

End Sub

Private m_Forml As Forml

Public Property Forml() As Forml
Get
Return CreateInstance(m_Forml)
End Get
Set (Byval value As Forml)
If value IsNot Nothing AndAlso value IsNot m_Forml Then
Throw New ArgumentException(_
"Property can only be set to Nothing.")
End If
DisposeInstance(m_Forml)
End Set
End Property
End Class

11.7 Dictionary Member Access

A dictionary member access expression is used to look up a member of a collection. Aidiary member
access takes the form bf I, wherek is an expression that is classified as a valuerdaaan identifier. The
type of the expression must have a default propedsgxed by a singletring parameter. The dictionary
member access expressoIT is transformed into the expressibrd ("1"), whereD is the default property of
E. For example:

Class Keys
PubTlic Readonly Default Property Item(Byval s As String) As Integer
Get
Return 10
End Get
End Property
End Class

Module Test

Copyright © Microsoft Corporation 2005. All rightsserved. 227

Visual Basic Language Specification

Sub Main(Q)
Dim x As Keys = new Keys()
Dim y As Integer

The two statements are equivalent.

y = x!abc
y = x("abc")
End Sub
End ModuTle

If an exclamation point is specified with no exies, the expression from the immediately contagminth
statement is assumed. If there is no contaiwiingh statement, a compile-time error occurs.

DictionaryAccessExpression ::= [Expression | ! IdentifierOrKeyword

11.8 Invocation Expressions

An invocation expression consists of an invocatarget and an optional argument list. The targptession
must be classified as a method group or a valusghge is a delegate type. If the target expragsia value
whose type is a delegate type, then the targdieoiinivocation expression becomes the method gefepring
to theInvoke member of the delegate type.

An argument list has two sections: positional argaote and named argumer®gsitional arguments are
expressions and must precede any named argurianted arguments start with an identifier that can match
keywords, followed by = and an expression.

Given a method group, overload resolution is apiepick a single method applicable to the givegument
list(s). If the method group only contains one roethnd that method takes no arguments and is &danthen
the method group is interpreted as an invocatigmession with an empty argument list and the resulsed as
the target of an index expression. If no methaapislicable, a compile-time error occurs. If the layyble
method is a function, then the result of the intimraexpression is classified as a value typedhasdturn type
of the function. If the applicable method is a suhine, then the result is classified as void.

InvocationExpression ::= Expression [([ArgumentList])]

ArgumentList ::=
Positional ArgumentList , NamedArgumentList |
Positional ArgumentList |

NamedArgumentList
Positional ArgumentList ::=

Expression |

Positional ArgumentList , [Expression]
NamedArgumentList ::=

IdentifierOrKeyword := Expression |
NamedArgumentList , IdentifierOrKeyword := Expression

11.8.1 Overloaded Method Resolution
Given a method group, the applicable method irgtieep for an argument list is determined as follows

« Eliminate all inaccessible members from the set.

» Eliminate all members from the set that are notiegiple to the argument list. If the set is ematy,
compile-time error results. If only one member reraan the set, that is the applicable member.

228 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

» Eliminate all members from the set that requirgawing coercions to be applicable to the argumisiit |
except for the case where the argument expresgientobject. If the set is empty, a compile-time error
results. If only one member remains in the set,iththe applicable member.

» Eliminate all remaining members from the set tleguire narrowing coercions to be applicable to the
argument list. If the set is empty, the type caritey the method group is not an interface, andtstri
semantics are not being used, the invocation taxpession is reclassified as a late-bound medicodss.
If strict semantics are being used or the methodmis contained in an interface and the set isygnap
compile-time error results. If only one member rersan the set, that is the applicable member.

Annotation

The justification for this rule is that if a prognds loosely-typed (that is, most or all variakées declared as
Object), overload resolution can be difficult becausecaltversions frondbject are narrowing. Rather than
have the overload resolution fail in many situagidgrequiring strong typing of the arguments torttethod
call), resolution the appropriate overloaded mettwochll is deferred until run time. This allowstloosely-
typed call to succeed without additional casts.

An unfortunate side-effect of this, however, isttharforming the late-bound call requires casthmg¢all target
toobject. In the case of a structure value, this meansthigatalue must be boxed to a temporary. If the
method eventually called tries to change a fielthefstructure, this change will be lost once tle¢hmd returns.

Interfaces are excluded from this special rule beedate binding always resolves against the mesnifehe
runtime class or structure type, which may haveedéht names than the members of the interfacgs the
implement.

* Given any two members of the setandN, if M is more applicable thanto the argument list, eliminate
from the set. If only one member remains in thetbet is the applicable member. If the remaining
members do not all have the same signature, a tattinpie error results.

» Otherwise, it must be the case that the remainiagbers have the same signature because of type
parameters. Given any two members of themsatidN, if M is less generic than eliminateN from the set.
If only one member remains in the set, that isajyglicable member. Otherwise, a compile-time error
results.

A membem is considerednore applicable thanN if their signatures are different and, for each pa
parametersij andNj that matches an argument, one of the following conditions is true:

* Mj andNj have identical types, or
* There exists a widening conversion from the typejofo the typenj, or
Annotation

Note that because parameters types are being cedhpéthout regard to the actual argument in thgecéhe
widening conversion from constant expressionsriaraeric type the value fits into is not considerethis
case.

* Ajis the literalo, Mj is a numeric type amdj is an enumerated type, or
Annotation

This rule is necessary because the literaidens to any enumerated type. Since an enumegiedvidens to
its underlying type, this means that overload nesmh on0 will, by default, prefer enumerated types over
numeric types. We received a lot of feedback thiattiehavior was counterintuitive.

e MjisByte andNj is SByte, or

e Mjisshort andNj isushort, or

Copyright © Microsoft Corporation 2005. All rightsserved. 229

Visual Basic Language Specification

e MjisInteger andNjisuUInteger, or

e MjisLong andNj isuULong.

Annotation

The rules about the numeric types are necessaaubecthe signed and unsigned numeric types oftiaydar
size only have narrowing conversions between tfiéms, the above rules break the tie between theypes
in favor of the more “natural” numeric type. Thésgarticularly important when doing overload retoluon a
type that widens to both the signed and unsigneaenic types of a particular size (for example, matic
literal that fits into both).

A membem is determined to bkess generic than a membex using the following steps:

» If M has fewer method type parameters thatenm is less generic thawn

» Otherwise, if for each pair of matching parametgir&ndNj, Mj andNj are equally generic with respect to
type parameters on the methodmgris less generic with respect to type parametetb@method, and at
least onevj is less generic thawj, thenm is less generic than

* Otherwise, if for each pair of matching parametgirandNj, Mj andNj are equally generic with respect to
type parameters on the type Mjris less generic with respect to type parametetb®ype, and at least

oneMj is less generic thawj, thenM is less generic than

For example:

Class cl(of T)

Sub
End

Sub
End

Sub
End

Sub
End

Sub
End

Sub
End

Sub
End

S1(x As T)
Sub

s1(of V) (x As T)
Sub

S2(x As Integer)
Sub

S2(x As T)
Sub

s2(of U) (x As U)
Sub

S3(x As T)
Sub

s3(of u) (x As U)
Sub

End Class

230

Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

Module Test
Sub Main(Q)
Dim x As C1(of Integer) = New Cl(of Integer)

x.51(10) ' calls s1(T), as it has fewer type parameters
x.S2(10) ' calls s2(Integer), as it is Tess generic
X.S3(10) ' calls s3(T), as it is less generic than s3(of u)(U)
End Sub
End Module

In practice, the rules for determining whether orethod is more applicable than another methodeaded
to find the overload that is “closest” to the atm@uments supplied. If there is a method whosemater
types match the argument types, then that metholhvi®usly the closest. Barring that, one methatlaser
than another if all of its parameter types are witlan (or the same as) the parameter types aftttez method.
If neither method’s parameters are wider than therothen there is no way for to determine whigthnod is
closer to the arguments.

Note The context of the method usage is not usedéni@ad resolution (except for determining
accessibility).

Annotation

The context of the method call is not generallysidered when doing overload resolution to avoidragldven
more complexity to an already complex algorithme Hiility for mere mortals to grasp the resultswdrload
resolution is already tenuous one, but adding aadysf contextual clues would make it impossibleisTdoes
mean that in some situations overload resolutidhclwoose the “wrong” overload, such as when ikpian
instance method when doing overload resolutiorob# type name.

Also note that because of the named parametensythordering of the actual and formal parameteag not
be the same.

11.8.2 Applicable Methods

A method isapplicable to a set of type arguments, positional argumemd,named arguments if the method
can be invoked using the two argument lists. Tlgement lists are matched against the parametsralsst
follows:

» First, match each positional argument in ordeholist of method parameters. If there are moréipaal
arguments than parameters and the last parametetr ésparamarray, the method is not applicable.
Otherwise, the paramarray parameter is expandddpaiameters of the paramarray element type tohmatc
the number of positional arguments. If a positiarglument is omitted, the method is not applicable.

» Next, match each named argument to a parameteththiven name. If one of the named arguments fail
to match, matches a paramarray parameter, or nsachargument already matched with another position
or named argument, the method is not applicable.

* Next, if parameters that have not been matchedatreptional, the method is not applicable. If opal
parameters remain, the default value specifietieroptional parameter declaration is matched to the
parameter. If a®bject parameter does not specify a default value, therxpression
System.Reflection.Missing.Vvalue is used. If an optionalnteger parameter has the
Microsoft.visualBasic.CompilerServices.OptionCompareAttribute attribute, then the literal
1 is supplied for text comparisons and the lit€ratherwise.

Copyright © Microsoft Corporation 2005. All rightsserved. 231

Visual Basic Language Specification

* Finally, if type arguments have been specifiedy e matched against the type parameter lidteltwo
lists do not have the same number of elementsntthod is not applicable, unless the type argumisnis
empty. If the type argument list is empty, typesneincing is used to try and infer the type argurfisntlf
type inferencing fails, the method is not applieal®therwise, the type arguments are filled inplaee of
the type parameters in the signature.

The type of each argument expression must be iitiplaonvertible to the type of the parameter ittofees. If
the parameter is a reference parameter, the arduwerpression must be also implicitly convertiblenfrthe
type of the parameter. Note that constraints placetype parameters are not considered when detiegni
applicability.

It is possible for two applicable methods to hawedame signature if one or both contains an exgohnd
paramarray parameter. In that case, the memberthgtfewest number of arguments matching expanded
paramarray parameters is considered more applicable

Module Test
Sub F(Byval ParamArray a As Object())
console.writeLine("F(Object())™)

End Sub

sub FO
console.writeLine("FQO")
End Sub

Sub F(Byval a As Object, Byval b As Object)
console.wWriteLine("F(Object, Object)™)
End Sub

Sub F(Byval a As Object, Byval b As object
Byval ParamArray c As Object())
console.wWriteLine("F(Object, Object, Object())'")
End Sub

Sub Main()
FO
F(1)
F(1, 2)
F(1, 2, 3)
End Sub
End Module

The above example produces the following output:
FO
F(object())
F(Object, Object)
F(Object, Object, Object())
232 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

In the example, the first and third callsrtreferF () andrF(object, Object) because they match no
arguments to expanded paramarray parameters. Uié fll toF prefersF (Object, Object, Object())
because two arguments match non-expanded paranpamayeters. When a class declares a method with a
paramarray parameter, it is not uncommon to alslidie some of the expanded forms as regular metByds
doing so it is possible to avoid the allocatioranfarray instance that occurs when an expandeddbeam
method with a paramarray parameter is invoked.

If a single argument expression matches a paraynparmmeter and the type of the argument expression
convertible to both the type of the paramarray petar and the paramarray element type, the method i
applicable in both its expanded and unexpandeddowith two exceptions. If the conversion from tiee of
the argument expression to the paramarray typariswing, then the method is only applicable ireitpanded
form. If the argument expression is the null litevathing, then the method is only applicable in its
unexpanded form. For example:

Module Test
Sub F(ParamArray a As Object())
Dim o As Object

For Each o In a
Console.write(o.GetType() .FulTName)
console.write(" ™)

Next o

console.WriteLine()

End Sub

Sub Main(Q)
Dim a As Object() = { 1, "Hello", 123.456 }
Dim o As Object = a

F(a)
F(CType(a, Object))
F(o)
F(CType(o, Object()))
End Sub
End ModuTe

The above example produces the following output:
System.Int32 System.String System.Double
System.Object[]

System.Object[]
System.Int32 System.String System.Double

In the first and last invocations sf the normal form of is applicable because a widening conversion exists
from the argument type to the parameter type (hotiof typeobject ()), and the argument is passed as a
regular value parameter. In the second and thirdcations, the normal form @fis not applicable because no
widening conversion exists from the argument typthée parameter type (conversions froject to
object () are narrowing). However, the expanded forns of applicable, and a one-elemebtject () is

Copyright © Microsoft Corporation 2005. All rightsserved. 233

Visual Basic Language Specification

created by the invocation. The single element efatiay is initialized with the given argument \v&a{which
itself is a reference to @bject()).

11.8.3 Passing Parameters

If a parameter is a value parameter, the matchigignaent expression must be classified as a valwe v@lue is
converted to the type of the parameter and passasl the parameter at run time. If the parameteréference
parameter and the matching argument expressidassified as a variable whose type is the sameeas t
parameter, then a reference to the variable isgdasas the parameter at run time.

Otherwise, if the matching argument expressionassified as a variable, value, or property acabss) a
temporary variable of the type of the parametatlscated. Before the method invocation at run tithe
argument expression is reclassified as a valuejerted to the type of the parameter, and assignduet
temporary variable. Then a reference to the temmpaariable is passed in as the parameter. Afeentkthod
invocation is evaluated, if the argument expressartassified as a variable or property accesstemporary
variable is assigned to the variable expressidheproperty access expression. If the propertgsscc
expression has nget accessor, then the assignment is not performed.

11.8.4 Conditional Methods

If the target method to which an invocation expi@ssefers is a subroutine that is not a membemnahterface
and if the method has one or massstem.Diagnostics.ConditionalAttribute attributes, evaluation of
the expression depends on the conditional compilatonstants defined at that point in the soutee Eiach
instance of the attribute specifies a string, wimames a conditional compilation constant. Eachiitimmal
compilation constant is evaluated as if it werd p&a conditional compilation statement. If thenstant
evaluates tarue, the expression is evaluated normally at run tifréhe constant evaluateskalse, the
expression is not evaluated at all.

When looking for the attribute, the most derivedldration of an overridable method is checked.

Note The attribute is not valid on functions or ifit&e methods and is ignored if specified on eikired
of method. Thus, conditional methods will only agpim invocation statements.

11.8.5 Type Argument Inference

When a method with type parameters is called witkpacifying type argumentyjpe inference is used to try
and infer type arguments for the call. This all@usore natural syntax to be used for calling a oekthith
type parameters when the type arguments can l@lyrinferred. For example, given the following thed
declaration:

Module Util
Function choose(of T)(Byval b As Boolean, Byval first As T, _
Byval second As T) As T
If b Then
Return first
Else
Return second
End If
End Function
End Class

it is possible to invoke thehoose method without explicitly specifying a type argumtie

calls choose(0f Integer)
234 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

Dim i As Integer = Util.Choose(True, 5, 213)
' calls Choose(0f Sstring)
Dim s As String = Util.Choose(False, "foo", "bar")

Through type inference, the type argumentseger andstring are determined from the arguments to the
method.

Given a set of regular arguments matched to regalsEameters, type inference inspects each arguyyi
and its corresponding parameter typ® infer type arguments. Each péit, P) is analyzed as follows:

* Nothing is inferred from the argument (but typesieince succeeds) if any of the following are true:
» P does not involve any method type parameters.
* The argument is theoth1ing literal.
* The argument is a method group.

« If Pis an array type andlis an instantiation afList(of T),ICollection(of T), or
IEnumerable(of T), then replace with the element type &f, andA with the type argument of and
restart the process.

« If Pis an array type andlis an array type of the same rank, then replaaedp respectively with the
element types of andp and restart this process.

« If Pis an array type andlis not an array type of the same rank, then tgfarénce fails for the generic
method.

* If pis a method type parameter, then type inferenceesals for this argument, ands the type inferred
for that type parameter.

» OtherwiseP must be a constructed type. If, for each methpd parametewx that occurs irp, exactly one
typeTX can be determined such that replacing eactvith eachTx produces a type to whighis
convertible by a standard implicit conversion, tiv@ference succeeds for this argument, and &&dh the
type inferred for eackix. Method type parameter constraints, if any, aneiigd for the purpose of type
inference. If, for a givemx, noTX exists or more than o exists, then type inference fails for the
generic method (a situation where more thantonexists can only occur i is a generic interface type and
A implements multiple constructed versions of thatiface).

If a parameter is a paramarray, then type inferen@iest performed against the parameter in itsmad form. If
type inference fails, then type inference is penfed against the parameter in its expanded form.

If all of the method arguments have been processecessfully by the above algorithm, all inferentteg were
produced from the arguments are pooled. This passédf inferences must have the following properti

» Every type parameter of the method must have ammagénferred type argument.

» If atype parameter occurred more than once, dh@finferences about that type parameter must ihée
same type argument.

If these two properties hold, then type inferenaeceeds, else it fails. The success of type interelves not, in
and of itself, guarantee that the method is apiplieca

11.9 Index Expressions

An index expression results in an array element or reclassifies agntgmroup into a property access. An index
expression consists of, in order, an expressioopaning parenthesis, an index argument list, acldsing
parenthesis. The target of the index expressiort beuslassified as either a property group or ae/ahn index
expression is processed as follows:

Copyright © Microsoft Corporation 2005. All rightsserved. 235

Visual Basic Language Specification

If the target expression is classified as a vahgifits type is not an array typehject, or
System.Array, the type must have a default property. The iridgerformed on a property group that
represents all of the default properties of thetydthough it is not valid to declare a parametssidefault
property in Visual Basic, other languages may all@elaring such a property. Consequently, indeging
property with no arguments is allowed.

