
Copyright © Microsoft Corporation 2005. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

The Microsoft Visual Basic 
Language Specification 

 

 

Version 8.0 
 

 

Paul Vick 
Microsoft Corporation 



 

Copyright © Microsoft Corporation 2005. All rights reserved. 

The information contained in this document represents the current view of Microsoft Corporation on 
the issues discussed as of the date of publication.  Because Microsoft must respond to changing 
market conditions, it should not be interpreted to be a commitment on the part of Microsoft, and 
Microsoft cannot guarantee the accuracy of any information presented after the date of publication. 

This Language Specification is for informational purposes only.  MICROSOFT MAKES NO 
WARRANTIES, EXPRESS, IMPLIED OR STATUTORY, AS TO THE INFORMATION IN THIS 
DOCUMENT. 

Complying with all applicable copyright laws is the responsibility of the user.  Without limiting the 
rights under copyright, no part of this document may be reproduced, stored in or introduced into a 
retrieval system, or transmitted in any form or by any means (electronic, mechanical, photocopying, 
recording, or otherwise), or for any purpose, without the express written permission of Microsoft 
Corporation.  

Microsoft may have patents, patent applications, trademarks, copyrights, or other intellectual 
property rights covering subject matter in this document.  Except as expressly provided in any 
written license agreement from Microsoft, the furnishing of this document does not give you any 
license to these patents, trademarks, copyrights, or other intellectual property. 

Unless otherwise noted, the example companies, organizations, products, domain names, e-mail 
addresses, logos, people, places and events depicted herein are fictitious, and no association with any 
real company, organization, product, domain name, email address, logo, person, place or event is 
intended or should be inferred. 

 2005 Microsoft Corporation.  All rights reserved. 

Microsoft, MS-DOS, Visual Basic, Windows 2000, Windows 95, Windows 98, Windows ME, 
Windows NT, Windows XP, and Windows are either registered trademarks or trademarks of 
Microsoft Corporation in the United States and/or other countries. 

The names of actual companies and products mentioned herein may be the trademarks of their 
respective owners. 



Table of Contents 

Copyright © Microsoft Corporation 2005. All rights reserved. i 

Table of Contents 

 

1. Introduction....................................................................................................................................................... 1 

1.1 Grammar Notation ........................................................................................................................................ 1 
1.2 Compatibility ................................................................................................................................................ 2 

1.2.1 Kinds of compatibility breaks ............................................................................................................... 2 
1.2.2 Impact Criteria....................................................................................................................................... 3 
1.2.3 Language deprecation............................................................................................................................ 3 

2. Lexical Grammar.............................................................................................................................................. 5 

2.1 Characters and Lines..................................................................................................................................... 5 
2.1.1 Line Terminators ...................................................................................................................................5 
2.1.2 Line Continuation..................................................................................................................................5 
2.1.3 White Space........................................................................................................................................... 6 
2.1.4 Comments.............................................................................................................................................. 6 

2.2 Identifiers...................................................................................................................................................... 6 
2.2.1 Type Characters..................................................................................................................................... 7 

2.3 Keywords...................................................................................................................................................... 8 
2.4 Literals ........................................................................................................................................................ 10 

2.4.1 Boolean Literals...................................................................................................................................10 
2.4.2 Integer Literals..................................................................................................................................... 10 
2.4.3 Floating-Point Literals......................................................................................................................... 11 
2.4.4 String Literals ...................................................................................................................................... 12 
2.4.5 Character Literals ................................................................................................................................ 12 
2.4.6 Date Literals ........................................................................................................................................ 13 
2.4.7 Nothing................................................................................................................................................ 14 

2.5 Separators.................................................................................................................................................... 14 
2.6 Operator Characters .................................................................................................................................... 14 

3. Preprocessing Directives................................................................................................................................. 15 

3.1 Conditional Compilation............................................................................................................................. 15 
3.1.1 Conditional Constant Directives.......................................................................................................... 16 
3.1.2 Conditional Compilation Directives.................................................................................................... 17 

3.2 External Source Directives ......................................................................................................................... 18 
3.3 Region Directives ....................................................................................................................................... 18 
3.4 External Checksum Directives.................................................................................................................... 19 

4. General Concepts ............................................................................................................................................ 21 

4.1 Declarations ................................................................................................................................................ 21 
4.1.1 Overloading and Signatures ................................................................................................................ 21 

4.2 Scope........................................................................................................................................................... 23 
4.3 Inheritance .................................................................................................................................................. 24 

4.3.1 MustInherit and NotInheritable Classes .............................................................................................. 25 
4.3.2 Interfaces and Multiple Inheritance..................................................................................................... 26 
4.3.3 Shadowing ........................................................................................................................................... 29 



Visual Basic Language Specification 

ii  Copyright © Microsoft Corporation 2005. All rights reserved. 