If the expression results in a value of an arrggtthe number of arguments in the argument listine

the same as the rank of the array type and maidoide named arguments. If any of the indexes are
invalid at run time, &ystem.IndexOoutOofRangeException exception is thrown. Each expression must
be implicitly convertible to typ@nteger. The result of the index expression is the vaeatblthe specified
index and is classified as a variable.

If the expression is classified as a property grawerload resolution is used to determine whebiner of
the properties is applicable to the index argurfientlf the property group only contains one pnapé¢hat
has aGet accessor and if that accessor takes no arguntieetsthe property group is interpreted as an
index expression with an empty argument list. Tdgult is used as the target of the current index
expression. If no properties are applicable, thearapile-time error occurs. Otherwise, the exp@ssi
results in a property access with the associatgdnee expression (if any) of the property group.

If the expression is classified as a late-boung@rty group or as a value whose typehigect or
System.Array, the processing of the index expression is dedeurdil run time and the indexing is late-
bound. The expression results in a late-bound ptypecess typed abject. The associated instance
expression is either the target expression, & & value, or the associated instance expressithre of
property group. At run time the expression is psseel as follows:

» If the expression is classified as a late-boung@ry group, the expression may result in a method
group, a property group, or a value (if the memsbeamn instance or shared variable). If the resudt i
method group or property group, overload resoluiscepplied to the group to determine the correct
method for the argument list. If overload resolatfails, a
System.RefTlection.AmbiguousMatchException exception is thrown. Then the result is
processed either as a property access or as aratiwo and the result is returned. If the invoaai®of
a subroutine, the resulti®thing.

» If the run-time type of the target expression isaemay type osystem.Array, the result of the index
expression is the value of the variable at theifpddndex.

» Otherwise, the run-time type of the expression rhast a default property and the index is performed
on the property group that represents all of tiaudeproperties on the type. If the type has niadlé
property, then @ystem.MissingMemberException exception is thrown.

IndexExpression ::= Expression ([ArgumentList])

11.10 New Expressions
TheNew operator is used to create new instances of tyljesge are three forms néw expressions:

Object-creation expressions are used to creatammances of class types and value types.
Array-creation expressions are used to create nstarices of array types.

Delegate-creation expressions are used to creaténstances of delegate types.

A New expression is classified as a value and the risstiie new instance of the type.

NewExpression ::=

ObjectCreationExpression |

236 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

ArrayCreationExpression |
DelegateCreationExpression

11.10.1 Object-Creation Expressions

An object-creation expression is used to createvainstance of a class type or a structure type.tye of an
object creation expression must be a class typgueature type, or a type parameter witlew constraint and
cannot be alustInherit class. Given an object creation expression ofdira New T(A), whereT is a class
type or structure type amdis an optional argument list, overload resolutigtermines the correct constructor
of T to call. A type parameter withnew constraint is considered to have a single, pareness constructor. If
no constructor is callable, a compile-time errarws; otherwise the expression results in the ioeaff a new
instance off using the chosen constructor. If there are noraegs, the parentheses may be omitted.

Where an instance is allocated depends on whéthenstance is a class type or a value type.instances of
class types are created on the system heap, véwlenstances of value types are created directiherstack.

ObjectCreationExpression ::=
New NonArrayTypeName [([Argumentlist])]

11.10.2 Array-Creation Expressions

An array-creation expression is used to createraimgtance of an array type. If an array sizeatization
modifier is supplied, the resulting array type ésided by deleting each of the individual argumdrds the
array size initialization argument list. The vahfeeach argument determines the upper bound of the
corresponding dimension in the newly allocatedyamatance. If the array-element initializer in #»ression
is not empty, each argument in the argument ligtrba a constant, and the rank and dimension length
specified by the expression list must match thdsbeoarray element initializer.

Dim a() As Integer = New Integer(2) {}

Dim b() As Integer = New Integer(2) { 1, 2, 3}

Dim c() As Integer = New Integer(2, 2) { {1, 2, 3%}, {4, 5,611}
If an array size initialization modifier is not quljgd, then the type name must be an array typdladrray
element initializer must be empty or the rank @ specified array type must match that of the aetegnent
initializer. The individual dimension lengths andgerrred from the number of elements in each of the

corresponding nesting levels of the array elentiglizer. If the array-element initializer is etypthe length
of each dimension is zero.

Dim d() As Integer = New Integer() { 1, 2, 3}

Dim e() As Integer = New Integer(,) { {1, 2, 3%}, {4, 5, 61} }
An array instance's rank and length of each dinsenaie constant for the entire lifetime of theanste. In
other words, it is not possible to change the i@rdn existing array instance, nor is it possiblegsize its

dimensions. Elements of arrays created by arragtioreexpressions are always initialized to thefiadlt
value.

ArrayCreationExpression ::=
New NonArrayTypeName ArraySzelnitializationModifier ArrayElementlnitializer

11.10.3 Delegate-Creation Expressions

A delegate-creation expression is used to crea@einstance of a delegate type. The argumentiefenate-
creation expression must be an expression cladsiiea method pointer.

One of the methods referenced by the method paimtist exactly match the signature of the delegque. tA
method matches the delegate type if the methodtideclaredustoverride and if both their signatures and

Copyright © Microsoft Corporation 2005. All rightsserved. 237

Visual Basic Language Specification
return types match. In the following example, sheéf variable is initialized with a delegate that refes the
secondsquare method because that method exactly matches thatsig and return type bbubTeFunc.
Delegate Function DoubleFunc(x As Double) As Double
Class A
Private f As New DoubleFunc(Addressof Square)
overloads Shared Function Square(x As Single) As Single
Return x * x
End Function
overloads Shared Function Square(x As Double) As Double
Return x * x
End Function

End Class
Had the secondquare method not been present, a compile-time error évbalve occurred.

If type arguments are associated with the methaatgao only methods with the same number of type
arguments are considered. If no type argumentasa@ciated with the method pointer, type infereacsed
when matching signatures against a generic metbalike other normal type inference, the return tgpéhe
delegate is used when inferring type argumentstdiutn types are still not considered when deteingithe
least generic overload. The following example shbeth ways of supplying a type argument to a dééega
creation expression:

Delegate Function D(Byval s As String, Byval i As Integer) As Integer
Delegate Function E() As Integer

Module Test
PubTlic Function F(of T)(Byval s As String, Byval tl As T) As T
End Function

Public Function G(Of T)() As T
End Function

Sub Main()
Dim d1 As D = Addressof f(of Integer) ' OK, type arg explicit
Dim d2 As D = Addressof f ' OK, type arg inferred
Dim el As E = Addressof g(of Integer) ' OK, type arg explicit
Dim e2 As E = Addressof g ' oK, infer from return
End Sub
End Module

In the above example, a non-generic delegate tygseingtantiated using a generic method. It is péssible to
create an instance of a constructed delegate sipg a generic method. For example:

Delegate Function Predicate(of U)(Byval ul As U, Byval u2 As U) As Boolean

238 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

Module Test
Function Compare(of T)(tl As List(of T), t2 As List(of T)) As Boolean

End Function

Sub Main()
Dim p As Predicate(of List(of Integer))
p = Addressof Compare(of Integer)
End Sub
End ModuTle

The result of a delegate-creation expression Elegdte instance that refers to the matching methiothe
associated instance expression (if any) from thénoakepointer expression. If the instance expresisidyped as
a value type, then the value type is copied orgcsilstem heap because a delegate can only p@inh&thod of
an object on the heap. The method and object tohndnidelegate refers remain constant for the elifttane

of the delegate. In other words, it is not possiblehange the target or object of a delegate #ftas been
created.

DelegateCreationExpression ::= New NonArrayTypeName (Expression)

11.11 Cast Expressions

A cast expression coerces an expression to a gypen Specific cast keywords coerce expressiomstim
primitive types. Three general cast keywordgype, TryCast andDirectCast, coerce an expression into a

type.

DirectCast andTryCast have special behaviors. Because of their speelaior, they only support a
subset of the conversions supported by the lang@agifically, the conversions supportediy ectCast
are:

» Conversions from any type to itself.

» Conversions from the literalothing to any type.

» Conversions from any derived type to one of iteligpes, and vice versa.

» Conversions from any interface type to any claps,tgnd vice versa.

» Conversions from any interface type to any valye that implements the interface type, and vicsazer
» Conversions from any interface type to any othtarface type.

» Conversions from any enumerated type to its unoeylype, and vice versa.

« Conversions from an array tygewith an element typ8E to a covariant-array typewith an element type
TE, provided all of the following are true:

» s andr differ only in element type.
» Bothse andTE are reference types.
» A conversion exists frorse to TE.

» Conversions from an array tygewith an enumerated element tygpeto an array typ& with an element
typeTE, provided all of the following are true:

* S andrt differ only in element type.

Copyright © Microsoft Corporation 2005. All rightsserved. 239

Visual Basic Language Specification

* TE is the underlying type fE.

» Conversions from an array tygewith an element typsEt to an array typ& with an enumerated element
typeTE, provided all of the following are true:

* S andrt differ only in element type.
* SEis the underlying type afE.

The conversions supported DyyCast are the same &@s rectCast, except the type of the expression or the
target type cannot be a value type. User-defined@sion operators are not considered wirarectCast or
DirectCast is used.

Annotation

The conversion set thatirectCast andTryCast support are restricted because they implemenivinat
CLR” conversions. The purposemfrectcCast is to provide the functionality of the “unbox” ingction,
while the purpose ofrycast is to provide the functionality of the “isinststruction. Since they map onto
CLR instructions, supporting conversions not disestipported by the CLR would defeat the intendegbpse.

DirectCast converts expressions that are typedlagect differently thancType. When converting an
expression of typebject whose run-time type is a primitive value typérectcCast throws a
System.InvalidCastException exception if the specified type is not the samthagun-time type of the
expression or aystem.NulTReferenceexception if the expression evaluatesNothing.

Annotation

As noted abovepirectcast maps directly onto the CLR instruction “unbox” whige type of the expression
isObject. In contrastCType turns into a call to a runtime helper to do thevaysion so that conversions
between primitive types can be supported. In tise @zhen awbject expression is being converted to a
primitive value type and the type of the actuatanse match the target tymei,rectcast will be significantly
faster tharcType.

TryCast converts expressions but does not throw an exareftthe expression cannot be converted to the
target type. Insteadrycast will result inNoth1ing if the expression cannot be converted at runtfoe.
example:

Interface ITest
Sub Test()
End Interface

Module Test
Sub Convert(Byval o As Object)
Dim i As ITest = TryCast(o, ITest)

If i IsNot Nothing Then
i.Test()
End If
End Sub
End Module

Annotation

240 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

As noted aboverrycast maps directly onto the CLR instruction “isinst”y Bombining the type check and the
conversion into a single operatiamycCast can be cheaper than doingypeof...Is and then &Type.

If no conversion exists from the type of the expr@s to the specified type, a compile-time erraruss.
Otherwise, the expression is classified as a vahaethe result is the value produced by the coiomers

CastExpression ::=
DirectCast (Expression , TypeName) |
TryCast (Expression , TypeName) |
CType (Expression , TypeName) |
CastTarget (Expression)

CastTarget ::=
CBool | cByte | cChar | cbate | CDec | cDb1 | CInt | CLnhg | CObj | CSByte | CShort |
CSng | CStr | cuint | cuLng | cushort

11.12 Operator Expressions

There are two kinds of operatot$nary operators take one operand and use prefix notation (for gtemx).
Binary operators take two operands and use infix notation (for eplanx + y). With the exception of the
relational operators, which always resulswo1ean, an operator defined for a particular type resulthat
type. The operands to an operator must alwaysdssiied as a value; the result of an operatoresgion is
classified as a value.

OperatorExpression ::=
ArithmeticOperator Expression |
Rel ational Operator Expression |
LikeOperator Expression |
ConcatenationOperator Expression |
ShortCircuitLogical Operator Expression |
Logical Operator Expression |
ShiftOperator Expression

11.12.1 Operator Precedence and Associativity

When an expression contains multiple binary opesatbeprecedence of the operators controls the order in
which the individual binary operators are evaluatemt example, the expressign+ y * z is evaluated as
+ (y * z) because the operator has higher precedence than-tbperator. The following table lists the
binary operators in descending order of precedence:

Category Operators

Primary All non-operator expressions
Exponentiation A

Unary negation +, -

Multiplicative * /

Integer division \

Modulus Mod

Additive +, -

Concatenation

Copyright © Microsoft Corporation 2005. All rightsserved. 241

Visual Basic Language Specification

Shift <<, >>

Relational =, <>, <, >, <=, >=, Like, Is
Logical NOT Not

Logical AND And, AndAlso

Logical OR or,OrElse

Logical XOR xor

When an expression contains two operators witlsénee precedence, thssociativity of the operators controls
the order in which the operations are performetlbilary operators are left-associative, meanirg th
operations are performed from left to right. Presext and associativity can be controlled usingriiaetical
expressions.

11.12.2 Object Operands

In addition to the regular types supported by ezgdrator, all operators support operands of ofpeect.
Operators applied tobject operands are handled similarly to late-bound nebttadls made onbject
values: the run-time type of the operands, rathan the compile-time type, determines the validitg type of
the operation. If strict semantics are specifiedi®ycompilation environment or loption Strict, any
operators with operands of typbject cause a compile-time error, except for the equéd, inequality &>),
Typeof...Is, andIs operators.

When given one or more operands of tppgect, the outcome of the operation is the result ofyapg the
operator to the operand types if the run-time tygfedbe operands are types that are supportedeoggarator.
The valueNothing is treated as the default value of the type ofotther operand in a binary operator
expression. In a unary operator expression, outli bperands amothing in a binary operator expression, the
type of the operation Bnteger or the only result type of the operator, if theior does not result in
Integer. The result of the operation is always then caskltoobject. If the operand types have no valid
operator, &ystem.InvalidCastException exception is thrown. Conversions at run time ameedwithout
regard to whether they are implicit or explicit.

If the result of a numeric binary operation woutdguce an overflow exception (regardless of wheihteger
overflow checking is on or off), then the resulpeyis promoted to the next wider numeric typepggible. For
example, consider the following code:

Module Test
Sub MainQ)
Dim o As Object = CObj(CByte(2)) * CObj(CByte(255))

Console.writeLine(o.GetType().Tostring() & " =" & 0)
End Sub
End Module
It prints the following result:
Short = 512

If no wider numeric type is available to hold thenber, asystem.overflowException exception is
thrown.

242 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

11.12.3 Operator Resolution

Given an operator type and a set of operands, wmpersolution determines which operator to useHter
operands. When resolving operators, user-definedabprs will be considered first, using the follagisteps:

» First, all of the candidate operators are collectént candidate operators are all of the user-ddfin
operators of the particular operator type in theree type and all of the user-defined operatoth®f
particular type in the target type. If the soungeetand destination type are related, common oparate
only considered once.

* Then, overload resolution is applied to the opesadmd operands to select the most specific operato

When resolving overloaded operators, there mayifferehces between classes defined in Visual Basit
those defined in other languages:

* In other languagesiot, And, andor may be overloaded both as logical operators amdda operators.
Upon import from an external assembly, either fgraccepted as a valid overload for these operators
However, for a type which defines both logical &itevise operators, only the bitwise implementatiah
be considered.

* In other languages> and<< may be overloaded both as signed operators anghngusoperators. Upon
import from an external assembly, either form iseated as a valid overload. However, for a typectvhi
defines both signed and unsigned operators, oelgitined implementation will be considered.

If no user-defined operator is most specific todperands, then pre-defined operators will be damed. If no
pre-defined operator is defined for the operartd=) 2 compile-time error results.

Each operator lists the pre-defined types it isngef for and the type of the operation performeagithe
operand types. The result of type of a pre-defimmeration follows these general rules:

» If all operands are of the same type, and the ¢peisadefined for the type, then no conversionuos@nd
the operator for that type is used.

* Any operand whose type is not defined for the cpera converted using the following steps and the
operator is resolved against the new types:

» The operand is converted to the next widest typeithdefined for both the operator and the operand
and to which it is implicitly convertible.

» If there is no such type, then the operand is cdesldo the next narrowest type that is definedofath
the operator and the operand and to which it idiaitly convertible.

» If there is no such type or the conversion cancotin a compile-time error occurs.

* Otherwise, the operands are converted to the wiire operand types and the operator for that igype
used. If the narrower operand type cannot be intigliconverted to the wider operator type, a corypiine
error occurs.

Despite these general rules, however, there avender of special cases called out in the operasrlts tables.

Note For formatting reasons, the operator type taldseviate the predefined names to their first two
characters. So “By” iByte, “Ul" is UInteger, “St” is String, etc. “Err” means that there is no operation
defined for the given operand types.

11.13 Arithmetic Operators
The*, /,\, A, Mod, +, and- operators are tharithmetic operators.

Floating-point arithmetic operations may be perfedmvith higher precision than the result type ef th
operation. For example, some hardware architectungort an "extended" or "long double" floatingrdype

Copyright © Microsoft Corporation 2005. All rightsserved. 243

Visual Basic Language Specification

with greater range and precision thantbheb1e type, and implicitly perform all floating-point epations
using this higher-precision type. Hardware architexs can be made to perform floating-point openatiwvith
less precision only at excessive cost in perforrearather than require an implementation to foifetih
performance and precision, Visual Basic allowshigher-precision type to be used for all floatirmj#
operations. Other than delivering more preciseltgghis rarely has any measurable effects. Howeéne
expressions of the forsn * y / z, where the multiplication produces a result teaiutside th®ouble
range, but the subsequent division brings the teanmpoesult back into theoub1e range, the fact that the
expression is evaluated in a higher-range formateaase a finite result to be produced insteadfidity.

ArithmeticOperator Expression ::=
UnaryPlusExpression |
UnaryMinusExpression |
AdditionOperator Expression |
SubtractionOperator Expression |
MultiplicationOperator Expression |
DivisionOperator Expression |
ModuloOperator Expression |
ExponentOperator Expression

11.13.1 Unary Plus Operator
The unary plus operator is defined for 8yete, SByte, UShort, Short, UInteger Integer, ULong, Long,

Ssingle, Double, andDecimal types.

Operation Type:

Bo SB By Sh US In U Lo UL De Si Do Da Ch St Ob
SB SB By Sh US In U Lo UL De Si Do Err Err Do Ob

UnaryPlusExpression ::= + Expression

11.13.2 Unary Minus Operator
The unary minus operator is defined for the follogvtypes:
* SByte, Short, Integer, andLong. The result is computed by subtracting the opefeord zero. If

integer overflow checking is on and the value ef dperand is the maximum negatseyte, Short,
Integer, orLong, asystem.overflowException exception is thrown. Otherwise, if the value & th

operand is the maximum negatisByte, Short, Integer, orLong, the result is that same value, and the

overflow is not reported.

* Single andboubTe. The result is the value of the operand withigs snverted, including the values 0
and Infinity. If the operand is NaN, the resulalso NaN.

* Decimal. The result is computed by subtracting the opefeord zero.

Operation Type:
Bo SB By Sh US In Ul Lo UL De Si Do Da Ch St Ob
SB SB Sh Sh In In Lo Lo De De Si Do Err Err Do Ob

UnaryMinusExpression ::= - Expression

244 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

11.13.3 Addition Operator

The addition operator computes the sum of the tpeyands. The addition operator is defined for tllewing

types:

Byte, SByte, UShort, Short, UInteger, Integer, ULong, andLong. If integer overflow checking is on
and the sum is outside the range of the result ypgstem.overflowException exception is thrown.

Otherwise, overflows are not reported, and anyisagmt high-order bits of the result are discarded

» Decimal. If the resulting value is too large to represarthe decimal format, a
System.overflowException exception is thrown. If the result value is tocadinto represent in the

decimal format, the result is O.

* String. The twostring operands are concatenated together.

Note

Operation Type:
Bo SB By Sh US In Ul

Bo SB SB Sh Sh In In Lo
SB SB Sh Sh In In Lo
By By Sh US In Ul
Sh Sh In In Lo
us Us In Ul
In In Lo
Ul ul

Lo
UL
De
Si
Do
Da
Ch
St
Ob

AdditionOperator Expression ::= Expression + Expression

11.13.4 Subtraction Operator

Lo

Lo

Lo
Lo
Lo
Lo
Lo
Lo
Lo

UL De Si
De De Si
De De Si

UL De Si
De De Si
UL De Si
De De Si
UL De Si
De De Si
UL De Si
De Si
Si

Do
Do
Do
Do
Do
Do
Do
Do
Do
Do
Do
Do

Err

Err

Err
Err
Err
Err
Err
Err
Err
Err
St

Err
Err
Err
Err
Err
Err
Err
Err
Err
Err
Err
Err
Err
St

single andbouble. The sum is computed according to the rules oEIEB4 arithmetic.

Do Da Ch St
Err
Err

Thesystem.DateTime type defines overloaded addition operators. Bexaystem.DateTime
is equivalent to the intrinsimate type, these operators is also available ot type.

Ob

Do Ob

Do Ob
Do Ob
Do Ob
Do Ob
Do Ob
Do Ob
Do Ob
Do Ob
Do Ob
Do Ob
Do Ob
St Ob
St Ob
St Ob
Ob

The subtraction operator subtracts the second ngdram the first operand. The subtraction operetaiefined

for the following types:

Copyright © Microsoft Corporation 2005. All righteserved.

245

Visual Basic Language Specification

Byte, SByte, UShort, Short, UInteger, Integer, ULong, andLong. If integer overflow checking is on

and the difference is outside the range of theltrggue, asystem.overflowException exception is
thrown. Otherwise, overflows are not reported, ang significant high-order bits of the result are

discarded.

single andbouble. The difference is computed according to the rafd&EE 754 arithmetic.
Decimal. If the resulting value is too large to repredarthe decimal format, a
System.overflowException exception is thrown. If the result value is tocadinto represent in the

decimal format, the result is 0.

Note TheSystem.DateTime type defines overloaded subtraction operatorsaBse
System.DateTime is equivalent to the intrinsizate type, these operators is also available omtte

type.

Operation Type:

Do Da Ch St Ob
Si Do Emrr Err Do Ob

Bo SB By Sh US In U Lo UL De Si
Bo SB SB Sh Sh In In Lo Lo De De

SB SB Sh Sh In In Lo Lo De De Si Do Emrr Err Do Ob
By By Sh US In U Lo UL De Si Do Err Er Do Ob
Sh Sh In In Lo Lo De De Si Do Err Err Do Ob
usS US In U Lo UL De Si Do Err Err Do Ob
In In Lo Lo De De Si Do Err Er Do Ob
Ul U Lo UL De Si Do Emrr Err Do Ob
Lo Lo De De Si Do Emrr Err Do Ob
UL UL De Si Do Err Err Do Ob
De De Si Do Err Emr Do Ob
Si Si Do Err Emr Do Ob
Do Do Err Err Do Ob
Da Err Err Err Err
Ch Err Err Ermr
St Do Ob
Ob Ob

SubtractionOperator Expression ::= Expression - Expression

11.13.5 Multiplication Operator
The multiplication operator computes the produdinaf operands. The multiplication operator is defirior the

following types:
Byte, SByte, UShort, Short, UInteger, Integer, ULong, andLong. If integer overflow checking is on
and the product is outside the range of the réygodt, asystem.overflowException exception is

246 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

thrown. Otherwise, overflows are not reported, ang significant high-order bits of the result are
discarded.

decimal format, the result is O.

Operation Type:

Bo
SB
By
Sh
us
In
ul
Lo
UL
De
Si
Do
Da
Ch
St
Ob

Bo SB By Sh US In Ul
SB SB Sh Sh In In Lo
SB Sh Sh In In Lo
By Sh US In Ul
Sh In In Lo

uUsS In Ul
In Lo
Ul

11.13.6 Division Operators
Division operators compute the quotient of two @pels. There are two division operators: the redti@ating-

point) division operator and the integer divisigrecator.
The regular division operator is defined for thiddwing types:
Single andbouble. The quotient is computed according to the rufdEBE 754 arithmetic.

Copyright © Microsoft Corporation 2005. All righteserved.

Lo
Lo
Lo

Lo
Lo
Lo
Lo
Lo
Lo

UL De Si
De De Si
De De Si

UL De Si
De De Si
UL De Si
De De Si
UL De Si
De De Si
UL De Si
De Si
Si

MultiplicationOperator Expression ::= Expression * Expression

Do Da Ch St
Err
Err

Do
Do
Do
Do
Do
Do
Do
Do
Do
Do
Do
Do

Decimal. If the resulting value is too large to repregarihe decimal format, a
System.OverflowException exception is thrown. If the result value is tocadinto represent in the

Err
Err
Err
Err
Err
Err
Err
Err
Err
Err
Err

Err
Err
Err
Err
Err
Err
Err
Err
Err
Err
Err
Err
Err
Err

Single andbouble. The product is computed according to the ruld&BE 754 arithmetic.

Ob
Do Ob
Do Ob
Do Ob
Do Ob
Do Ob
Do Ob
Do Ob
Do Ob
Do Ob
Do Ob
Do Ob
Do Ob
Err Err
Err Err
Do Ob
Ob

Decimal. If the value of the right operand is zergystem.DivideByzeroException exception is

thrown. If the resulting value is too large to regent in the decimal format, a

System.overflowException exception is thrown. If the result value is tocadinto represent in the
decimal format, the result is zero. The scale efrésult, before any rounding, is the closest dcellbe
preferred scale which will preserve a result eqoidhe exact result. The preferred scale is théesuaf the

first operand less the scale of the second operand.

247

Visual Basic Language Specification

According to normal operator resolution rules, tagdivision purely between operands of types saagsyte,
Sshort, Integer, andLong would cause both operands to be converted toogpémal. However, when

doing operator resolution on the division operatben neither type iBecimal, Double is considered
narrower thamecimal. This convention is followed becauseube division is more efficient thabecimal

division.
Operation Type:

Bo SB By Sh US In Ul Lo
Bo Do Do Do Do Do Do Do Do

UL De Si Do Da Ch St Ob
Do De Si Do Err Err Do Ob
Do De Si Do Err Err Do Ob

SB Do Do Do Do Do Do Do

By Do Do Do Do Do Do Do De Si Do Err Er Do Ob
Sh Do Do Do Do Do Do De Si Do Emrr Err Do Ob
us Do Do Do Do Do De Si Do Err Er Do Ob

Do Do Do Do De Si Do Err Err Do Ob

In

Ul Do Do Do De Si Do Err Err Do Ob
Lo Do Do De Si Do Err Err Do Ob
UL Do De Si Do Err Er Do Ob
De De Si Do Err Emr Do Ob
Si Si Do Err Emr Do Ob
Do Do Err Err Do Ob
Da Err Err Err Err
Ch Err Err Err
St Do Ob
Ob Ob

The integer division operator is defined fyrte, SByte, UShort, Short, UInteger, Integer, ULong, and
Long. If the value of the right operand is zergystem.DivideByZeroException exception is thrown. The
division rounds the result towards zero, and treohite value of the result is the largest possitikger that is
less than the absolute value of the quotient ofwlmeoperands. The result is zero or positive wihentwo
operands have the same sign, and zero or negatiee e two operands have opposite signs. If fihe le
operand is the maximum negatisByte, Short, Integer, or Long, and the right operand is -an overflow
occurs; if integer overflow checking is onsgastem.overflowException exception is thrown. Otherwise,
the overflow is not reported and the result iseadtthe value of the left operand.

Annotation

As the two operands for unsigned types will alwWlagsero or positive, the result is always zeroamitpve. As
the result of the expression will always be lessitar equal to the largest of the two operands,nbt possible

for an overflow to occur. As such integer overflolecking is not performed for integer divide witfo
unsigned integers. The result is the type as thidtedeft operand.

Operation Type:

248 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

Bo SB By Sh US In U Lo UL De Si Do Da Ch St Ob
Bo SB SB Sh Sh In In Lo Lo Lo Lo Lo Lo Emrr Err Lo Ob

SB SB Sh Sh In In Lo Lo Lo Lo Lo Lo Err Err Lo Ob
By By Sh US In U Lo UL Lo Lo Lo Emrr Err Lo Ob
Sh Sh In In Lo Lo Lo Lo Lo Lo Err Err Lo Ob
usS US In U Lo UL Lo Lo Lo Emrr Err Lo Ob
In In Lo Lo Lo Lo Lo Lo Err Err Lo Ob
Ul U Lo UL Lo Lo Lo Emrr Err Lo Ob
Lo Lo Lo Lo Lo Lo Err Err Lo Ob
UL UL Lo Lo Lo Emrr Err Lo Ob
De Lo Lo Lo Err Err Lo Ob
Si Lo Lo Err Er Lo Ob
Do Lo Err Err Lo Ob
Da Err Err Err Err
Ch Err Err Err
St Lo Ob
Ob Ob

DivisonOperatorExpression ::=

FPDivisionOperator Expression |

I nteger DivisionOperator Expression
FPDivisonOperatorExpression ::= Expression / Expression

Integer DivisionOperator Expression ::= Expression \ Expression

11.13.7 Mod Operator

Themod (modulo) operator computes the remainder of thisidin between two operands. Thed operator is

defined for the following types:

e Byte, SByte, UShort, Short, UInteger, Integer, ULong andLong. The result ofx Mod vy is the
value produced by - (x \ y) * y.Ifyis zero, &system.DivideByZeroException exception is
thrown. The modulo operator never causes an owverflo

* Single andDouble. The remainder is computed according to the reléBEE 754 arithmetic.

* Decimal. If the value of the right operand is zergystem.DivideByZeroException exception is

thrown. If the resulting value is too large to regent in the decimal format, a
System.overflowException exception is thrown. If the result value is tocadinto represent in the

decimal format, the result is zero.

Operation Type:
Bo SB By Sh US In U Lo UL De Si Do Da Ch St Ob

Copyright © Microsoft Corporation 2005. All rightsserved. 249

Visual Basic Language Specification

Bo SB SB Sh Sh In In Lo Lo De De Si Do Emrr Err Do Ob

Si Do Emrr Err Do Ob

SB SB Sh Sh In In Lo Lo De De

By By Sh US In U Lo UL De Si Do Err Emr Do Ob
Sh Sh In In Lo Lo De De Si Do Err Err Do Ob
us US In U Lo UL De Si Do Err Er Do Ob

In Lo Lo De De Si Do Err Err Do Ob

In
Ul U Lo UL De Si Do Err Err Do Ob
Lo Lo De De Si Do Emrr Err Do Ob
UL UL De Si Do Err Err Do Ob
De De Si Do Err Emr Do Ob
Si Si Do Err Emr Do Ob
Do Do Err Err Do Ob
Da Err Err Err Err
Ch Err Err Err
St Do Ob
Ob Ob

ModuloOperatorExpression ::= Expression Mod Expression

11.13.8 Exponentiation Operator
The exponentiation operator computes the firstaeraised to the power of the second operand. The
exponentiation operator is defined for typsuble. The value is computed according to the rulesc&l 754

arithmetic.

Operation Type:
Bo SB By Sh US In U Lo UL De Si Do Da Ch St Ob

Bo Do Do Do Do Do Do Do Do Do Do Do Do Err Er Do Ob

SB Do Do Do Do Do Do Do Do Do Do Do Err Err Do Ob
By Do Do Do Do Do Do Do Do Do Do Err Err Do Ob
Sh Do Do Do Do Do Do Do Do Do Err Err Do Ob
usS Do Do Do Do Do Do Do Do Err Err Do Ob
In Do Do Do Do Do Do Do Emrr Err Do Ob
Ul Do Do Do Do Do Do Err Err Do Ob
Lo Do Do Do Do Do Err Err Do Ob
UL Do Do Do Do Err Emr Do Ob
De Do Do Do Emrr Err Do Ob

250 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

Si Do Do Emrr Err Do Ob
Do Do Err Err Do Ob
Da Err Err Err Err
Ch Err Err Ermr
St Do Ob
Ob Ob

ExponentOperator Expression ::= Expression A Expression

11.14 Relational Operators

Therelational operators compare values to one other. The comparison agerate=, <>, <, >, <=, and>=. All
of the relational operators result iBaolean value.

The relational operators have the following gensare&ning:

» The= operator tests whether the two operands are equal.

» The<> operator tests whether the two operands are natl.eq

* The< operator tests whether the first operand is lems the second operand.

» The> operator tests whether the first operand is grehta the second operand.

» The<= operator tests whether the first operand is leas br equal to the second operand.

» The>= operator tests whether the first operand is greéhéa or equal to the second operand.
The relational operators are defined for the foltaytypes:

» Boolean. The operators compare the truth values of theapeyandsTrue is considered to be less than
False, which matches with their numeric values.

* Byte, SByte, UShort, Short, UInteger, Integer, ULong, andLong. The operators compare the
numeric values of the two integral operands.

* Single andbDouble. The operators compare the operands accordifgetautes of the IEEE 754 standard.
* Decimal. The operators compare the numeric values ofwthedecimal operands.

» Date. The operators return the result of comparingwtedate/time values.

» Char. The operators return the result of comparingweeUnicode values.

» sString. The operators return the result of comparingweevalues using either a binary comparison or a
text comparison. The comparison used is deterntigetie compilation environment and thyetion
Compare statement. A binary comparison determines wheatteenumeric Unicode value of each character
in each string is the same. A text comparison @dgsicode text comparison based on the currenfireuin
use on the .NET Framework. When doing a string @mpn, a null reference is equivalent to the gtrin
literal "".

Operation Type:
Bo SB By Sh US In U Lo UL De Si Do Da Ch St Ob
Bo Bo SB Sh Sh In In Lo Lo De De Si Do Err Err Bo Ob

Copyright © Microsoft Corporation 2005. All rightsserved. 251

Visual Basic Language Specification
SB SB Sh Sh In In Lo Lo De De Si Do Emrr Err Do Ob

By By Sh US In U Lo UL De Si Do Emrr Er Do Ob
Sh Sh In In Lo Lo De De Si Do Err Err Do Ob
usS US In U Lo UL De Si Do Err Err Do Ob
In In Lo Lo De De Si Do Err Er Do Ob
Ul U Lo UL De Si Do Emrr Err Do Ob
Lo Lo De De Si Do Emrr Err Do Ob
UL UL De Si Do Err Err Do Ob
De De Si Do Err Err Do Ob
Si Si Do Err Emr Do Ob
Do Do Err Err Do Ob
Da Da Emrr Da Ob
Ch Ch St Ob
St St Ob
Ob Ob

Rel ational Operator Expression ::=
Expression = Expression |
Expression <> Expression |
Expression < Expression |
Expression > Expression |
Expression <= Expression |
Expression >= Expression

11.15 Like Operator

TheLike operator is defined for thetring type and determines whether a string matchesemgpattern. The
first operand is the string being matched, andstde®nd operand is the pattern to match againstpattern is
made up of Unicode characters. The following charasequences have special meanings:

* The characte? matches any single character.
« The charactet matches zero or more characters.