4.4 Implementation ........................................................................................................................................... 35 
4.4.1 Implementing Methods........................................................................................................................ 39 

4.5 Polymorphism............................................................................................................................................. 41 
4.5.1 Overriding Methods............................................................................................................................. 43 

4.6 Accessibility................................................................................................................................................ 47 
4.6.1 Constituent Types................................................................................................................................ 50 

4.7 Type and Namespace Names...................................................................................................................... 50 
4.7.1 Qualified Name Resolution ................................................................................................................. 52 
4.7.2 Unqualified Name Resolution ............................................................................................................. 52 

4.8 Variables ..................................................................................................................................................... 53 
4.9 Generic Types and Methods ....................................................................................................................... 53 

4.9.1 Type Parameters .................................................................................................................................. 55 
4.9.2 Type Constraints.................................................................................................................................. 57 

5. Attributes ......................................................................................................................................................... 63 

5.1 Attribute Classes......................................................................................................................................... 64 
5.2 Attribute Blocks.......................................................................................................................................... 66 

5.2.1 Attribute Names................................................................................................................................... 67 
5.2.2 Attribute Arguments............................................................................................................................ 68 

6. Source Files and Namespaces......................................................................................................................... 71 

6.1 Program Startup and Termination............................................................................................................... 71 
6.2 Compilation Options................................................................................................................................... 72 

6.2.1 Option Explicit Statement ................................................................................................................... 72 
6.2.2 Option Strict Statement ....................................................................................................................... 73 
6.2.3 Option Compare Statement ................................................................................................................. 73 
6.2.4 Integer Overflow Checks..................................................................................................................... 74 

6.3 Imports Statement ....................................................................................................................................... 74 
6.3.1 Import Aliases .....................................................................................................................................75 
6.3.2 Namespace Imports ............................................................................................................................. 77 

6.4 Namespaces ................................................................................................................................................ 79 
6.4.1 Namespace Declarations ..................................................................................................................... 80 
6.4.2 Namespace Members........................................................................................................................... 81 

7. Types ................................................................................................................................................................ 83 

7.1 Value Types and Reference Types ............................................................................................................. 83 
7.2 Interface Implementation............................................................................................................................ 84 
7.3 Primitive Types........................................................................................................................................... 86 
7.4 Enumerations .............................................................................................................................................. 87 

7.4.1 Enumeration Members ........................................................................................................................ 87 
7.4.2 Enumeration Values ............................................................................................................................ 88 

7.5 Classes ........................................................................................................................................................ 89 
7.5.1 Class Base Specification...................................................................................................................... 92 
7.5.2 Class Members .................................................................................................................................... 92 

7.6 Structures .................................................................................................................................................... 93 
7.6.1 Structure Members .............................................................................................................................. 93 

7.7 Standard Modules ....................................................................................................................................... 94 
7.7.1 Standard Module Members ................................................................................................................. 95 

7.8 Interfaces..................................................................................................................................................... 96 
7.8.1 Interface Inheritance............................................................................................................................ 97 
7.8.2 Interface Members............................................................................................................................... 98 



Table of Contents 

Copyright © Microsoft Corporation 2005. All rights reserved. iii 

7.9 Arrays ......................................................................................................................................................... 99 
7.10 Delegates................................................................................................................................................. 101 
7.11 Partial types............................................................................................................................................. 102 
7.12 Constructed Types .................................................................................................................................. 105 

7.12.1 Open Types and Closed Types ........................................................................................................ 105 
7.13 Special Types.......................................................................................................................................... 106 

8. Conversions.................................................................................................................................................... 107 

8.1 Implicit and Explicit Conversions ............................................................................................................ 107 
8.2 Boolean Conversions ................................................................................................................................ 107 
8.3 Numeric Conversions ............................................................................................................................... 108 
8.4 Reference Conversions ............................................................................................................................. 109 
8.5 Array Conversions ....................................................................................................................................109 
8.6 Value Type Conversions........................................................................................................................... 111 
8.7 String Conversions.................................................................................................................................... 114 
8.8 Widening Conversions.............................................................................................................................. 114 
8.9 Narrowing Conversions ............................................................................................................................ 115 
8.10 Type Parameter Conversions .................................................................................................................. 116 
8.11 User-defined conversions........................................................................................................................ 117 

8.11.1 Most specific widening conversion ................................................................................................. 118 
8.11.2 Most specific narrowing conversion................................................................................................ 118 

9. Type Members............................................................................................................................................... 121 

9.1 Interface Method Implementation............................................................................................................. 121 
9.2 Methods .................................................................................................................................................... 124 

9.2.1 Regular Method Declarations............................................................................................................ 126 
9.2.2 External Method Declarations........................................................................................................... 128 
9.2.3 Overridable Methods......................................................................................................................... 129 
9.2.4 Shared Methods................................................................................................................................. 130 
9.2.5 Method Parameters............................................................................................................................ 130 

9.2.5.1 Value Parameters ....................................................................................................................... 130 
9.2.5.2 Reference Parameters................................................................................................................. 130 
9.2.5.3 Optional Parameters ................................................................................................................... 130 
9.2.5.4 ParamArray Parameters ............................................................................................................. 130 

9.2.6 Event Handling.................................................................................................................................. 130 
9.3 Constructors.............................................................................................................................................. 130 

9.3.1 Instance Constructors ........................................................................................................................ 130 
9.3.2 Shared Constructors........................................................................................................................... 130 

9.4 Events ....................................................................................................................................................... 130 
9.4.1 Custom Events................................................................................................................................... 130 

9.5 Constants................................................................................................................................................... 130 
9.6 Instance and Shared Variables.................................................................................................................. 130 

9.6.1 Read-Only Variables ......................................................................................................................... 130 
9.6.2 WithEvents Variables........................................................................................................................ 130 
9.6.3 Variable Initializers ........................................................................................................................... 130 

9.6.3.1 Regular Initializers ..................................................................................................................... 130 
9.6.3.2 Object Initializers ....................................................................................................................... 130 
9.6.3.3 Array-Size Initializers ................................................................................................................ 130 
9.6.3.4 Array-Element Initializers.......................................................................................................... 130 

9.6.4 System.MarshalByRefObject Classes ............................................................................................... 130 
9.7 Properties .................................................................................................................................................. 130 



Visual Basic Language Specification 

iv Copyright © Microsoft Corporation 2005. All rights reserved. 

9.7.1 Get Accessor Declarations................................................................................................................. 130 
9.7.2 Set Accessor Declarations ................................................................................................................. 130 
9.7.3 Default Properties.............................................................................................................................. 130 

9.8 Operators................................................................................................................................................... 130 
9.8.1 Unary Operators ................................................................................................................................ 130 
9.8.2 Binary Operators ............................................................................................................................... 130 
9.8.3 Conversion Operators........................................................................................................................ 130 

10. Statements.................................................................................................................................................... 130 

10.1 Blocks and Labels...................................................................................................................................130 
10.1.1 Local Variables and Parameters ...................................................................................................... 130 

10.2 Local Declaration Statements ................................................................................................................. 130 
10.2.1 Implicit Local Declarations ............................................................................................................. 130 

10.3 With Statement ....................................................................................................................................... 130 
10.4 SyncLock Statement ............................................................................................................................... 130 
10.5 Event Statements..................................................................................................................................... 130 

10.5.1 RaiseEvent Statement...................................................................................................................... 130 
10.5.2 AddHandler and RemoveHandler Statements................................................................................. 130 

10.6 Assignment Statements........................................................................................................................... 130 
10.6.1 Regular Assignment Statements...................................................................................................... 130 
10.6.2 Compound Assignment Statements................................................................................................. 130 
10.6.3 Mid Assignment Statement ............................................................................................................. 130 

10.7 Invocation Statements............................................................................................................................. 130 
10.8 Conditional Statements ........................................................................................................................... 130 

10.8.1 If...Then...Else Statements............................................................................................................... 130 
10.8.2 Select...Case Statements .................................................................................................................. 130 

10.9 Loop Statements .....................................................................................................................................130 
10.9.1 While...End While and Do...Loop Statements................................................................................. 130 
10.9.2 For...Next Statements ...................................................................................................................... 130 
10.9.3 For Each...Next Statements ............................................................................................................. 130 

10.10 Exception-Handling Statements............................................................................................................ 130 
10.10.1 Structured Exception-Handling Statements................................................................................... 130 

10.10.1.1 Finally Blocks ........................................................................................................................ 130 
10.10.1.2 Catch Blocks .......................................................................................................................... 130 
10.10.1.3 Throw Statement .................................................................................................................... 130 

10.10.2 Unstructured Exception-Handling Statements .............................................................................. 130 
10.10.2.1 Error Statement ...................................................................................................................... 130 
10.10.2.2 On Error Statement ................................................................................................................ 130 
10.10.2.3 Resume Statement.................................................................................................................. 130 

10.11 Branch Statements ................................................................................................................................ 130 
10.12 Array-Handling Statements .................................................................................................................. 130 

10.12.1 ReDim Statement........................................................................................................................... 130 
10.12.2 Erase Statement ............................................................................................................................. 130 

10.13 Using statement..................................................................................................................................... 130 

11. Expressions .................................................................................................................................................. 130 

11.1 Expression Classifications ...................................................................................................................... 130 
11.1.1 Expression Reclassification............................................................................................................. 130 

11.2 Constant Expressions.............................................................................................................................. 130 
11.3 Late-Bound Expressions ......................................................................................................................... 130 
11.4 Simple Expressions................................................................................................................................. 130 



Table of Contents 

Copyright © Microsoft Corporation 2005. All rights reserved. v 

11.4.1 Literal Expressions .......................................................................................................................... 130 
11.4.2 Parenthesized Expressions............................................................................................................... 130 
11.4.3 Instance Expressions ....................................................................................................................... 130 
11.4.4 Simple Name Expressions............................................................................................................... 130 
11.4.5 AddressOf Expressions ................................................................................................................... 130 

11.5 Type Expressions....................................................................................................................................130 
11.5.1 GetType Expressions....................................................................................................................... 130 
11.5.2 TypeOf...Is Expressions .................................................................................................................. 130 
11.5.3 Is Expressions.................................................................................................................................. 130 

11.6 Member Access Expressions .................................................................................................................. 130 
11.6.1 Identical Type and Member Names................................................................................................. 130 
11.6.2 Default Instances ............................................................................................................................. 130 

11.6.2.1 Default Instances and Type Names.......................................................................................... 130 
11.6.2.2 Group Classes........................................................................................................................... 130 

11.7 Dictionary Member Access..................................................................................................................... 130 
11.8 Invocation Expressions ........................................................................................................................... 130 

11.8.1 Overloaded Method Resolution....................................................................................................... 130 
11.8.2 Applicable Methods......................................................................................................................... 130 
11.8.3 Passing Parameters .......................................................................................................................... 130 
11.8.4 Conditional Methods ....................................................................................................................... 130 
11.8.5 Type Argument Inference................................................................................................................ 130 

11.9 Index Expressions...................................................................................................................................130 
11.10 New Expressions................................................................................................................................... 130 

11.10.1 Object-Creation Expressions ......................................................................................................... 130 
11.10.2 Array-Creation Expressions .......................................................................................................... 130 
11.10.3 Delegate-Creation Expressions...................................................................................................... 130 

11.11 Cast Expressions...................................................................................................................................130 
11.12 Operator Expressions............................................................................................................................ 130 

11.12.1 Operator Precedence and Associativity......................................................................................... 130 
11.12.2 Object Operands ............................................................................................................................ 130 
11.12.3 Operator Resolution....................................................................................................................... 130 