* The characte# matches any single digit (0-9).

* Alist of characters surrounded by brackdtsh(. . .) matches any single character in the list.

» Alist of characters surrounded by brackets antixa® by an exclamation poinf (ab. . .]) matches any
single character not in the character list.

Two characters in a character list separated yphdn €) specify a range of Unicode characters startirth wi
the first character and ending with the secondattiar. If the second character is not later insthré order than
the first character, a run-time exception occurtiyphen that appears at the beginning or end baeacter list

specifies itself.

252 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

Note To match the special characters left bracketquestion mark?), number sign), and asterisk¥),

brackets must enclose them. The right bracKet#n not be used within a group to match itself,ibcan
be used outside a group as an individual charather character sequengg is considered to be the string

literal "".
Also note that character comparisons and ordedngHaracter lists are dependent on the type opeoisons

being used. If binary comparisons are being udeatacter comparisons and ordering are based arutheric
Unicode values. If text comparisons are being uskaracter comparisons and ordering are basecdecruthent

locale being used on the .NET Framework.

In some languages, special characters in the adphepresent two separate characters and vice. \Fosa
example, several languages use the charadterepresent the characterande when they appear together,

while the characters ando can be used to represent the charaxt®hen using text comparisons, thike
operator recognizes such cultural equivalencethdncase, an occurrence of the single speciahcterin
either pattern or string matches the equivalenttharacter sequence in the other string. Similarlsingle
special character in pattern enclosed in brackstitgelf, in a list, or in a range) matches thaieglent two-

character sequence in the string and vice versa.
In aLike expression where both operandsnwehing or one operand has a predefined conversi®t tdng
and the other operandNsthing, Nothing is treated as if it were the empty string litéral

Operation Type:
Bo SB By Sh US In U Lo UL De Si Do Da Ch St Ob
Bo st St St St St St St St St St St St St St St Ob
SB St St St St St St St St St St St St St St Ob
By St St St St St St St St St St St St St Ob
Sh St St St St St St St St St St St St Ob
us St St St St St St St St St St St Ob
In St St St St St St St St St St Ob
ul St St St St St St St St St Ob
Lo St St St St St St St St Ob
UL St St St St St St St Ob
De St St St St St St Ob
Si St St St St St Ob
Do St St St St Ob
Da St St St Ob
Ch St St Ob
St St Ob
Ob Ob

Copyright © Microsoft Corporation 2005. All righteserved.

LikeOperatorExpression ::= Expression Like Expression

253

Visual Basic Language Specification

11.16 Concatenation Operator
Theconcatenation operator is defined for thestring type. To make string concatenation simpler, fer th
purposes of operator resolution, all conversiorstioi ng are considered to be widening, regardless of veneth

strict semantics are used. A concatenation operatisults in a string that is the concatenatiotheftwo

operands in order from left to right.
In a concatenation expression where both operaiedgahing or one operand has a predefined conversion to
String and the other operandNsthing, Nothing is treated as if it were the empty string litétal Also, if

only one operand is typed agstem.DBNu11, that operand is treated as if it was the litaeihing.

Operation Type:
Bo SB By Sh US In U Lo UL De Si Do Da Ch St Ob

Bo st St St St St St St St St St St St St St St Ob
SB St St St St St St St St St St St St St St Ob
By St St St St St St St St St St St St St Ob
Sh St St St St St St St St St St St St Ob
us St St St St St St St St St St St Ob
St St Ob

In St St St St St St St St
St St St St St St Ob

ul St St St
Lo St St St St St St St St Ob
UL St St St St St St St Ob
De St St St St St St Ob
Si St St St St St Ob
Do St St St St Ob
Da St St St Ob
Ch St St Ob
St St Ob
Ob Ob

ConcatenationOperator Expression ::= Expression & Expression

11.17 Logical Operators
TheAnd, Not, or, andXor operators, which are called the logical operatanms evaluated as follows:

* For theBoolean type:
A logical And operation is performed on its two operands.

A logical Not operation is performed on its operand.

A logical or operation is performed on its two operands.

A logical exclusivear operation is performed on its two operands.

254 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

» ForByte, SByte, UShort, Short, UInteger, Integer, ULong, Long, and all enumerated types, the
specified operation is performed on each bit oftimary representation of the two operand(s):

* And: The result bit is 1 if both bits are 1; otherwike result bit is O.
e Not: The result bitis 1 if the bit is 0; otherwisettesult bit is 1.
e or: The result bitis 1 if either bit is 1; otherwie result bit is 0.

» Xor: The result bit is 1 if either bit is 1 but nottbdits; otherwise the result bit is O (that is¢dlr 0 =
1, 1Xor 1 =0).

No overflows are possible from these operationg. ditumerated type operators do the bitwise operatidhe
underlying type of the enumerated type, but therretalue is the enumerated type.

Not Operation Type:
Bo SB By Sh US In U Lo UL De Si Do Da Ch St Ob

Bo SB By Sh US In U Lo UL Lo Lo Lo Err Err Lo Ob

And, Or, Xor Operation Type:
Bo SB By Sh US In U Lo UL De Si Do Da Ch St Ob

Bo Bo SB Sh Sh In In Lo Lo Lo Lo Lo Lo Err Err Bo Ob

SB SB Sh Sh In In Lo Lo Lo Lo Lo Lo Err Err Lo Ob
By By Sh US In U Lo UL Lo Lo Lo Err Err Lo Ob
Sh Sh In In Lo Lo Lo Lo Lo Lo Err Er Lo Ob
usS US In U Lo UL Lo Lo Lo Err Err Lo Ob
In In Lo Lo Lo Lo Lo Lo Err Err Lo Ob
Ul U Lo UL Lo Lo Lo Emrr Err Lo Ob
Lo lo Lo Lo Lo Lo Err Err Lo Ob
UL UL Lo Lo Lo Emrr Err Lo Ob
De Lo Lo Lo Err Emr Lo Ob
Si Lo Lo Err Er Lo Ob
Do Lo Emrr Emrr Lo Ob
Da Err Err Err Err
Ch Err Err Err
St Lo Ob
Ob Ob

Logical OperatorExpression ::=
Not Expression |
Expression And Expresson |
Expression or Expression |
Expression Xor Expression

Copyright © Microsoft Corporation 2005. All rightsserved. 255

Visual Basic Language Specification

11.17.1 Short-circuiting Logical Operators

TheAndAlso andoreTse operators are the short-circuiting versions ofaheé andor logical operators.
Because of their short circuiting behavior, theoselcoperand is not evaluated at run time if theatpe result
is known after evaluating the first operand.

The short-circuiting logical operators are evaldads follows:

» If the first operand in aandA1so operation evaluates false, the expression returmalse. Otherwise,
the second operand is evaluated and a logitdloperation is performed on the two results.

» If the first operand in aareTse operation evaluates frue, the expression returmsue. Otherwise, the
second operand is evaluated and a logicabperation is performed on its two results.

TheAndAlso andoreTse operators are defined for the typeolean, or for any typer that overloads the
following operators:

Public sShared oOperator IsTrue(Byval op As T) As Boolean
Public Shared oOperator IsFalse(Byval op As T) As Boolean

as well as overloading the correspondingl or Or operator:
Public shared operator And(Byval opl As T, Byval op2 As T) As T
Public Shared Operator or(Byval opl As T, Byval op2 As T) As T

When evaluating thendATso ororelse operators, the first operand is evaluated onlyepand the second
operand is either not evaluated or evaluated gxantte. For example, consider the following code:

Module Test
Function Truevalue() As Boolean
console.write(" True™)
Return True
End Function

Function Falsevalue() As Boolean
console.write(" False™)
Return False

End Function

Sub Main(Q)
console.write("And:")
If Falsevalue() And Truevalue() Then
End If
console.WriteLine()

console.write("or:")

If Truevalue() or Falsevalue() Then
End If

console.WriteLine()

256 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

console.write("AndAlso:")
If Falsevalue() AndAlso Truevalue() Then

End If
console.writeLine()

console.writeLine("OrElse:")
If Truevalue() orElse Falsevalue() Then

End If
console.writeLine()
End Sub
End Module
It prints the following result:

And: False True

Or: True False

AndAlso: False

OrtElse: True

Operation Type:
Bo SB By Sh US In U Lo UL De Si Do Da Ch St Ob

Bo Bo Bo Bo Bo Bo Bo Bo Bo Bo Bo Bo Bo Emr Er Bo Ob
Bo Bo Bo Bo Bo Bo Bo Bo Err Err Bo Ob

SB Bo Bo Bo
By Bo Bo Bo Bo Bo Bo Bo Bo Bo Bo Emrr Emr Bo Ob
Sh Bo Bo Bo Bo Bo Bo Bo Bo Bo Err Err Bo Ob
usS Bo Bo Bo Bo Bo Bo Bo Bo Emr Er Bo Ob
In Bo Bo Bo Bo Bo Bo Bo Emr Err Bo Ob
Ul Bo Bo Bo Bo Bo Bo Err Emr Bo Ob
Lo Bo Bo Bo Bo Bo Err Err Bo Ob
UL Bo Bo Bo Bo Emrr Er Bo Ob
De Bo Bo Bo Emr Err Bo Ob
Si Bo Bo Err Err Bo Ob
Do Bo Emr Err Bo Ob
Da Err Err Err Err
Ch Err Err Ermr
St Bo Ob
Ob Ob

Copyright © Microsoft Corporation 2005. All rightsserved. 257

Visual Basic Language Specification

ShortCircuitLogical Operator Expression ::=
Expression AndA1so Expression |
Expression orelse Expression

11.18 Shift Operators

The binary operators< and>> perform bit shifting operations. The operatorsae®ned for theByte, SByte,
ushort, short, UInteger, Integer, ULong andLong types. Unlike the other binary operators, theltesu
type of a shift operation is determined as if tperator was a unary operator with just the lefrapd. The type
of the right operand must be implicitly convertitdeInteger and is not used in determining the result type of
the operation.

The<< operator causes the bits in the first operandtsHifted left the number of places specified leyghift
amount. The high-order bits outside the range ef#isult type are discarded and the low-order eadait
positions are zero-filled.

The>> operator causes the bits in the first operandtsHifted right the number of places specifiedHzyshift
amount. The low-order bits are discarded and thb-birder vacated bit positions are set to zerodfléft
operand is positive or to one if negative. If tei bperand is of typByte, UShort, UInteger, oruLong the
vacant high-order bits are zero-filled.

The shift operators shift the bits of the underyiepresentation of the first operand by the amofitite
second operand. If the value of the second opésagrebater than the number of bits in the firstrapd, or is
negative, then the shift amount is computedightoperand And SizeMask wheresizeMask is:

LeftOperand Type SizeMask
Byte, SByte 7 &H7)
ushort, short 15 @HF)
UInteger, Integer 31 @H1F)
uLong, Long 63 @H3F)

If the shift amount is zero, the result of the @pien is identical to the value of the first opetaNo overflows
are possible from these operations.

Operation Type:

Bo SB By Sh US In U Lo UL De Si Do Da Ch St Ob
SB SB By Sh US In U Lo UL Lo Lo Lo Err Err Lo Ob
ShiftOperator Expression ::=

Expression << Expression |
Expression >> Expression

11.19 Boolean Operators

The Visual Basic language defines two pseudo opesatsTrue andIsFalse. These two operators are used
to determine the result of tlB®@o1ean expression in amf, while or Do statement, thehen clause of a&atch
statement, or the result of thadA1so andorETse operators if the result type of the expressiorsdug have

a widening conversion ®oolean.

Annotation

258 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

It is interesting to note thatdption Strict is off, an expression that has a narrowing conerrt® Boolean
will be accepted without a compile-time error the tanguage will still prefer arsTrue operator if it exists.
This is becauseption Strict only changes what is and isn’t accepted by thguage, and never changes
the actual meaning of an expression. Thsg;,rue has to always be preferred over a narrowing caiver
regardless ofption Strict

For example, the following class does not defingdening conversion tBoolean. As a result, it's use in the
If statement causes a call to fts rue operator.

Class MyBool
Public Shared widening Operator CType(Byval b As Boolean) As MyBool
End ééérator
Public Shared Narrowing Operator CType(Byval b As MyBool) As Boolean
End Operator
Public shared operator IsTrue(Byval b As MyBool) As Boolean
End Operator

Public Shared oOperator IsFalse(Byval b As MyBool) As Boolean

End Operator
End Class

Module Test
Sub Main()
Dim b As New MyBool

If b Then Console.writeLine("True")
End Sub
End Module

BooleanExpression ::= Expression

Copyright © Microsoft Corporation 2005. All rightsserved. 259

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

12. Documentation Comments

Documentation comments are specially formatted centmin the source that can be analyzed to produce
documentation about the code they are attach&thbasic format for documentation comments is XML.
When the compiling code with documentation commehts compiler may optionally emit an XML file that
represents the sum total of the documentation consvie the source. This XML file can then be usgather
tools to produce printed or online documentation.

This chapter describes document comments and reeaded XML tags to use with document comments.

12.1 Documentation Comment Format

Document comments are special comments that bagir"wthree single quote marks. They must imratsdy
precede the type (such as a class, delegate eofaice) or type member (such as a field, evenpepty, or
method) that they document. All adjacent documentroents are appended together to produce a single
document comment. If there is a whitespace charéaltewing the ™ characters, then that whitespabaracter
is not included in the concatenation. For example:

<remarks>Class <c>Point</c> models a point in a two-dimensional

''"' plane.</remarks>
Public Class Point
""" <remarks>method <c>draw</c> renders the point.</remarks>
Sub Draw()
End Sub
End Class

Documentation comments must be well formed XML adicwy tohttp://www.w3.org/TR/REC-xmlIf the
XML is not well formed, a warning is generated a@nel documentation file will contain a comment saytinat
an error was encountered.

Although developers are free to create their ovtrobtags, a recommended set is defined in the sention.
Some of the recommended tags have special meanings:

* The<param> tag is used to describe parameters. The paraspgeified by aparam> tag must exist and
all parameters of the type member must be desciibde: documentation comment. If either conditi®n
not true, the compiler issues a warning.

* Thecref attribute can be attached to any tag to provitefexence to a code element. The code element
must exist; at compile-time the compiler replad¢esrame with the ID string representing the memiber.
the code element does not exist, the compiler ssawearning. When looking for a name described in a
cref attribute, the compiler respeatsports statements that appear within the containing sofilee.

 The<summary> tag is intended to be used by a documentationeri¢avdisplay additional information
about a type or member.

Note that the documentation file does not provideififormation about a type and members, only what
contained in the document comments. To get mowgrimdtion about a type or member, the documentéiteon
must be used in conjunction with reflection on dctual type or member.

Copyright © Microsoft Corporation 2005. All rightsserved. 261

Visual Basic Language Specification

12.2 Recommended tags

The documentation generator must accept and praogs®g that is valid according to the rules of XNThe
following tags provide commonly used functionalityuser documentation:

* <c> Sets text in a code-like font

* <code> Sets one or more lines of source code or progrpudin a code-like font
* <example> Indicates an example

* <exception> Identifies the exceptions a method can throw

* <include> Includes an external XML document

* <list> Creates a list or table

* <para> Permits structure to be added to text

* <param> Describes a parameter for a method or constructor

* <paramref> Identifies that a word is a parameter name

* <permission> Documents the security accessibility of a member
» <remarks> Describes a type

* <returns> Describes the return value of a method

* <see> Specifies a link

* <seealso> Generates a See Also entry

* <summary> Describes a member of a type

* <typeparam> Describes a type parameter

* <value> Describes a property

12.2.1 <c>

This tag specifies that a fragment of text withitescription should use a font like that used fblogk of code.
(For lines of actual code, ugseode>.)

Syntax:
<c>text to be set Tike code</c>

Example:

<remarks>Class <c>Point</c> models a point in a two-dimensional
'''" plane.</remarks>
Public Class Point

End Class

12.2.2 <code>

This tag specifies that one or more lines of sooome or program output should use a fixed-widtit.f(For
small code fragments, use>.)

Syntax:
<code>source code or program output</code>

262 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

Example:
'"' <summary>This method changes the point's location by
""" the given x- and y-offsets.
<example>For example:
<code>
e Dim p As Point = New Point(3,5)
ree p.Translate(-1,3)
""" </code>
'""' results in <c>p</c>'s having the value (2,8).
</example>
</summary>
Public Sub Translate(Byval x As Integer, Byval y As Integer)
Me.X += X
Me.y +=y
End Sub

12.2.3 <example>
This tag allows example code within a comment mashow an element can be used. Ordinarily, this wil
involve use of the tagcode> as well.
Syntax:
<example>description</example>

Example:
See<code> for an example.

12.2.4 <exception>
This tag provides a way to document the excepttomethod can throw.

Syntax:
<exception cref="member">description</exception>

Example:
Public Module DataBaseOperations

<exception cref="MasterFileFormatCorruptException">

</exception>

<exception cref="MasterFileLockedOpenException">
"' </exception>
PubTic Sub ReadRecord(Byval flag As Integer)
If Flag = 1 Then

Throw New MasterFileFormatCorruptException()
ElseIf Flag = 2 Then

Throw New MasterFileLockedOpenException()

End If

Copyright © Microsoft Corporation 2005. All rightsserved. 263

Visual Basic Language Specification

End Sub
End Module

12.2.5 <include>

This tag is used to include information from aneemél well-formed XML document. An XPath expressi®n
applied to the XML document to specify what XML sifbe included from the document. ThincTude>
tag is then replaced with the selected XML fromekternal document.

Syntax:

<include file="filename" path="xpath">
Example:

If the source code contained a declaration likefdlewing:

<include file="docs.xml" path="extra/class[@name="IntList"]/*" />

and the external file docs.xml had the followingniemts
<?xml version="1.0"7>
<extra>
<class name="IntList">
<summary>
Contains a 1list of integers.
</summary>
</class>
<class name="StringList">
<summary>
Contains a Tist of strings.
</summary>
</class>
</extra>

then the same documentation is output as if theceazode contained:

<summary>

Contains a Tist of integers.

</summary>

12.2.6 <list>

This tag is used to create a list or table of iteltngmay contain a11istheader> block to define the heading
row of either a table or definition list. (When théfg a table, only an entry for term in the headieed be
supplied.)

Each item in the list is specified with amtem> block. When creating a definition list, both teamd
description must be specified. However, for a tabigleted list, or numbered list, only descriptioeed be
specified.

Syntax:
<list type="bullet" | "number" | "table">

264 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

<Tistheader>

<term>term</term>
<description>description</description>

</1istheader>

<item>

<term>term</term>
<description>description</description>

</item>

<item>

<term>term</term>
<description>description</description>

</item>

</Tist>

Example:

Public Class MycClass

<remarks>Here is an example of a bulleted list:
<Tist type="bullet">

<item>

<description>Item 1l.</description>

</item>

<item>

<description>Item 2.</description>

</item>

</Tist>

</remarks>

Public shared sub Main()
End Sub
End Class

12.2.7 <para>

This tag is for use inside other tags, suchrmsnarks> or <returns>, and permits structure to be added to

text.

Syntax:

<para>content</para>

Example:

""" <summary>This 1is the entry point of the Point class testing

program.
<para>This program tests each method and operator, and

""" is intended to be run after any non-trvial maintenance has

Copyright © Microsoft Corporation 2005. All rightsserved. 265

Visual Basic Language Specification

been performed on the Point class.</para></summary>
Public sShared sub Main()
End Sub

12.2.8 <param>
This tag describes a parameter for a method, earetr or indexed property.

Syntax:
<param name="name'">description</param>

Example:
'"' <summary>This method changes the point's location to

the given coordinates.</summary>

<param name="x"><c>x</c> is the new x-coordinate.</param>
T

<param name="y"><c>y</c> is the new y-coordinate.</param>
Public Sub Move(Byval x As Integer, Byval y As Integer)

Me.X = X
Me.y =y
End Sub

12.2.9 <paramref>

This tag indicates that a word is a parameter.ddueimentation file can be processed to formatghrameter
in some distinct way.

Syntax:
<paramref name="name"/>

Example:

<summary>This constructor initializes the new Point to

(<paramref name="x"/>,<paramref name="y"/>).</summary>

<param name="x"><c>x</c> is the new Point's x-coordinate.</param>

<param name="y"><c>y</c> is the new Point's y-coordinate.</param>
Public Sub New(Byval x As Integer, Byval y As Integer)

Me.X = X
Me.y =y
End Sub

12.2.10 <permission>
This tag documents the security accessibility ofeamber
Syntax:
<permission cref="member">description</permission>

Example:

<permission cref="System.Security.PermissionSet">Everyone can

access this method.</permission>

266 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

Public shared sub Test()
End Sub

12.2.11 <remarks>
This tag specifies overview information about aetyfiJse<summary> to describe the members of a type.)
Syntax:

<remarks>description</remarks>

Example:

''"' <remarks>Class <c>Point</c> models a point in a two-dimensional
plane.</remarks>
PubTlic Class Point

End Class

12.2.12 <returns>
This tag describes the return value of a method.

Syntax:
<returns>description</returns>

Example:

<summary>Report a point's location as a string.</summary>

<returns>A string representing a point's location, in the form
""' (X,y), without any Tleading, training, or embedded
""" whitespace.</returns>

Public Overrides Function ToString() As String
Return "(" & x & "," & y & ")"

End Sub

12.2.13 <see>

This tag allows a link to be specified within tef{ilse<seealso> to indicate text that is to appear in a See
Also section.)

Syntax:
<see cref="member"/>

Example:

<summary>This method changes the point's location to

the given coordinates.</summary>

<see cref="Translate"/>
Public Ssub Move(Byval x As Integer, Byval y As Integer)

Me.X = X
Me.y =y
End Sub

Copyright © Microsoft Corporation 2005. All rightsserved. 267

Visual Basic Language Specification

<summary>This method changes the point's location by
the given x- and y-offsets.

</summary>

<see cref="Move"/>
Public Sub Translate(Byval x As Integer, Byval y As Integer)

Me.X += X
Me.y +=y
End Sub

12.2.14 <seealso>
This tag generates an entry for the See Also sedfitse<see> to specify a link from within text.)

Syntax:

Example:

<seealso cref="member" />

<summary>This method determines whether two Points have the same
Tocation.</summary>

<seealso cref="operator=="/>

'''" <seealso cref="operator!="/>
Public Overrides Function Equals(Byval o As Object) As Boolean

End Function

12.2.15 <summary>
This tag describes a type member. (dsemarks> to describe a type itself.)

Syntax:

Example:

<summary>description</summary>

<summary>This constructor initializes the new Point to
"' (0,0).</summary>
Public Sub New()
Me.New(0,0)

End Sub

12.2.16 <typeparam>
This tag describes a type parameter.

Syntax:

Example:

268

<typeparam name="name">description</typeparam>

<typeparam name="T">
The base item type. Must implement IComparable.

Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

</typeparam>
PubTlic Class ItemManager(Of T As IComparable)
End Class

12.2.17 <value>
This tag describes a property.
Syntax:
<value>property description</value>

Example:

<value>Property <c>X</c> represents the point's
x-coordinate.</value>

Public Property X() As Integer
Get
Return _x
End Get
Set (value As Integer)
x = Value

End Set
End Property

12.3 ID Strings

When generating the documentation file, the comiénerates an ID string for each element in thecgocode
that is tagged with a documentation comment thejuaty identifies it. This ID string can be useddxternal
tools to identify which element in a compiled asbBntorresponds to the document comment.

ID strings are generated as follows:
* No white space is placed in the string.

* The first part of the string identifies the kindraEémber being documented, via a single charadiemfed
by a colon. The following kinds of members are edi, with the corresponding character in parerghesi
after it: events (E), fields (F), methods includoanstructors and operators (M), namespaces (Npgpties
(P) and types (T). An exclamation point (!) indiestan error occurred while generating the ID stramgl
the rest of the string provides information abdet érror.

» The second part of the string is the fully quadifieame of the element, starting at the global npas
The name of the element, its enclosing type(s),remdespace are separated by periods. If the nathe of
item itself has periods, they are replaced by thengd sign (#). (It is assumed that no element thias t
character in its name.) The name of a type witle fyarameters ends with a backquote (°) followed by
number that represents the number of type parasetethe type. It is important to remember thatibse
nested types have access to the type parametirs types containing them, nested types implicitgtain
the type parameters of their containing types,thnde types are counted in their type parametalstot
this case.

» For methods and properties with arguments, thenaegtilist follows, enclosed in parentheses. Fos¢ho
without arguments, the parentheses are omittedafidenents are separated by commas. The encoding of
each argument is the same as a CLI signature)lag$o Arguments are represented by their fullyldieal
name. For examplanteger becomesystem.Int32, String becomesystem.String, Object

Copyright © Microsoft Corporation 2005. All rightsserved. 269

Visual Basic Language Specification

becomesystem.0object, and so on. Arguments having thyRef modifier have a ‘@' following their
type name. Arguments having tBgval, optional or ParamArray modifier have no special notation.
Arguments that are arrays are represented as [owed:size, ..., lowerbound:size] where the number of
commas is the rank — 1, and the lower bounds aedo$ieach dimension, if known, are represented in
decimal. If a lower bound or size is not specifieéds omitted. If the lower bound and size foratular
dimension are omitted, the "' is omitted as waltays or arrays are represented by one "[]" peglle

12.3.1 ID string examples
The following examples each show a fragment of \@Be; along with the ID string produced from eachrse
element capable of having a documentation comment:
» Types are represented using their fully qualifiacie.
Enum Color
Red
Blue
Green
End Enum

Namespace Acme
Interface IProcess
End Interface

Structure ValueType
End Structure

Class widget
Public Class NestedClass
End Class

Public Interface IMenuItem
End Interface

PubTlic Delegate Sub Del(Byval i As Integer)

PubTic Enum Direction
North
South
East
west
End Enum
End Class
End Namespace

270 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

:color"”

:Acme.IProcess"

:Acme.valueType"
:Acme.Widget"
:Acme.Widget.NestedClass"

:Acme.widget.IMenuItem"
:Acme.wWidget.Del"
"T:Acme.widget.Direction"

4 444444

* Fields are represented by their fully qualified eam
Namespace Acme
Structure ValueType
Private total As Integer
End Structure

Class widget
PubTlic Class NestedClass
Private value As Integer
End Class

Private message As String
Private Shared defaultColor As Color
Private Const PI As Double = 3.14159
Protected Readonly monthlyAverage As Double
Private arrayl() As Long
Private array2(,) As widget
End Class
End Namespace

F:Acme.valueType.total"
F:Acme.widget.NestedClass.value"
F:Acme.widget.message"
"F:Acme.widget.defaultColor"
F:Acme.widget.PI"
F:Acme.widget.monthlyAverage"
F:Acme.widget.arrayl"
"F:Acme.widget.array2"
* Constructors.
Namespace Acme

Class widget
Shared Sub New widget()

Copyright © Microsoft Corporation 2005. All rightsserved. 271

Visual Basic Language Specification
End Sub

Public sub New()
End Sub

PubTic Sub New(Byval s As String)
End Sub
End Class
End Namespace

"M:Acme.widget.#cctor"
"M:Acme.widget.#ctor"
"M:Acme.widget.#ctor(System.String)"

* Methods.
Namespace Acme
Structure valueType
Public sub M(Byval i As Integer)
End Sub
End Structure

Class widget
PubTlic Class NestedClass
Public sub M(Byval i As Integer)
End Sub
End Class

Public shared sub mMO(Q)
End Sub

Public sub M1(Byval c As char, ByRef f As Float, _
ByRef v As valueType)
End Sub

Public sub M2(Byval x1() As Short, Byval x2(,) As Integer
Byval x3() () As Long)
End Sub

Public sub M3(Byval x3() () As Long, Byval x40 (,,) As widget)
End Sub

272 Copyright © Microsoft Corporation 2005. All rightsserved.

End

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.
Public sub mM4(Byval Optional i As Integer = 1, _
Byval ParamArray args() As Object)
End Sub
Class

End Namespace

Acme.
Acme.
Acme.
Acme
Acme.
Acme.

"M:Acme.

* Properties.

valueType.M(System.Int32)"
widget.NestedClass.M(System.Int32)"
widget.m0"

.widget.M1(System.Char,System.Single@,Acme.valueType@)"

widget.M2(System.Intl6[],System.Int32[0:,0:],System.Int64[][1D"
widget.M3(System.Int64[][],Acme.widget[0:,0:,0:1[1)"
widget.M4(System.Int32,System.Object[])"

Namespace Acme
Class widget

End

Public Property width() As Integer
Get
End Get
Set (value As Integer)
End Set
End Property

PubTic Default Property Item(Byval i As Integer) As Integer
Get
End Get
Set (value As Integer)
End Set
End Property

PubTic Default Property Item(Byval s As String, _
Byval i As Integer) As Integer
Get
End Get
Set (value As Integer)
End Set
End Property
Class

End Namespace

Copyright © Microsoft Corporation 2005. All rightsserved. 273

Visual Basic Language Specification

"P:Acme.widget.width"
"P:Acme.widget.Item(System.Int32)"
"P:Acme.widget.Item(System.String,System.Int32)"

* Events
Namespace Acme
Class widget
Public Event AnEvent As Del
PubTic Event AnotherEvent()
End Class
End Namespace

"E:Acme.widget.AnEvent"
"E:Acme.widget.AnotherEvent"

e Operators.
Namespace Acme
Class widget
Public Shared operator +(Byval x As Widget) As widget
End Operator

Public sShared operator +(Byval x1 As widget, Byval x2 As Widget)
End Operator
End Class
End Namespace

"M:Acme.widget.op_UnaryPlus(Acme.widget)"
"M:Acme.widget.op_Addition(Acme.widget,Acme.widget)"

» Conversion operators have a trailing '~' followgdhe return type.
Namespace Acme
Class widget
Public Shared Narrowing Operator CType(Byval x As wWidget) As _

Integer
End Operator

Public shared widening Operator CType(Byval x As Wwidget) As Long
End Operator
End Class
End Namespace

"M:Acme.widget.op_Explicit(Acme.widget)~System.Int32"
"M:Acme.widget.op_ImpTlicit(Acme.widget)~System.Int64"

274 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

12.4 Documentation comments example
The following example shows the source code ofiatRtass:
Namespace Graphics
'"'" <remarks>Class <c>Point</c> models a point in a two-dimensional
plane.</remarks>

Public Class Point

<summary>Instance variable <c>x</c> represents the point's
x-coordinate.</summary>

Private _x As Integer

<summary>Instance variable <c>y</c> represents the point's
''' y-coordinate.</summary>
Private _y As Integer

<value>Property <c>X</c> represents the point's
''"" x-coordinate.</value>
Public Property X() As Integer
Get
Return _Xx
End Get
Set(Byval value As Integer)
_Xx = value
End Set
End Property

<value>Property <c>Y</c> represents the point's
''' y-coordinate.</value>
Public Property Y() As Integer
Get
Return _y
End Get
Set(Byval value As Integer)
_y = value
End Set
End Property
""" <summary>This constructor initializes the new Point to
(0,0).</summary>
PubTic Sub New()
Me.New(0, 0)

Copyright © Microsoft Corporation 2005. All rightsserved. 275

Visual Basic Language Specification

276

End Sub

<summary>This constructor initializes the new Point to
(<paramref name="x"/>,<paramref name="y"/>).</summary>
<param name="x"><c>x</c> is the new Point's
x-coordinate.</param>

<param name="y"><c>y</c> is the new Point's
y-coordinate.</param>

Public Sub New(Byval x As Integer, Byval y As Integer)

Me.X = X
Me.Y =y
End Sub

<summary>This method changes the point's location to

the given coordinates.</summary>

<param name="x"><c>x</c> is the new x-coordinate.</param>
<param name="y"><c>y</c> is the new y-coordinate.</param>
Vi

<see cref="Translate"/>
Public Sub Move(Byval x As Integer, Byval y As Integer)

Me.X = X
Me.Y =y
End Sub

<summary>This method changes the point's location by
the given x- and y-offsets.
<example>For example:
<code>
Dim p As Point = New Point(3, 5)
e p.Translate(-1, 3)
</code>
results in <c>p</c>'s having the value (2,8).
</example>
</summary>
<param name="x"><c>x</c> is the relative x-offset.</param>
<param name="y"><c>y</c> is the relative y-offset.</param>
""" <see cref="Move"/>
Public sub Translate(Byval x As Integer, Byval y As Integer)

Me.X += X
Me.Y += y
End Sub

Copyright © Microsoft Corporation 2005. All righteserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

<summary>This method determines whether two Points have the
same Tocation.</summary>

<param name="o0"><c>0</c> is the object to be compared to the
current object.</param>

<returns>True if the Points have the same location and they
have the exact same type; otherwise, false.</returns>
<seealso cref="oOperator ="/>

<seealso cref="oOperator <>"/>

Public overrides Function Equals(Byval o As Object) As Boolean

If o Is Nothing Then
Return False

End If

If o Is Me Then
Return True

End If

If Me.GetType() Is o.GetType() Then
Dim p As Point = CType(o, Point)
Return (X = p.X) AndAlso (Y = p.Y)

End If

Return False

Function

<summary>Report a point's location as a string.</summary>
<returns>A string representing a point's location, in the form
(x,y), without any leading, training, or embedded whitespace.
</returns>

Public overrides Function ToString() As String

End

RetUI"I’l ll(ll & X & ll’ll & Y & u)u
Function

<summary>This operator determines whether two Points have the
same Tocation.</summary>

<param name="pl"><c>pl</c> is the first Point to be compared.
</param>

<param name="p2"><c>p2</c> is the second Point to be compared.
</param>

<returns>True if the Points have the same location and they
have the exact same type; otherwise, false.</returns>
<seealso cref="Equals"/>

Copyright © Microsoft Corporation 2005. All rightsserved. 277

Visual Basic Language Specification

<seealso cref="op_Inequality"/>
PubTlic sShared operator =(Byval pl As Point, _
Byval p2 As Point) As Boolean
If pl Is Nothing OrElse p2 Is Nothing Then
Return False
End If
If pl.GetType() Is p2.GetType() Then
Return (pl.X = p2.X) AndAlso (pl.Y = p2.Y)
End If
Return False
End Operator

<summary>This operator determines whether two Points have the

same Tocation.</summary>

<param name="pl"><c>pl</c> is the first Point to be comapred.

</param>

<param name="p2"><c>p2</c> is the second Point to be compared.
</param>

<returns>True if the Points do not have the same location and

the exact same type; otherwise, false.</returns>

<seealso cref="Equals"/>

"' <seealso cref="op_Equality"/>

PubTlic Shared Operator <>(Byval pl As Point, _
Byval p2 As Point) As Boolean

Return Not pl = p2

End Operator

<summary>This is the entry point of the Point class testing
program.

<para>This program tests each method and operator, and

is intended to be run after any non-trvial maintenance has
been performed on the Point class.