11.13 Arithmetic Operators ............................................................................................................................ 130 
11.13.1 Unary Plus Operator ...................................................................................................................... 130 
11.13.2 Unary Minus Operator................................................................................................................... 130 
11.13.3 Addition Operator.......................................................................................................................... 130 
11.13.4 Subtraction Operator ..................................................................................................................... 130 
11.13.5 Multiplication Operator ................................................................................................................. 130 
11.13.6 Division Operators......................................................................................................................... 130 
11.13.7 Mod Operator ................................................................................................................................ 130 
11.13.8 Exponentiation Operator ............................................................................................................... 130 

11.14 Relational Operators ............................................................................................................................. 130 
11.15 Like Operator........................................................................................................................................ 130 
11.16 Concatenation Operator ........................................................................................................................ 130 
11.17 Logical Operators ................................................................................................................................. 130 

11.17.1 Short-circuiting Logical Operators................................................................................................ 130 
11.18 Shift Operators...................................................................................................................................... 130 
11.19 Boolean Operators ................................................................................................................................ 130 

12. Documentation Comments ......................................................................................................................... 130 

12.1 Documentation Comment Format........................................................................................................... 130 
12.2 Recommended tags ................................................................................................................................. 130 



Visual Basic Language Specification 

vi  Copyright © Microsoft Corporation 2005. All rights reserved. 

12.2.1 <c>................................................................................................................................................... 130 
12.2.2 <code>............................................................................................................................................. 130 
12.2.3 <example>....................................................................................................................................... 130 
12.2.4 <exception>..................................................................................................................................... 130 
12.2.5 <include>.........................................................................................................................................130 
12.2.6 <list>................................................................................................................................................ 130 
12.2.7 <para>.............................................................................................................................................. 130 
12.2.8 <param>...........................................................................................................................................130 
12.2.9 <paramref> ...................................................................................................................................... 130 
12.2.10 <permission>................................................................................................................................. 130 
12.2.11 <remarks>...................................................................................................................................... 130 
12.2.12 <returns> ....................................................................................................................................... 130 
12.2.13 <see> ............................................................................................................................................. 130 
12.2.14 <seealso>....................................................................................................................................... 130 
12.2.15 <summary>.................................................................................................................................... 130 
12.2.16 <typeparam>.................................................................................................................................. 130 
12.2.17 <value>..........................................................................................................................................130 

12.3 ID Strings................................................................................................................................................ 130 
12.3.1 ID string examples........................................................................................................................... 130 

12.4 Documentation comments example........................................................................................................ 130 

13. Grammar Summary.................................................................................................................................... 130 

13.1 Lexical Grammar .................................................................................................................................... 130 
13.1.1 Characters and Lines ....................................................................................................................... 130 
13.1.2 Identifiers......................................................................................................................................... 130 
13.1.3 Keywords......................................................................................................................................... 130 
13.1.4 Literals............................................................................................................................................. 130 

13.2 Preprocessing Directives......................................................................................................................... 130 
13.2.1 Conditional Compilation ................................................................................................................. 130 
13.2.2 External Source Directives .............................................................................................................. 130 
13.2.3 Region Directives ............................................................................................................................ 130 
13.2.4 External Checksum Directives ........................................................................................................ 130 

13.3 Syntactic Grammar ................................................................................................................................. 130 
13.3.1 Attributes ......................................................................................................................................... 130 
13.3.2 Source Files and Namespaces.......................................................................................................... 130 
13.3.3 Types ............................................................................................................................................... 130 
13.3.4 Type Members................................................................................................................................. 130 
13.3.5 Statements........................................................................................................................................130 
13.3.6 Expressions...................................................................................................................................... 130 

14. Change List .................................................................................................................................................. 130 

14.1 Major changes......................................................................................................................................... 130 
14.2 Minor changes......................................................................................................................................... 130 
14.3 Clarifications/Errata................................................................................................................................ 130 
14.4 Miscellaneous ......................................................................................................................................... 130 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 1 

1. Introduction 

The Microsoft Visual Basic programming language is a high-level programming language for the Microsoft 
.NET Framework. Although it is designed to be an approachable and easy-to-learn language, it is also powerful 
enough to satisfy the needs of experienced programmers. The Visual Basic programming language has a syntax 
that is similar to English, which promotes the clarity and readability of Visual Basic code. Wherever possible, 
meaningful words or phrases are used instead of abbreviations, acronyms, or special characters. Extraneous or 
unneeded syntax is generally allowed but not required. 

The Visual Basic programming language can be either a strongly typed or a loosely typed language. Loose 
typing defers much of the burden of type checking until a program is already running. This includes not only 
type checking of conversions but also of method calls, meaning that the binding of a method call can be deferred 
until run-time. This is useful when building prototypes or other programs in which speed of development is 
more important than execution speed. The Visual Basic programming language also provides strongly typed 
semantics that performs all type checking at compile-time and disallows run-time binding of method calls. This 
guarantees maximum performance and helps ensure that type conversions are correct. This is useful when 
building production applications in which speed of execution and execution correctness is important. 

This document describes the Visual Basic language. It is meant to be a complete language description rather 
than a language tutorial or a user's reference manual. 

1.1 Grammar Notation 
This specification describes two grammars: a lexical grammar and a syntactic grammar. The lexical grammar 
defines how characters can be combined to form tokens; the syntactic grammar defines how the tokens can be 
combined to form Visual Basic programs. There are also several secondary grammars used for preprocessing 
operations like conditional compilation.  

Note   The grammars in this specification are designed to be human readable, not formal (that is, usable by 
LEX or YACC). 

All of the grammars use a modified BNF notation, which consists of a set of productions made up of terminal 
and non-terminal names. A terminal name represents one or more Unicode characters. Each nonterminal name is 
defined by one or more productions. In a production, nonterminal names are shown in italic type, and terminal 
names are shown in a fixed-width type. Text in normal type and surrounded by angle-bracket metasymbols 
are informal terminals (for example, "< all Unicode characters >"). Each grammar starts with the nonterminal 
Start. 

Case is unimportant in Visual Basic programs. For simplicity, all terminals will be given in standard casing, but 
any casing will match them. Terminals that are printable elements of the ASCII character set are represented by 
their corresponding ASCII characters. Visual Basic is also width insensitive when matching terminals, allowing 
full-width Unicode characters to match their half-width Unicode equivalents, but only on a whole-token basis. A 
token will not match if it contains mixed half-width and full-width characters. 

A set of productions begins with the name of a nonterminal, followed by two colons and an equal sign. The right 
side contains a terminal or nonterminal production. A nonterminal may have multiple productions that are 
separated by the vertical-bar metasymbol (|). Items included in square-bracket metasymbols ([]) are optional. A 
plus metasymbol (+) following an item means the item may occur one or more times. 

Line breaks and indentation may be added for readability and are not part of the production. 



Visual Basic Language Specification 

2 Copyright © Microsoft Corporation 2005. All rights reserved. 

1.2 Compatibility 
An important feature of a programming language is compatibility between different versions of the language. If 
a newer version of a language does not accept the same code as a previous version of the language, or interprets 
it differently than the previous version, then a burden can be placed on a programmer when upgrading his code 
from one version of the language to another. As such, compatibility between versions must be preserved except 
when the benefit to language consumers is of a clear and overwhelming nature. 

The following policy governs changes to the Visual Basic language between versions. The term language, when 
used in this context, refers only to the syntactic and semantic aspects of the Visual Basic language itself and 
does not include any .NET Framework classes included as a part of the Microsoft.VisualBasic namespace 
(and sub-namespaces). All classes in the .NET Framework are covered by a separate versioning and 
compatibility policy outside the scope of this document. 

1.2.1 Kinds of compatibility breaks 

In an ideal world, compatibility would be 100% between the existing version of Visual Basic and all future 
versions of Visual Basic. However, there may be situations where the need for a compatibility break may 
outweigh the cost it may impose on programmers. Such situations are: 

• New warnings. Introducing a new warning is not, per se, a compatibility break. However, because many 
developers compile with “treat warnings as errors” turned on, extra care must be taken when introducing 
warnings. 

• New keywords. Introducing new keywords may be necessary when introducing new language features. 
Reasonable efforts will be made to choose keywords that minimize the possibility of collision with users’ 
identifiers and to use existing keywords where it makes sense. Help will be provided to upgrade projects 
from previous versions and escape any new keywords. 

• Compiler bugs. When the compiler’s behavior is at odds with a documented behavior in the language 
specification, fixing the compiler behavior to match the documented behavior may be necessary. 

• Specification bug. When the compiler is consistent with the language specification but the language 
specification is clearly wrong, changing the language specification and the compiler behavior may be 
necessary. The phrase “clearly wrong” means that the documented behavior runs counter to what a clear and 
unambiguous majority of users would expect and produces highly undesirable behavior for users. 

• Specification ambiguity. When the language specification should spell out what happens in a particular 
situation but doesn’t, and the compiler handles the situation in a way that is either inconsistent or clearly 
wrong (using the same definition from the previous point), clarifying the specification and correcting the 
compiler behavior may be necessary. In other words, when the specification covers cases a, b, d and e, but 
omits any mention of what happens in case c, and the compiler behaves incorrectly in case c, it may be 
necessary to document what happens in case c and change the behavior of the compiler to match. (Note that 
if the specification was ambiguous as to what happens in a situation and the compiler behaves in a manner 
that is not clearly wrong, the compiler behavior becomes the de facto specification.) 

• Making run-time errors into compile-time errors. In a situation where code is 100% guaranteed to fail at 
runtime (i.e. the user code has an unambiguous bug in it), it may be desirable to add a compile-time error 
that catches the situation. 

• Specification omission. When the language specification does not specifically allow or disallow a particular 
situation and the compiler handles the situation in a way that is undesirable (if the compiler behavior was 
clearly wrong, it would a specification bug, not a specification omission), it may be necessary to clarify the 
specification and change the compiler behavior. In addition to the usual impact analysis, changes of this 
kind are further restricted to cases where the impact of the change is considered to be extremely minimal 
and the benefit to developers is very high. 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 3 

• New features. In general, introducing new features should not change existing parts of the language 
specification or the existing behavior of the compiler. In the situation where introducing a new feature 
requires changing the existing language specification, such a compatibility break is reasonable only if the 
impact would be extremely minimal and the benefit of the feature is high. 

• Security. In extraordinary situations, security concerns may necessitate a compatibility break, such as 
removing or modifying a feature that is inherently insecure and poses a clear security risk for users. 

The following situations are not acceptable reasons for introducing compatibility breaks: 

• Undesirable or regrettable behavior. Language design or compiler behavior which is reasonable but 
considered undesirable or regrettable in retrospect is not a justification for breaking backward compatibility. 
The language deprecation process, covered below, must be used instead. 

• Anything else. Otherwise, compiler behavior remains backwards compatible. 