</para>

'Y </summary>

Public Shared Sub Main()
' class test code goes here
End Sub

End Class

End Namespace
Here is the output produced when given the sourde for class Point, shown above:

278 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

<?xml version="1.0"7>
<doc>
<assembly>
<name>Point</name>
</assembly>
<members>
<member name="T:Graphics.Point">
<remarks>Class <c>Point</c> models a point in a
two-dimensional plane. </remarks>
</member>
<member name="F:Graphics.Point.x">
<summary>Instance variable <c>x</c> represents the point's
x-coordinate.</summary>
</member>
<member name="F:Graphics.Point.y">
<summary>Instance variable <c>y</c> represents the point's
y-coordinate.</summary>
</member>
<member name="M:Graphics.Point.#ctor">
<summary>This constructor initializes the new Point to
(0,0).</summary>
</member>
<member name="M:Graphics.Point.#ctor(System.Int32,System.Int32)">
<summary>This constructor initializes the new Point to
(<paramref name="x"/>,<paramref name="y"/>).</summary>
<param><c>x</c> is the new Point's x-coordinate.</param>
<param><c>y</c> is the new Point's y-coordinate.</param>
</member>
<member name="M:Graphics.Point.Move(System.Int32,System.Int32)">
<summary>This method changes the point's location to
the given coordinates.</summary>
<param><c>x</c> is the new x-coordinate.</param>
<param><c>y</c> is the new y-coordinate.</param>
<see cref=
"M:Graphics.Point.Translate(System.Int32,System.Int32)"/>
</member>
<member name=
"M:Graphics.Point.Translate(System.Int32,System.Int32)">
<summary>This method changes the point's location by the given
x- and y-offsets.

Copyright © Microsoft Corporation 2005. All rightsserved. 279

Visual Basic Language Specification

<example>For example:
<code>
Point p = new Point(3,5);
p.Translate(-1,3);
</code>
results in <c>p</c>'s having the value (2,8).
</example>
</summary>
<param><c>x</c> is the relative x-offset.</param>
<param><c>y</c> is the relative y-offset.</param>
<see cref="M:Graphics.Point.Move(System.Int32,System.Int32)"/>
</member>
<member name="M:Graphics.Point.Equals(System.Object)">
<summary>This method determines whether two Points have the
same Tocation.</summary>
<param><c>o0</c> is the object to be compared to the current
object.</param>
<returns>True if the Points have the same location and they
have the exact same type; otherwise, false.</returns>
<seealso cref=
"M:Graphics.Point.op_Equality(Graphics.Point,Graphics.Point)"
/>
<seealso cref=
"M:Graphics.Point.op_Inequality(Graphics.Point,Graphics.Point)"
/>
</member>
<member name="M:Graphics.Point.ToString">
<summary>Report a point's location as a string.</summary>
<returns>A string representing a point's location, in the form
(x,y), without any leading, training, or embedded
whitespace.</returns>
</member>
<member name=
"M:Graphics.Point.op_Equality(Graphics.Point,Graphics.Point)">
<summary>This operator determines whether two Points have the
same Tocation.</summary>
<param><c>pl</c> is the first Point to be compared.</param>
<param><c>p2</c> is the second Point to be compared.</param>
<returns>True if the Points have the same location and they
have the exact same type; otherwise, false.</returns>

280 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

<seealso cref="M:Graphics.Point.Equals(System.0Object)"/>
<seealso cref=
"M:Graphics.Point.op_Inequality(Graphics.Point,Graphics.Point)"
/>

</member>

<member name=

"M:Graphics.Point.op_Inequality(Graphics.Point,Graphics.Point)">
<summary>This operator determines whether two Points have the
same Tocation.</summary>
<param><c>pl</c> is the first Point to be compared.</param>
<param><c>p2</c> is the second Point to be compared.</param>
<returns>True if the Points do not have the same Tlocation and
the exact same type; otherwise, false.</returns>
<seealso cref="M:Graphics.Point.Equals(System.Object)"/>
<seealso cref=
"M:Graphics.Point.op_Equality(Graphics.Point,Graphics.Point)"
/>

</member>

<member name="M:Graphics.Point.Main">
<summary>This is the entry point of the Point class testing
program.
<para>This program tests each method and operator, and
is intended to be run after any non-trvial maintenance has
been performed on the Point class.</para>
</summary>

</member>

<member name="P:Graphics.Point.X">
<value>Property <c>X</c> represents the point's
x-coordinate.</value>

</member>

<member name="P:Graphics.Point.Y">
<value>Property <c>Y</c> represents the point's
y-coordinate.</value>

</member>

</members>
</doc>

Copyright © Microsoft Corporation 2005. All rightsserved. 281

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

13. Grammar Summary

This section summarizes the Visual Basic languagmsmar. For information on how to read the gramrsee,
Grammar Notation.

13.1 Lexical Grammar

Sart ::= [LogicalLine+]

LogicalLine ::= [LogicalLineElement+] [Comment | LineTerminator
LogicalLineElement ::= WhiteSpace | LineContinuation | Token

Token ::= Identifier | Keyword | Literal | Separator | Operator

13.1.1 Characters and Lines

Character ::= < any Unicode character exceptiaeTerminator >
LineTerminator ::=
< Unicode carriage return character (0x000D) > |
< Unicode linefeed character (OxO00A) > |
< Unicode carriage return character > < Unicawnleféed character > |
< Unicode line separator character (0x2028) > |
< Unicode paragraph separator character (0x2029) >

LineContinuation ::= WhiteSpace _ [WhiteSpacet+] LineTerminator

WhiteSpace ::=
< Unicode blank characters (class Zs) > |
< Unicode tab character (0x0009) >

Comment ::= CommentMarker [Character+ |
CommentMarker ::= SingleQuoteCharacter | REM

SngleQuoteCharacter ::=
"

< Unicode left single-quote character (0x2018) >
< Unicode right single-quote character (0x2019) >

13.1.2 Identifiers

Identifier ::=
NonEscapedidentifier [TypeCharacter | |
Keyword TypeCharacter |
Escaped| dentifier

NonEscapedidentifier ::= <IldentifierName but notKeyword >
Escapedidentifier ::= [IdentifierName]
IdentifierName ::= IdentifierSart [IdentifierCharacter+ |

Copyright © Microsoft Corporation 2005. All rightsserved. 283

Visual Basic Language Specification

IdentifierSart ::=
AlphaCharacter |
UnderscoreCharacter |dentifierCharacter

IdentifierCharacter ::=
UnderscoreCharacter |
AlphaCharacter |
NumericCharacter |
CombiningCharacter |
FormattingCharacter

AlphaCharacter ::=
< Unicode alphabetic character (classes Lu, LlLht, Lo, NI) >

NumericCharacter ::= < Unicode decimal digit character (class Nd)
CombiningCharacter ::= < Unicode combining character (classes Mn) ¥
FormattingCharacter ::= < Unicode formatting character (class Cf) >
UnderscoreCharacter ::= < Unicode connection character (class Pc) >

IdentifierOrKeyword ::= Identifier | Keyword

TypeCharacter ::=
Integer TypeCharacter |
LongTypeCharacter |
Decimal TypeCharacter |
SngleTypeCharacter |
DoubleTypeCharacter |
SringTypeCharacter

Integer TypeCharacter ::= %
LongTypeCharacter ::= &
Decimal TypeCharacter ::= @
SngleTypeCharacter ::= !
DoubleTypeCharacter ::= #
SringTypeCharacter ::= $

13.1.3 Keywords
Keyword ::= < member of keyword table in 2.3 >

13.1.4 Literals

Literal ::=
BooleanLiteral |
IntegerLiteral |
FloatingPointLiteral |
SringLiteral |
CharacterLiteral |
DateLiteral |
Nothing

BooleanLiteral ::= True | False

284 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

IntegerLiteral ::= IntegralLiteralValue [Integral TypeCharacter |
IntegralLiteralValue ::= IntLiteral | HexLiteral | OctalLiteral

Integral TypeCharacter ::=
ShortCharacter |
UnsignedShortCharacter |
IntegerCharacter |
Unsigned| nteger Character
LongCharacter |
UnsignedLongCharacter |
Integer TypeCharacter |
LongTypeCharacter

ShortCharacter ::= S
UnsignedShortCharacter ::= US
IntegerCharacter ::= I
Unsignedinteger Character ::= UI
LongCharacter ::= L
UnsignedLongCharacter ::= UL
IntLiteral ::= Digit+

HexLiteral ::= & H HexDigit+
OctalLiteral ::= & 0 OctalDigit+

Digit ==0 |1 |23]4]5]6]7]8]9
HexDigit :=0 |1]2 |3 |4]5]6|7|8|9|A|B|C]|D]|E]|F
OctalDigit 5= 0 [1 |2 |3 4|56 |7

FloatingPointLiteral ::=

FloatingPointLiteral Value [FloatingPointTypeCharacter | |

IntLiteral FloatingPointTypeCharacter

FloatingPointTypeCharacter ::=
SngleCharacter |
DoubleCharacter |
DecimalCharacter |
SngleTypeCharacter |
DoubleTypeCharacter |
Decimal TypeChar acter

SngleCharacter ::= F
DoubleCharacter ::= R
DecimalCharacter ::= D

FloatingPointLiteralValue ::=
IntLiteral . IntLiteral [Exponent] |
. IntLiteral [Exponent] |
IntLiteral Exponent

Exponent ::= E [Sgn] IntLiteral

Copyright © Microsoft Corporation 2005. All righteserved.

285

Visual Basic Language Specification
ggn =+ | -

SringLiteral ::=
DoubleQuoteCharacter [StringCharacter+] DoubleQuoteCharacter

DoubleQuoteCharacter ::=
n |
< Unicode left double-quote character (0x201Q) >
< Unicode right double-quote character (0x201D) >

SringCharacter ::=
< Character except forDoubleQuoteCharacter > |
DoubleQuoteCharacter DoubleQuoteCharacter

CharacterLiteral ::= DoubleQuoteCharacter SringCharacter DoubleQuoteCharacter C
DatelLiteral ::= # [Whitespacet] DateOrTime [Whitespace+ | #

DateOrTime ::=
DateValue Whitespacet+ TimeValue |
DateValue |
TimeValue

DateValue ::=
MonthValue / DayValue / YearValue |
MonthValue - DayValue - YearValue

TimeValue ::=
HourValue : MinuteValue [: SecondValue] [WhiteSpace+ | [AMPM]

MonthValue ::= IntLiteral

DayValue ::= IntLiteral

YearValue ::= IntLiteral

HourValue ::= IntLiteral

MinuteValue ::= IntLiteral

SecondValue ::= IntLiteral

AMPM ::= AM | PM

Nothing ::= Nothing

Separator = C) | { |3 | |#]|, |-]:]:=

Operator ::=
&l* |+ |-1/1INIA]<]=]|>]<=]>=]|< |<<]|> |

13.2 Preprocessing Directives

13.2.1 Conditional Compilation
Sart 1= [CCSatement+]

CCSatement ::=
CCConstantDeclaration |

286 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.
CCIfGroup |
LogicalLine
CCExpression ::=
LiteralExpression |
CCParenthesizedExpression |
SmpleNameExpression |
CCCastExpression |
CCOperator Expression

CCParenthesizedExpression ::= (CCExpression)
CCCastExpression ::= CastTarget (CCExpression)
CCOperatorExpression ::=

CCUnaryOperator CCExpression
CCExpression CCBinaryOperator CCExpression

CCUnaryOperator ::= + | - | Not
CCBinaryOperator =+ | - | * | / |\ |[Mod | A |=|<> | < |> |

<= |>=|& | And | Or | Xor | AndAlso | OrElse | << | >>
CCConstantDeclaration ::= # Const ldentifier = CCExpression LineTerminator

CCIfGroup ::=
If CCExpresson [Then] LineTerminator
[CCSatement+]
[CCElselfGroup+]
[CCElseGroup]
End If LineTerminator

CCElselfGroup ::=
Elself CCExpression [Then] LineTerminator
[CCSatement+]

CCElseGroup ::=
Else LineTerminator
[CCSatement+]

13.2.2 External Source Directives
Sart ::= [ExternalSourceStatement+ |

External SourceStatement ::= ExternalSourceGroup | LogicalLine

External SourceGroup ::=
Externalsource (SringLiteral , IntLiteral) LineTerminator
[LogicalLinet |
End ExternalSource LineTerminator

13.2.3 Region Directives
Sart ::= [RegionSatement+]
RegionSatement ::= RegionGroup | LogicalLine

RegionGroup ::=
Region SringLiteral LineTerminator

Copyright © Microsoft Corporation 2005. All rightsserved. 287

Visual Basic Language Specification

[LogicalLinet |
End Region LineTerminator

13.2.4 External Checksum Directives
Sart ::= [ExternalChecksumStatement+]

External ChecksumStatement ::=
ExternalChecksum (SringLiteral , StringLiteral , SringLiteral) LineTerminator

13.3 Syntactic Grammar
AccessModifier ::= Public | Protected | Friend | Private | Protected Friend
Qualifiedidentifier ::=

Identifier |

Global . ldentifierOrKeyword |
Qualifiedidentifier . IdentifierOrKeyword

TypeParameterList ::=

(of TypeParameters)
TypeParameters ::=

TypeParameter |

TypeParameters , TypeParameter
TypeParameter ::=

Identifier [TypeParameterConstraints]
TypeParameter Congtraints ::=

As Constraint |
As { ConstraintList }

ConstraintList ::=
ConstraintList , Constraint |
Constraint

Constraint ::= TypeName | New

13.3.1 Attributes

Attributes ::=
AttributeBlock |
Attributes AttributeBlock

AttributeBlock ::= < Attributelist >

Attributelist ::=
Attribute |
AttributeList , Attribute

Attribute ::=
[AttributeModifier :] SmpleTypeName [([AttributeArguments])]

AttributeModifier ::= Assembly | Module

AttributeArguments ::=
AttributePositional ArgumentList |

288 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

AttributePositional ArgumentList , VariablePropertylnitializerList |
VariablePropertylnitializerList

AttributePositional ArgumentList ::=
AttributeArgumentExpression |
AttributePositional ArgumentList , AttributeArgumentExpression

VariablePropertylnitializerList ::=

VariablePropertylnitializer |

VariablePropertylnitializerList , VariablePropertylnitializer
VariablePropertylnitializer ::=

IdentifierOrKeyword := AttributeArgumentExpression
AttributeArgumentExpression ::=

ConstantExpression |

GetTypeExpression |

ArrayCreationExpression

13.3.2 Source Files and Namespaces
Sart =

[OptionSatement+ |

[ImportsStatement+ |

[AttributesSatement+ |

[NamespaceMemberDeclaration+ |

SatementTerminator ::= LineTerminator | :
AttributesStatement ::= Attributes SatementTer minator

OptionStatement ::=
OptionExplicitStatement |
OptionSrictSatement |
OptionCompareStatement

OptionExplicitSatement ::= Option Explicit [OnOff | StatementTerminator
OnOff ::= on | off

OptionSrictSatement ::= Option Strict [OnOff] SatementTerminator
OptionCompareStatement ::= Option Compare CompareOption StatementTerminator
CompareOption ::= Binary | Text

ImportsStatement ::= Imports ImportsClauses SatementTerminator

ImportsClauses ::=
ImportsClause |
ImportsClauses , ImportsClause

ImportsClause ::= ImportsAliasClause | ImportsNamespaceClause

ImportsAliasClause ::=
Identifier = Qualifiedldentifier |
Identifier = ConstructedTypeName

Copyright © Microsoft Corporation 2005. All rightsserved. 289

Visual Basic Language Specification

ImportsNamespaceClause ::=
Qualifiedidentifier |
ConstructedTypeName

NamespaceDeclaration ::=
Namespace Qualifiedldentifier StatementTerminator
[NamespaceMember Declaration+ |
End Namespace SatementTerminator

NamespaceMemberDeclaration ::=
NamespaceDeclaration |
TypeDeclaration

TypeDeclaration ::=
ModuleDeclaration |
NonModuleDeclaration

NonModuleDeclaration ::=
EnumDeclaration |
SructureDeclaration |
InterfaceDeclaration |
ClassDeclaration |
DelegateDeclaration

13.3.3 Types

TypeName ::=
ArrayTypeName |
NonArrayTypeName

NonArrayTypeName ::=
SmpleTypeName |
ConstructedTypeName

SmpleTypeName ::=
Qualifiedidentifier |
BuiltinTypeName

BuiltinTypeName ::= object | PrimitiveTypeName
TypeModifier ::= AccessModifier | shadows
TypelmplementsClause ::= Implements Implements SatementTerminator

Implements ::=
NonArrayTypeName |
Implements , NonArrayTypeName

PrimitiveTypeName ::= NumericTypeName | Boolean | Date | Char | String
NumericTypeName ::= IntegralTypeName | FloatingPointTypeName | Decimal

Integral TypeName ::= Byte | SByte | UShort | Short | UInteger | Integer | ULong | Long
FloatingPointTypeName ::= Single | Double

EnumDeclaration ::=
[Attributes] [TypeModifier+] Enum Identifier [As QualifiedName] StatementTerminator

290 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

EnumMember Declar ation+
End Enum SatementTerminator

EnumMemberDeclaration ::= [Attributes] Identifier [= ConstantExpression | StatementTerminator

ClassDeclaration ::=
[Attributes] [ClassModifier+] class Identifier [TypeParameterList | SatementTerminator
[ClassBase |
[Typel mplementsClause+ |
[ClassMemberDeclaration+ |
End Class StatementTerminator

ClassModifier ::= TypeModifier | MustInherit | NotInheritable | Partial
ClassBase ::= Inherits NonArrayTypeName SatementTerminator