1.2.2 Impact Criteria 

When considering whether a compatibility break might be acceptable, several criteria are used to determine 
what the impact of the change might be. The greater the impact, the higher the bar for accepting the 
compatibility breaks. 

The criteria are: 

• What is the scope of the change? In other words, how many programs are likely to be affected? How many 
users are likely to be affected? How common will it be to write code that is affected by the change? 

• Do any workarounds exist to get the same behavior prior to the change? 

• How obvious is the change? Will users get immediate feedback that something has changed, or will their 
programs just execute differently? 

• Can the change be reasonably addressed during upgrade? Is it possible to write a tool that can find the 
situation in which the change occurs with perfect accuracy and change the code to work around the change? 

• What is the community feedback on the change? 

1.2.3 Language deprecation 

Over time, parts of the language or compiler may become deprecated. As discussed previously, it is not 
acceptable to break compatibility to remove such deprecated features. Instead, the following steps must be 
followed: 

• Given a feature that exists in version A of Visual Studio, feedback must be solicited from the user 
community on deprecation of the feature and full notice given before any final deprecation decision is made. 
The deprecation process may be reversed or abandoned at any point based on user community feedback. 

• A full version (i.e. not a point release) B of Visual Studio must be released with compiler warnings that 
warn of deprecated usage. The warnings must be on by default and can be turned off. The deprecations must 
be clearly documented in the product documentation and on the web. 

• A full version C of Visual Studio must be released with compiler warnings that cannot be turned off. 

• A full version D of Visual Studio must subsequently be released with the deprecated compiler warnings 
converted into compiler errors. The release of D must occur after the end of the Mainstream Support Phase 
(5 years as of this writing) of release A. 

• Finally, a version E of Visual Studio may be released that removes the compiler errors. 



Visual Basic Language Specification 

4 Copyright © Microsoft Corporation 2005. All rights reserved. 

Changes that cannot be handled within this deprecation framework will not be allowed. 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 5 

2. Lexical Grammar 

Compilation of a Visual Basic program first involves translating the raw stream of Unicode characters into an 
ordered set of lexical tokens. Because the Visual Basic language is not free-format, the set of tokens is then 
further divided into a series of logical lines. A logical line spans from either the start of the stream or a line 
terminator through to the next line terminator that is not preceded by a line continuation or through to the end of 
the stream. 

Start  ::=  [  LogicalLine+  ] 

LogicalLine  ::=  [  LogicalLineElement+  ]  [  Comment  ]  LineTerminator 

LogicalLineElement  ::=  WhiteSpace  |  LineContinuation  |  Token 

Token  ::=  Identifier  |  Keyword  |  Literal  |  Separator  |  Operator 

2.1 Characters and Lines 
Visual Basic programs are composed of characters from the Unicode character set.  

Character  ::=  < any Unicode character except a LineTerminator > 

2.1.1 Line Terminators 

Unicode line break characters separate logical lines. 

LineTerminator  ::= 
 < Unicode carriage return character (0x000D) >  | 
 < Unicode linefeed character (0x000A) >  | 
 < Unicode carriage return character >  < Unicode linefeed character >  | 
 < Unicode line separator character (0x2028) >  | 
 < Unicode paragraph separator character (0x2029) > 

2.1.2 Line Continuation 

A line continuation consists of at least one white-space character that immediately precedes a single underscore 
character as the last character (other than white space) in a text line. A line continuation allows a logical line to 
span more than one physical line. Line continuations are treated as if they were white space, even though they 
are not. 

The following program shows some line continuations: 

Module Test 

    Function Func( _ 

        ByVal Param1 As Integer, _ 

        ByVal Param2 As Integer ) 

 

        If (Param1 < Param2) Or _ 

            (Param1 > Param2) Then 

            Console.WriteLine("Not equal") 

        End If 



Visual Basic Language Specification 

6 Copyright © Microsoft Corporation 2005. All rights reserved. 

    End Function 

End Module 

LineContinuation  ::=  WhiteSpace  _  [  WhiteSpace+  ]  LineTerminator 

2.1.3 White Space 

White space serves only to separate tokens and is otherwise ignored. Logical lines containing only white space 
are ignored.  

Note   Line terminators are not considered white space. 

WhiteSpace  ::= 
 < Unicode blank characters (class Zs) >  | 
 < Unicode tab character (0x0009) > 

2.1.4 Comments 

A comment begins with a single-quote character or the keyword REM. A single-quote character is either an 
ASCII single-quote character, a Unicode left single-quote character, or a Unicode right single-quote character. 
Comments can begin anywhere on a source line, and the end of the physical line ends the comment. The 
compiler ignores the characters between the beginning of the comment and the line terminator. Consequently, 
comments cannot extend across multiple lines by using line continuations. 

Comment  ::=  CommentMarker  [  Character+  ] 

CommentMarker  ::=  SingleQuoteCharacter  |  REM 

SingleQuoteCharacter  ::= 
 '  | 
 < Unicode left single-quote character (0x2018) >  | 
 < Unicode right single-quote character (0x2019) > 

2.2 Identifiers 
An identifier is a name. Visual Basic identifiers conform to the Unicode Standard Annex 15 with one exception: 
identifiers may begin with an underscore (connector) character. If an identifier begins with an underscore, it 
must contain at least one other valid identifier character to disambiguate it from a line continuation.  

Regular identifiers may not match keywords, but escaped identifiers or identifiers with a type character can. An 
escaped identifier is an identifier delimited by square brackets. Escaped identifiers follow the same rules as 
regular identifiers except that they may match keywords and may not have type characters.  