ClassMemberDeclaration ::=
NonModuleDeclaration |
EventMemberDeclaration |
VariableMemberDeclaration |
ConstantMember Declaration |
MethodMember Declaration |
PropertyMember Declaration |
ConstructorMember Declaration |
OperatorDeclaration

StructureDeclaration ::=
[Attributes] [StructureModifier+] structure ldentifier [TypeParameterList]
StatementTerminator
[Typel mplementsClause+ |
[StructMemberDeclaration+ |
End Structure SatementTerminator

SructureModifier ::= TypeModifier | Partial

SructMemberDeclaration ::=
NonModuleDeclaration |
VariableMemberDeclaration |
ConstantMember Declaration |
EventMemberDeclaration |
MethodMember Declaration |
PropertyMember Declaration |
ConstructorMemberDeclaration |
OperatorDeclaration

ModuleDeclaration ::=
[Attributes] [TypeModifier+] Module Identifier StatementTerminator
[ModuleMemberDeclaration+]
End Module SatementTerminator

ModuleMember Declaration ::=
NonModuleDeclaration |
VariableMemberDeclaration |
ConstantMember Declaration |
EventMemberDeclaration |
MethodMember Declaration |

Copyright © Microsoft Corporation 2005. All rightsserved. 291

Visual Basic Language Specification

PropertyMember Declaration |
ConstructorMember Declaration

InterfaceDeclaration ::=
[Attributes] [TypeModifier+] Interface ldentifier [TypeParameterList | StatementTerminator
[InterfaceBaset+ |
[InterfaceMemberDeclaration+ |
End Interface StatementTerminator

InterfaceBase ::= Inherits InterfaceBases SatementTer minator

InterfaceBases ::=
NonArrayTypeName |
InterfaceBases , NonArrayTypeName

InterfaceMemberDeclaration ::=
NonModuleDeclaration |
I nterfaceEventMember Declaration |
InterfaceMethodMember Declaration |
InterfacePropertyMember Declaration

ArrayTypeName ::= NonArrayTypeName ArrayTypeModifiers
ArrayTypeModifiers ::= ArrayTypeModifier+
ArrayTypeModifier ::= ([RankList])

RankList ::=

, |
ankList ,

ArrayNameModifier ::=
ArrayTypeModifiers |
ArraySzel nitializationModifier

DelegateDeclaration ::=
[Attributes] [TypeModifier+] Delegate MethodSgnature SatementTerminator

MethodSgnature ::= SubSgnature | FunctionSgnature

ConstructedTypeName ::=
Qualifiedidentifier (of TypeArgumentList)

TypeArgumentList ::=
TypeName |
TypeArgumentList , TypeName

13.3.4 Type Members
ImplementsClause ::= [Implements ImplementsList]

ImplementsList ::=
InterfaceMember Specifier |
ImplementsList , InterfaceMember Specifier

InterfaceMember Specifier ::= NonArrayTypeName . IdentifierOrKeyword
MethodMemberDeclaration ::= MethodDeclaration | ExternalMethodDeclaration
InterfaceMethodMember Declaration ::= InterfaceMethodDeclaration

292 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

MethodDeclaration ::=
SubDeclaration |
MustOverrideSubDeclaration |
FunctionDeclaration |
MustOverrideFunctionDeclaration

InterfaceMethodDeclaration ::=
InterfaceSubDeclaration |
I nterfaceFunctionDecl ar ation

SubSgnature ::= Identifier [TypeParameterList | [([ParameterList])]
FunctionSgnature ::= SubSgnature [As [Attributes] TypeName |

SubDeclaration ::=
[Attributes | [ProcedureModifier+] Sub SubSgnature [HandlesOrlmplements] LineTerminator
Block
End Sub StatementTerminator

MustOverrideSubDeclaration ::=
[Attributes] [MustOverrideProcedureModifier+ | Sub SubSgnature [HandlesOrImplements |
SatementTer minator

InterfaceSubDeclaration ::=
[Attributes] [InterfaceProcedureModifier+] Sub SubSgnature StatementTerminator

FunctionDeclaration ::=
[Attributes] [ProcedureModifier+] Function FunctionSgnature [HandlesOrimplements |
LineTerminator
Block
End Function SatementTerminator

MustOverrideFunctionDeclaration ::=
[Attributes] [MustOverrideProcedureModifier+] Function FunctionSgnature
[HandlesOrImplements | StatementTer minator

InterfaceFunctionDeclaration ::=
[Attributes] [InterfaceProcedureModifier+] Function FunctionSgnature StatementTerminator

ProcedureModifier ::=
AccessModifier |
Shadows |
Shared |
overridable
Notoverridable

overrides
overloads

MustOverrideProcedureModifier ::= ProcedureModifier | Mustoverride
InterfaceProcedureModifier ::= Shadows | Overloads
HandlesOrImplements ::= HandlesClause | ImplementsClause

ExternalMethodDeclaration ::=
External QubDeclaration |
External FunctionDeclar ation

Copyright © Microsoft Corporation 2005. All rightsserved. 293

Visual Basic Language Specification

External SubDeclaration ::=
[Attributes] [ExternalMethodModifier+] Declare [CharsetModifier] sub Identifier
LibraryClause [AliasClause] [([ParameterList |)] StatementTerminator

External FunctionDeclaration ::=
[Attributes | [ExternalMethodModifier+] Declare [CharsetModifier | Function Identifier
LibraryClause [AliasClause] [([ParameterList |)] [As [Attributes] TypeName]
SatementTerminator

ExternalMethodModifier ::= AccessModifier | shadows | overloads
CharsetModifier ::= Ansi | Unicode | Auto

LibraryClause ::= Lib StringLiteral

AliasClause ::= Alias StringLiteral

ParameterList ::=
Parameter |
ParameterList , Parameter

Parameter ::=
[Attributes | ParameterModifier+ Parameteridentifier [As TypeName] [= ConstantExpression]

ParameterModifier ::= Byval | ByRef | Optional | ParamArray
Parameterldentifier ::= Identifier [ArrayNameModifier]
HandlesClause ::= [Handles EventHandlesList]

EventHandlesList ::=

EventMember Specifier |

EventHandlesList , EventMember Specifier
EventMember Specifier ::=

Qualifiedidentifier . IdentifierOrKeyword |
MyBase . ldentifierOrKeyword |
Me . ldentifierOrKeyword

ConstructorMemberDeclaration ::=
[Attributes] [ConstructorModifier+] sub New [([ParameterList])] LineTerminator
[Block]
End Sub SatementTerminator

ConstructorModifier ::= AccessModifier | shared

EventMember Declaration ::=
Regular EventMember Declaration |
CustomEventMember Declar ation

Regular EventMember Declaration ::=
[Attributes] [EventModifiers+] Event Identifier ParametersOrType [ImplementsClause]
StatementTerminator

InterfaceEventMember Declaration ::=
[Attributes] [InterfaceEventModifiers+ | Event Identifier ParametersOrType StatementTerminator

ParametersOrType ::=
[C [ParameterList])] |
As NonArrayTypeName

294 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

EventModifiers ::= AccessModifier | shadows | Shared
InterfaceEventModifiers ::= Shadows

CustomEventMember Declaration ::=
[Attributes] [EventModifiers+ | custom Event ldentifier As TypeName [ImplementsClause |
SatementTer minator
EventAccessor Declaration+
End Event SatementTerminator

EventAccessor Declaration ::=
AddHandlerDeclaration |
RemoveHandlerDeclaration |
RaiseEventDeclaration

AddHandlerDeclaration ::=
[Attributes | AddHandler (ParameterList) LineTerminator
[Block]
End AddHandler SatementTerminator

RemoveHandlerDeclaration ::=
[Attributes] RemoveHandler (ParameterList) LineTerminator
[Block]
End RemoveHandler SatementTerminator

RaiseEventDeclaration ::=
[Attributes] RaiseEvent (ParameterList) LineTerminator
[Block]
End RaiseEvent SatementTerminator

ConstantMember Declaration ::=
[Attributes] [ConstantModifier+] const ConstantDeclarators SatementTerminator

ConstantModifier ::= AccessModifier | Shadows

ConstantDeclarators ::=
ConstantDeclarator |
ConstantDeclarators , ConstantDeclarator

ConstantDeclarator ::= Identifier [As TypeName] = ConstantExpression StatementTerminator

VariableMemberDeclaration ::=
[Attributes] VariableModifier+ VariableDeclarators StatementTerminator

VariableModifier ::=
AccessModifier |
Shadows |
Shared |
Readonly |
withEvents |
Dim
VariableDeclarators ::=
VariableDeclarator |
VariableDeclarators , VariableDeclarator

Copyright © Microsoft Corporation 2005. All rightsserved. 295

Visual Basic Language Specification

VariableDeclarator ::=
Variableldentifiers [As [New] TypeName [(ArgumentList)]] |
Variableldentifier [As TypeName] [= Variablelnitializer]

Variableldentifiers ::=
Variableldentifier |
Variableldentifiers , Variableldentifier

Variableldentifier ::= Identifier [ArrayNameModifier]
Variablelnitializer ::= Regularlnitializer | ArrayElementlnitializer
Regularinitializer ::= Expression

ArraySzelnitializationModifier ::=
(BoundList) [ArrayTypeModifiers]

BoundList::=
Expression |
0 To Expression |
UpperBoundList , Expression

ArrayElementinitializer ::= { [VariablelnitializerList] }

VariablelnitializerList ::=
Variablelnitializer |
VariablelnitializerList , Variablelnitializer

Variablelnitializer ::= Expresson | ArrayElementinitializer

PropertyMember Declaration ::=
RegularPropertyMemberDeclaration |
MustOverridePropertyMember Declaration

RegularPropertyMemberDeclaration ::=
[Attributes] [PropertyModifier+] Property FunctionSgnature [ImplementsClause |
LineTerminator
PropertyAccessor Declaration+
End Property SatementTerminator

MustOverridePropertyMember Declaration ::=
[Attributes] [MustOverridePropertyModifier+] Property FunctionSgnature [ImplementsClause |
SatementTer minator

InterfacePropertyMemberDeclaration ::=
[Attributes] [InterfacePropertyModifier+] Property FunctionSgnature SatementTerminator

PropertyModifier ::= ProcedureModifier | befault | Readonly | writeonly
MustOverridePropertyModifier ::= PropertyModifier | Mustoverride

InterfacePropertyModifier ::=
Shadows |
overloads
Default

Readonly |
writeonly

PropertyAccessor Declaration ::= PropertyGetDeclaration | PropertySetDeclaration

296 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

PropertyGetDeclaration ::=
[Attributes] [AccessModifier] Get LineTerminator
[Block]
End Get StatementTerminator

PropertySetDeclaration ::=
[Attributes] [AccessModifier] set [(ParameterList)] LineTerminator
[Block]
End Set StatementTerminator

OperatorDeclaration ::=
UnaryOperatorDeclaration |
BinaryOperatorDeclaration |
ConversionOperator Declaration

OperatorModifier ::= Public | Shared | overloads | Shadows
Operand ::= [Byval] ldentifier [As TypeName]

UnaryOperatorDeclaration ::=
[Attributes] [OperatorModifier+] operator OverloadableUnaryOperator (Operand)
[As [Attributes] TypeName] LineTerminator
[Block]
End Operator SatementTerminator

OverloadableUnaryOperator ::= + | - | Not | IsTrue | IsFalse

BinaryOperatorDeclaration ::=
[Attributes] [OperatorModifier+] operator OverloadableBinaryOperator
(Operand , Operand) [As [Attributes] TypeName] LineTerminator
[Block]
End Operator SatementTerminator

OverloadableBinaryOperator ::=
+|-1*1/]\|&]|Like |Mod | And | Or | Xor |
A<<|>> =< |>]<]|>=]|<=

ConversionOperatorDeclaration ::=
[Attributes] [ConversionOperatorModifier+] operator CType (Operand)
[As [Attributes] TypeName] LineTerminator
[Block]
End Operator SatementTerminator

ConversionOperatorModifier ::= widening | Narrowing | ConversionModifier

13.3.5 Statements

Satement ::=
Label DeclarationSatement |
Local DeclarationSatement |
WithSatement |
SyncLockSatement |
EventSatement |
AssignmentSatement |
InvocationStatement |
Conditional Satement |
LoopSatement |

Copyright © Microsoft Corporation 2005. All rightsserved. 297

Visual Basic Language Specification

ErrorHandlingSatement |
BranchSatement |
ArrayHandlingStatement |
UsingStatement

Block ::= [Satementst+ |
LabelDeclarationSatement ::= LabelName :
LabelName ::= Identifier | IntLiteral

Satements ::=
[Satement] |
Satements : [Statement |

Local DeclarationStatement ::= LocalModifier VariableDeclarators SatementTer minator
LocalModifier ::= Static | Dim | Const

WithStatement ::=
with Expression SatementTerminator
[Block]
End with SatementTerminator

SyncLockSatement ::=
SyncLock Expression StatementTerminator
[Block]
End SyncLock SatementTerminator

EventSatement ::=
Rai seEventSatement |
AddHandler Satement |
RemoveHandl er Satement

RaiseEventSatement ::= RaiseEvent ldentifierOrKeyword [([ArgumentList])]
SatementTerminator

AddHandler Satement ::= AddHandler Expression , Expression StatementTerminator
RemoveHandler Satement ::= RemoveHandler Expression , Expression SatementTerminator

AssignmentSatement ::=
Regular AssignmentSatement |
CompoundAssignmentSatement |
MidAss gnmentStatement

Regular AssignmentSatement ::= Expression = Expression SatementTerminator
CompoundAssignmentSatement ::= Expression CompoundBinaryOperator Expression SatementTer minator
CompoundBinaryOperator ::= A= [*= | /= | \= | += | -= | & | <<= | >>=

MidAssignmentStatement ::=
Mid [$] (Expresson , Expression [, Expresson]) = Expresson StatementTerminator

InvocationStatement ::= [call] InvocationExpression StatementTerminator
Conditional Satement ::= IfSatement | SelectStatement
IfStatement ::= BlocklfStatement | LinelfThenStatement

298 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

BlocklfStatement ::=
If BooleanExpression [Then] SatementTerminator
[Block]
[ElselfSatement+ |
[ElseStatement]
End If SatementTerminator

ElselfSatement ::=
Elself BooleanExpression [Then] StatementTerminator
[Block]
ElseSatement ::=
Else SatementTerminator
[Block]

LinelfThenStatement ::=
If BooleanExpression Then Satements [Else Satements | StatementTer minator

SelectSatement =
Select [Case | Expression SatementTerminator
[CaseSatement+]
[CaseElseSatement]
End Select SatementTerminator

CaseSatement ::=
Case CaseClauses SatementTer minator
[Block]

CaseClauses ::=
CaseClause |
CaseClauses , CaseClause

CaseClause ::=
[Is] ComparisonOperator Expression |
Expression [To Expression]

ComparisonOperator == | <> | < | > | => | =<
CaseElseSatement ::=

Case Else SatementTerminator
[Block]

LoopStatement ::=
WhileStatement |
DolLoopSatement |
ForSatement |
ForEachSatement

WhileStatement .=
whiTle BooleanExpression SatementTerminator
[Block]
End while StatementTerminator

DolLoopSatement ::= DoTopLoopSatement | DoBottomlLoopStatement

DoTopLoopSatement ::=
Do [WhileOrUntil BooleanExpression | SatementTerminator

Copyright © Microsoft Corporation 2005. All rightsserved. 299

Visual Basic Language Specification

[Block]
Loop SatementTerminator

DoBottomLoopStatement ::=
Do StatementTerminator
[Block]
Loop WhileOrUntil BooleanExpression StatementTerminator
WhileOrUntil ::= while | until
ForSatement ::=
For LoopControlVariable = Expression To Expresson [Step Expression | StatementTerminator
[Block]

Next [NextExpressionList | SatementTerminator

LoopControl Variable ::=
Identifier [ArrayNameModifier] As TypeName |
Expression

NextExpressionList ::=
Expression |
NextExpressionList , Expression

ForEachSatement ::=
For Each LoopControlVariable In Expression StatementTerminator
[Block]
Next [Expression] StatementTerminator

ErrorHandlingSatement ::=
SructuredError Satement |
UnstructuredError Statement

StructuredError Satement =
ThrowStatement |
TrySatement

TryStatement ::=
Try SatementTerminator
[Block]
[CatchSatement+]
[FinallyStatement]
End Try SatementTerminator

FinallyStatement ::=
Finally SatementTerminator
[Block]

CatchSatement ::=
Catch [Identifier As NonArrayTypeName] [when BooleanExpression | SatementTerminator
[Block]

ThrowSatement ::= Throw [Expresson | SatementTerminator

UnstructuredError Satement ::=
ErrorSatement |
OnError Satement |
ResumeSatement

300 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

ErrorSatement ::= Error Expression SatementTerminator
OnErrorSatement ::= on Error ErrorClause SatementTerminator

ErrorClause ::=
GoTo - 1 |
GoTo 0 |

GotoStatement |
Resume Next

ResumeStatement ::= Resume [ResumeClause | StatementTerminator
ResumeClause ::= Next | LabelName

BranchSatement ::=
GotoStatement |
ExitStatement |
ContinueStatement |
SopSatement |
EndSatement |
ReturnSatement

GotoStatement ::= GoTo LabelName StatementTerminator

ExitStatement ::= Exit ExitKind SatementTerminator

ExitKind ::= Do | For | while | Select | Sub | Function | Property | Try
ContinueStatement ::= Continue ContinueKind StatementTerminator
ContinueKind ::= Do | For | while