This example defines a class named class with a shared method named shared that takes a parameter named 
boolean and then calls the method. 

Class [class] 

    Shared Sub [shared](ByVal [boolean] As Boolean) 

        If [boolean] Then 

            Console.WriteLine("true") 

        Else 

            Console.WriteLine("false") 

        End If 

    End Sub 

End Class 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 7 

 

Module [module] 

    Sub Main() 

        [class].[shared](True) 

    End Sub 

End Module 

Identifiers are case insensitive, so two identifiers are considered to be the same identifier if they differ only in 
case.  

Note   The Unicode Standard one-to-one case mappings are used when comparing identifiers, and any 
locale-specific case mappings are ignored. 

Identifier  ::= 
 NonEscapedIdentifier  [  TypeCharacter  ]  | 
 Keyword  TypeCharacter  | 
 EscapedIdentifier 

NonEscapedIdentifier  ::=  < IdentifierName but not Keyword > 

EscapedIdentifier  ::=  [  IdentifierName  ]  

IdentifierName  ::=  IdentifierStart  [  IdentifierCharacter+  ] 

IdentifierStart  ::= 
 AlphaCharacter  | 
 UnderscoreCharacter  IdentifierCharacter 

IdentifierCharacter  ::= 
 UnderscoreCharacter  | 
 AlphaCharacter  | 
 NumericCharacter  | 
 CombiningCharacter  | 
 FormattingCharacter 

AlphaCharacter  ::= 
 < Unicode alphabetic character (classes Lu, Ll, Lt, Lm, Lo, Nl) > 

NumericCharacter  ::=  < Unicode decimal digit character (class Nd) > 

CombiningCharacter  ::=  < Unicode combining character (classes Mn, Mc) > 

FormattingCharacter  ::=  < Unicode formatting character (class Cf) > 

UnderscoreCharacter  ::=  < Unicode connection character (class Pc) > 

IdentifierOrKeyword  ::=  Identifier  |  Keyword 

2.2.1 Type Characters 

A type character denotes the type of the preceding identifier. The type character is not considered part of the 
identifier. If a declaration includes a type character, the type character must agree with the type specified in the 
declaration itself; otherwise, a compile-time error occurs. If the declaration omits the type (for example, if it 
does not specify an As clause), the type character is implicitly substituted as the type of the declaration. 

No white space may come between an identifier and its type character. There are no type characters for Byte, 
SByte, UShort, Short, UInteger or ULong, due to a lack of suitable characters. 



Visual Basic Language Specification 

8 Copyright © Microsoft Corporation 2005. All rights reserved. 

Appending a type character to an identifier that conceptually does not have a type (for example, a namespace 
name) or to an identifier whose type disagrees with the type of the type character causes a compile-time error.  

The following example shows the use of type characters: 

' The follow line will cause an error: standard modules have no type. 

Module Test1# 

End Module 

 

Module Test2 

    ' This function takes a Long parameter and returns a String. 

    Function Func$(ByVal Param&) 

        ' The following line causes an error because the type character 

        ' conflicts with the declared type of StringFunc and LongParam. 

        Func# = CStr(Param@) 

 

        ' The following line is valid. 

        Func$ = CStr(Param&) 

    End Function 

End Module 

The type character ! presents a special problem in that it can be used both as a type character and as a separator 
in the language. To remove ambiguity, a ! character is a type character as long as the character that follows it 
cannot start an identifier. If it can, then the ! character is a separator, not a type character. 

TypeCharacter  ::= 
 IntegerTypeCharacter  | 
 LongTypeCharacter  | 
 DecimalTypeCharacter  | 
 SingleTypeCharacter  | 
 DoubleTypeCharacter  | 
 StringTypeCharacter 

IntegerTypeCharacter  ::=  % 

LongTypeCharacter  ::=  & 

DecimalTypeCharacter  ::=  @ 

SingleTypeCharacter  ::=  ! 

DoubleTypeCharacter  ::=  # 

StringTypeCharacter  ::=  $ 

2.3 Keywords 
A keyword is a word that has special meaning in a language construct. All keywords are reserved by the 
language and may not be used as identifiers unless the identifiers are escaped.  

Note   EndIf, GoSub, Let, Variant, and Wend are retained as keywords, although they are no longer used 
in Visual Basic. 

Keyword  ::=  < member of keyword table > 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 9 

 

AddHandler AddressOf Alias And 

AndAlso As Boolean ByRef 

Byte ByVal Call Case 

Catch CBool CByte CChar 

CDate CDbl CDec Char 

CInt Class CLng CObj 

Const Continue CSByte CShort 

CSng CStr CType CUInt 

CULng CUShort Date Decimal 

Declare Default Delegate Dim 

DirectCast Do Double Each 

Else ElseIf End EndIf 

Enum Erase Error Event 

Exit False Finally For 

Friend Function Get GetType 

Global GoSub GoTo Handles 

If Implements Imports In 

Inherits Integer Interface Is 

IsNot Let Lib Like 

Long Loop Me Mod 

Module MustInherit MustOverride MyBase 

MyClass Namespace Narrowing New 

Next Not Nothing NotInheritable 

NotOverridable Object Of On 

Operator Option Optional Or 

OrElse Overloads Overridable Overrides 

ParamArray Partial Private Property 

Protected Public RaiseEvent ReadOnly 

ReDim REM RemoveHandler Resume 

Return SByte Select Set 

Shadows Shared Short Single 

Static Step Stop String 

Structure Sub SyncLock Then 

Throw To True Try 

TryCast TypeOf UInteger ULong 

UShort Using Variant Wend 

When While Widening With 

WithEvents WriteOnly Xor  
 



Visual Basic Language Specification 

10 Copyright © Microsoft Corporation 2005. All rights reserved. 

2.4 Literals 
A literal is a textual representation of a particular value of a type. Literal types include Boolean, integer, floating 
point, string, character, and date. 