SopSatement ::= Stop StatementTerminator

EndStatement ::= End StatementTerminator

ReturnSatement ::= Return [Expression |

ArrayHandlingStatement ::=
RedimSatement |
EraseSatement

RedimSatement ::= ReDim [Preserve] RedimClauses SatementTerminator

RedimClauses ::=
RedimClause |
RedimClauses , RedimClause

RedimClause ::= Expression ArraySzelnitializationModifier
EraseSatement ::= Erase EraseExpressons StatementTerminator

EraseExpressions ::=
Expression |
EraseExpressions , Expression

UsingSatement ::=
Using UsingResources StatementTerminator
[Block]
End Using StatementTerminator

UsingResources ::= VariableDeclarators | Expression

Copyright © Microsoft Corporation 2005. All rightsserved. 301

Visual Basic Language Specification

13.3.6 Expressions
Expression ::=
SmpleExpression |
TypeExpression |
Member AccessExpression |
DictionaryAccessExpression |
IndexExpression |
NewExpression |
CastExpression |
Operator Expression
ConstantExpression ::= Expression
SmpleExpression ::=
LiteralExpression |
Parenthesi zedExpression |
InstanceExpression |
SmpleNameExpression |
AddressOfExpression

LiteralExpression ::= Literal

ParenthesizedExpression ::= (Expression)

InstanceExpression ::= Me

SmpleNameExpresson ::= Identifier [(of TypeArgumentList)]
AddressOfExpression ::= Addressof Expression

TypeExpression ::=
GetTypeExpression |
TypeOflsExpression |
ISExpression

GetTypeExpression ::= GetType (GetTypeTypeName)
GetTypeTypeName ::=

TypeName |

Qualifiedidentifier (of [TypeArityList])
TypeArityList ::=

|
TypeParameterList ,

TypeOflsExpression ::= Typeof Expression Is TypeName

IsExpression ::=
Expression Is Expresson |
Expression IsNot Expression
Member AccessExpression ::=
[[MemberAccessBase] .] IdentifierOrKeyword

MemberAccessBase ::=
Expression |
BuiltinTypeName |
Global |

302 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

MyClass |
MyBase

DictionaryAccessExpression ::= [Expression | ! IdentifierOrKeyword
InvocationExpression ::= Expression [([ArgumentList])]

ArgumentList ::=
Positional ArgumentList , NamedArgumentList |
Positional ArgumentList |

NamedArgumentList
Positional ArgumentList ::=

Expression |

Positional ArgumentList , [Expression]
NamedArgumentList ::=

IdentifierOrKeyword := Expression |
NamedArgumentList , IdentifierOrKeyword := Expression

IndexExpression ::= Expression ([ArgumentList])

NewExpression ::=
ObjectCreationExpression |
ArrayCreationExpression |
DelegateCreationExpression

ObjectCreationExpression ::=
New NonArrayTypeName [([Argumentlist])]

ArrayCreationExpression ::=
New NonArrayTypeName ArraySzelnitializationModifier ArrayElementlnitializer

DelegateCreationExpression ::= New NonArrayTypeName (Expression)

CastExpression ::=
DirectCast (Expression , TypeName) |
TryCast (Expression , TypeName) |
CType (Expression , TypeName) |
CastTarget (Expression)

CastTarget ::=
CBool | cByte | cChar | cbate | CDec | cDb1 | CInt | CLnhg | CObj | CSByte | CShort |
CsSng | Ccstr | cuInt | cuLng | cushort

OperatorExpression ::=
ArithmeticOperator Expression |
Rel ational Operator Expression |
LikeOperatorExpression |
ConcatenationOperator Expression |
ShortCircuitLogical Operator Expression |
Logical OperatorExpression |
ShiftOperator Expression

ArithmeticOperator Expression ::=
UnaryPlusExpression |
UnaryMinusExpression |
AdditionOperator Expression |

Copyright © Microsoft Corporation 2005. All rightsserved. 303

Visual Basic Language Specification

SubtractionOperator Expression |
MultiplicationOperator Expression |
DivisionOperator Expression |
Modul oOperator Expression |
ExponentOperator Expression

UnaryPlusExpression ::= + Expression
UnaryMinusExpression ::= - Expression

AdditionOperator Expression ::= Expression + Expression
SubtractionOperatorExpression ::= Expression - Expression
MultiplicationOperator Expression ::= Expression * Expression

DivisionOperatorExpression ::=
FPDivisionOperator Expression |
Integer DivisionOperator Expression

FPDivisionOperatorExpression ::= Expression / Expression
Integer DivisionOperator Expression ::= Expression \ Expression
ModuloOperatorExpression ::= Expression Mod Expression
ExponentOperator Expression ::= Expression A Expression

Rel ational Operator Expression ::=

Expression = Expression |

Expression <> Expression |

Expression < Expression |

Expression > Expression |

Expression <= Expression |

Expression >= Expression
LikeOperatorExpression ::= Expression Like Expression
ConcatenationOperator Expression ::= Expression & Expression
LogicalOperatorExpression ::=

Not Expression |

Expression And Expresson |

Expression or Expresson |

Expression Xor Expression
ShortCircuitLogical Operator Expression ::=

Expression AndATso Expression |

Expression orelse Expression
ShiftOperator Expression ::=

Expression << Expression |

Expression >> Expression

BooleanExpression ::= Expression

304 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik- Hiba! A stilus nem létezik.

14. Change List

The following is a list of changes made to the #pmation between the previous major version ans #ersion.
The sections affected are listed after each change.

14.1 Major changes
» Multiple attribute blocks are now allowed befordexlaration (i.e<a> instead of juska, b>). [5.2, 6]

» Added thecontinue statement. [2.3, 10.11]

» Added theusing statement. [2.3, 10, 10.13]

» Added thelsNot operator. [2.3, 11.5.3]

» Added theg1obal qualifier which allows binding in the global namese. [2.3, 4.7, 11.6]

e Added XML Documentation comments. [12]

» Derived classes are allowed to re-implement inbegamplemented by their base class. [4.4, 4.4.1]
* Added theTrycast operator. [2.3, 11.11]

» Attributes can have arguments typedhgect or one-dimensional arrays. [5.1, 5.2.2]

» Added a section on language compatibility [1.2,11,.2.2.2, 1.2.3]

» Added operator overloading. [2.3, 4.1.1, 7.5.2,17.86.8, 9.8.1, 9.8.2, 9.8.3, 10.8.2, 10.9.2, 11.171.11,
8.11,8.11.1, 8.11.2, 11.12.3]

* Added pseudo operatorsTrue andIsFalse. [11.19, 10.8.1, 10.9.1, 10.10.1.2]

* Added unsigned integer types. [2.2.1, 2.3, 2.42,171.11, 7.4, 8.2, 8.3, 8.7, 8.8, 8.9, 10.9.2111.12.3,
11.13.1, 11.13.2,11.13.3, 11.13.4, 11.13.5, 164,113..13.7, 11.13.8, 11.14, 11.15, 11.16, 11.1A4,711,
11.18, 11.8.1]

* Added custom event declarations. [9.4.1]

» Property accessors can specify a more restrictivess level than their containing property. [9.7,8
9.7.2,9.7.3]

* Added patrtial types. [2.3, 7.5, 7.6, 7.11]
* Added default instances. [11.6.2, 11.6.2.1, 1126.2.

* Added generic types and methods. [2.3, 2.4.7, A441,4.5.1,4.6,4.7.1,4.7.2,4.9,4.9.1,248.1,
52.2,6.1,6.3.1,6.3.2,7,7.2,75,75.1,78,7.8.1,7.9,7.11, 7.12, 7.12.1, 8.6, 8.10,94.1, 9.2.2,
9.3.2,9.4,9.6,9.8.1,9.8.2,9.8.3,10.2, 10.80310.1.2, 11.1, 11.4.4, 11.4.5, 11.5.1, 11.51%.8, 11.6,
11.6.2,11.8,11.8.2,11.8.5,11.10.1, 11.10.2A.8, 12.2.16, 12.3]

14.2 Minor changes

» Binary string comparisons are always used for @il compilation. Otherwise, string comparisons
would not work because text string comparisons népa the run-time culture. [3.1.2]

Copyright © Microsoft Corporation 2005. All rightsserved. 305

Visual Basic Language Specification

Types cannot inherit from a type that is directlyralirectly contained within it. Also clarified ¢h
examples. [4.3]

Changed the grammar and spec so that enumeraesidgp use thgystem equivalents of the
fundamental types as an underlying type. [7.4]

We now allow a conversion between an array of amemated type and an array of the underlying type o
the enumeration. [8.5, 8.8. 8.9]

When overriding a method, you can override it vithustoverride method, causing it to become
abstract. [4.5.1]

A type member can handle an event in its own alaggyHandles. [9.2.6]

Methods and properties that are declareerrides now assumeverloads, which is more logical than
assumingshadows. [4.3.3]

Fields and local variables are allowed to initialmultiple variables as once using f¥eNew syntax. [9.6]
Removed the restriction that an inmartch block cannot branch into an outary block. [10.10.1.2]
Classes cannot inherit froeystem.mMulticastDelegate. [7.5.1]

Shared variables in structures can have initiadiZ€x.6.3]

Added a rule that numeric types are preferred ememerated types when doing overload resolutiomsga
the literal 0. [11.8.1]

Array size initializers can explicitly state a lowsund of zero. [9.6.3.3]

Added an external checksum directive. [3.4]

Array-size initializers on fields are allowed to fo@n-constant expressions. [9.6.3.3]
Keywords with type characters are now treated astifiers. [2.2]

Constants, fields, properties, locals and paramétert have the same name as their type can bprietied
either as the member or the type for the purposesember lookup. [11.6.1]

Added a section talking about types restrictedhgy. NET Framework and moved discussion of
System.Vvoid to that section. [7, 7.13]

When dealing with a project and a referenced aslsetmt define the same fully-qualified name, the
project’s type is preferred, otherwise the namembiguous. [4.7.2, 11.4.4]

on Error statements do not extend over the calda at the beginning of a constructor. [10.10.2]
Catch statements can now specifyject as the exception type in a catch. [10.10.1.2]

Resolving an overloaded call to a late bound satlisallowed if the containing type is an interfgdd.8.1]
overloads andshadows are not allowed in a standard module. [4.3.3]

When looking up in interfaces, a name shadowedépath through the hierarchy is shadowed in alipa
through the hierarchy. Previously, we would giveaanbiguity error. [4.3.2]

When binding through imports, types and type mesbeg given preference over namespaces. [4.7&], 11.
Changing the default property of a type no longguiresshadows. [9.7.3]

Unreserved the contextual keywortssemb1y, Ansi, Auto, Preserve, Unicode anduntil. [2.3]

306 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

14.3 Clarifications/Errata

» Added a note that full-width/half-width equivalenaely works on a whole-token basis (i.e. you cam¥ it
within a token.) [1.1]

» There are places in the language that allow reduber names but do not allow array type names. Adde
clarification to the grammar to call these out2[%, 7.2, 7.5.1, 7.8.1, 7.9, 9.1, 9.2.5, 10.10.11210.1,
11.10.2,11.10.3]

» The spec incorrectly states that colons can onlydeel as separators at the statement level. Intifest can
be used almost anywhere. Clarified the grammarsaed. [6, 6.2.1, 6.2.2, 6.2.3, 6.3, 6.4.1, 7.2, 74.1,
75,751,76,7.7,78,7.8.1,9.2.1,9.2.2,9.8 9.5,9.6,9.7,9.7.1, 9.7.2, 10]

* As a part of the previous bullet point, made laleetsatement unto themselves and fixed up the geamm
[10, 10.1]

* Narrowed the scope of the grammar for delegatead®iadns to be more accurate. [7.10]
* Array covariance also includes interface implemeortain addition to inheritance. [8.5]

* When implementing an interface or handling an evéettifiers after a period can match keywordsl [9
9.2.6]

e SplitMustoverride declarations out from regular method and propaegiarations. [9.2.1, 9.7]

» The grammar was wrong for variable declarationsr+is a regular modifier, and not a separate element.
[9.6]

* Spelled out how attributes ori thEvents fields are transmitted to the underlying synthetembers.
[9.6.2]

* Invoking an event won't throw an exception if there no listeners. [10.5.1]

* Expanded th@aiseEvent section to cover the avoidance of race conditmnsaising an event. [10.5.1]
» Clarified thatraiseEvent takes an identifier, not an expression. [10.5.1]

» Covered a corner case withid assignment. [10.6.3]

» Statements after a linef are not optional. [10.8.1]

» Expanded theo..Loop grammar to make it more explicit. [10.9.1]

* Loop control variables ifor loops can be of an array type. [10.9.2]

* The size modifier is not optional in an array ci@aexpression. [11.10.2]

* Property return types can have attributes [9.7]

» Split out the interface versions of event, propeartg method declarations for grammatical clarity8 2,
9.2,9.2.1,9.4,9.7]

* MyClass andMyBase cannot stand alone and are moved to the quakfipdession production. [11.4.3,
11.6]

* Typeof..Is is part of the primary category of operator preces. [11.12.1]
* A HandTes clause can have more than one identifier, but tiayidentifiers are legal. [9.2.6]
» Conditional compilation only supports a subsetaistant expressions. [3.1]

» Corrected references system.Monitor to System.Threading.Monitor. [10.4]

Copyright © Microsoft Corporation 2005. All rightsserved. 307

Visual Basic Language Specification

» Clarified that a compiler can put declarations iatparticular namespace by default. [6.4]

» Re-throwing an exceptiorrirow with no argument) cannot occur inside ¢fimally block. [10.10.1.3]
» A conversion from a type to itself is consideredaviing. [8.8]

» Tried to clarify the exact behavior bfi rectCast a bit better than before. [11.11]

* The element type of a collection irFar Each statement does not have to have an implicit caweIto
the loop control variable/expression: the conversian be of any kind. [10.9.3]

» Clarified decimal division behavior. [11.13.6]

» Clarified that overloaded operators are not comswlgshen converting Nothing to an empty stringtfer&
operator. Also clarified the same behavior apglethelLike operator. [11.15, 11.16]

» Clarified that operations that hagbject parameters might result in something other thareger.
[11.12.2]

» Added explicit operator type tables. [11.12.3, 311111.13.2, 11.13.3, 11.13.4, 11.13.5, 11.1316,3.7,
11.13.8,11.14, 11.15, 11.16, 11.17,11.17.1, 11.18

» Tried to make the “most specific” rules more cliggintent. [11.8.1]

» Clarified that shadowing earamAarray method by name and signature hides only that gignaeven if
the shadowing method matches the unexpanded sigrafttheraramarray method. [4.3.3]

* Moved the rule about preferring fewer paramarrajcimes over more during overload resolution eantier
the process to match compiler (and desired) behdgib.8.1, 11.8.2]

» Array-size initializers and array-element initi@iz cannot be combined. [9.6.3.3]

* When specifying bounds on an array creation exfmessd supplying an array-element initializer, the
bounds must be specified using constant expresg@6s3.4]

» Added a discussion of boxing and unboxing, as a&limitations to our anti-aliasing of boxed types
design. [8.6]

» Tried to clarify an obscure rule about enumeragpeés and-or loops withobject loop control variables.
[10.9.2]

» Clarified that mucking with the loop control varialwuring arobject loop doesn’t change the type of the
loop. [10.9.2]

* Noted that delegates and external methods canupdieate parameter names. [9.2.5]

» Interfaces have a widening conversiombgect. [8.4, 8.8]

» Interfaces do not inherit frombject. [7.8.1]

* Object is reference type. It is not a type that is “nefith reference type nor a value type.” [7]
* Noted the position ddystem.valueType andSystem.Enum in the value type hierarchy. [7.1]
» Called out the primitive type conversions we alltven boxed asbject. [8.6]

» Expanded the explanation of a delegate’s memberEl]

» Expanded discussion of implicit locals. [10.1.1,210]

» Clarified how static initializers work. [10.2]

* Noted which synthetic names are ignored by namdifin [9.4, 9.4.1, 9.7.1, 9.7.2]

308 Copyright © Microsoft Corporation 2005. All rightsserved.

Chapter Hiba! A stilus nem létezik-Hiba! A stilus nem létezik.

Exceptions caught imry..catch blocks store their exceptions in the Err objet.10.1.2]
Called out the presence of the identity converdi@in.
Clarified how late-bound accesses are treatedpnesgion contexts. [11.1, 11.1.1, 11.3, 11.6, 1181.9]

Corrected rules on when shared constructors exg@use?]

14.4 Miscellaneous

Changed references to the name of the language“Wacnosoft Visual Basic .NET” to “Microsoft Visual
Basic.” The official name of the language itsel§isply “Visual Basic.”

Moved multi-token punctuators and operators such=a® >>= into the lexical grammar for clarity. [2.5,
2.6,5.2.2,10.6.2, 10.8.2, 11.14]

Removed thelamespaceorTypeName production because it wasn't really needed. [8.3.1, 6.3.2, 7]
Removed the local variable productions becausewleeg superfluous. [10.2]

Consolidated all the productions that just includedess modifiers arghadows into a single production.
[7,7.4,75,7.6,7.7,7.8, 7.10]

With the advent of a default response file for tbenmand-line, all projects will imposystem by default,
so | removed it from all examples. [Too many toraou

Changed the suffix for preprocessing statementymtiohs fromeTement to Statement and the prefix
for conditional compilation statements framonditional tocc. [3.1, 3.1.1, 3.1.2, 3.2, 3.3]

Corrected the example in tResume statement section. [10.10.2.3]
AddedProtected Friend to the modifier production. [4.6]

Added some examples to array creation expresdibh4.0.2]

Copyright © Microsoft Corporation 2005. All rightsserved. 309