Literal  ::= 
 BooleanLiteral  | 
 IntegerLiteral  | 
 FloatingPointLiteral  | 
 StringLiteral  | 
 CharacterLiteral  | 
 DateLiteral  | 
 Nothing 

2.4.1 Boolean Literals 

True and False are literals of the Boolean type that map to the true and false state, respectively. 

BooleanLiteral  ::=  True  |  False 

2.4.2 Integer Literals 

Integer literals can be decimal (base 10), hexadecimal (base 16), or octal (base 8). A decimal integer literal is a 
string of decimal digits (0-9). A hexadecimal literal is &H followed by a string of hexadecimal digits (0-9, A-F). 
An octal literal is &O followed by a string of octal digits (0-7). Decimal literals directly represent the decimal 
value of the integral literal, whereas octal and hexadecimal literals represent the binary value of the integer 
literal (thus, &H8000S is –32768, not an overflow error). 

The type of a literal is determined by its value or by the following type character. If no type character is 
specified, values in the range of the Integer type are typed as Integer; values outside the range for Integer 
are typed as Long. If an integer literal's type is of insufficient size to hold the integer literal, a compile-time 
error results. 

Annotation 

There isn’t a type character for Byte because the most natural character would be B, which is a legal character 
in a hexadecimal literal. 

 

IntegerLiteral  ::=  IntegralLiteralValue  [  IntegralTypeCharacter  ] 

IntegralLiteralValue  ::=  IntLiteral  |  HexLiteral  |  OctalLiteral 

IntegralTypeCharacter  ::= 
 ShortCharacter  | 
 UnsignedShortCharacter  | 
 IntegerCharacter  | 
 UnsignedIntegerCharacter 
 LongCharacter  | 
 UnsignedLongCharacter  | 
 IntegerTypeCharacter  | 
 LongTypeCharacter 

ShortCharacter  ::=  S 

UnsignedShortCharacter  ::=  US 

IntegerCharacter  ::=  I 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 11 

UnsignedIntegerCharacter  ::=  UI 

LongCharacter  ::=  L 

UnsignedLongCharacter  ::=  UL 

IntLiteral  ::=  Digit+ 

HexLiteral  ::=  &  H  HexDigit+ 

OctalLiteral  ::=  &  O  OctalDigit+ 

Digit  ::=  0  |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9 

HexDigit  ::=  0  |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  A  |  B  |  C  |  D  |  E  |  F 

OctalDigit  ::=  0  |  1  |  2  |  3  |  4  |  5  |  6  |  7 

2.4.3 Floating-Point Literals 

A floating-point literal is an integer literal followed by an optional decimal point (the ASCII period character) 
and mantissa, and an optional base 10 exponent. By default, a floating-point literal is of type Double. If the 
Single, Double, or Decimal type character is specified, the literal is of that type. If a floating-point literal's 
type is of insufficient size to hold the floating-point literal, a compile-time error results. 

Annotation: 

It is worth noting that the Decimal data type can encode trailing zeros in a value. The specification currently 
makes no comment about whether trailing zeros in a Decimal literal should be honored by a compiler. 

 

FloatingPointLiteral  ::= 
 FloatingPointLiteralValue  [  FloatingPointTypeCharacter  ]  | 
 IntLiteral  FloatingPointTypeCharacter 

FloatingPointTypeCharacter  ::= 
 SingleCharacter  | 
 DoubleCharacter  | 
 DecimalCharacter  | 
 SingleTypeCharacter  | 
 DoubleTypeCharacter  | 
 DecimalTypeCharacter 

SingleCharacter  ::=  F 

DoubleCharacter  ::=  R 

DecimalCharacter  ::=  D 

FloatingPointLiteralValue  ::= 
 IntLiteral  .  IntLiteral  [  Exponent  ]  | 
 .  IntLiteral  [  Exponent  ]  | 
 IntLiteral  Exponent 

Exponent  ::=  E  [  Sign  ]  IntLiteral 

Sign  ::=  +  |  - 



Visual Basic Language Specification 

12 Copyright © Microsoft Corporation 2005. All rights reserved. 

2.4.4 String Literals 

A string literal is a sequence of zero or more Unicode characters beginning and ending with an ASCII double-
quote character, a Unicode left double-quote character, or a Unicode right double-quote character. Within a 
string, a sequence of two double-quote characters is an escape sequence representing a double quote in the 
string. A string constant is of the String type. 

Module Test 

    Sub Main() 

        ' This prints out: ". 

        Console.WriteLine("""") 

 

        ' This prints out: a"b. 

        Console.WriteLine("a""b") 

 

        ' This causes a compile error due to mismatched double-quotes. 

        Console.WriteLine("a"b") 

    End Sub 

End Module 

Each string literal does not necessarily result in a new string instance. When two or more string literals that are 
equivalent according to the string equality operator using binary comparison semantics appear in the same 
program, these string literals refer to the same string instance. For instance, the output of the following program 
is True because the two literals refer to the same string instance. 

Module Test 

    Sub Main() 

        Dim a As Object = "hello" 

        Dim b As Object = "hello" 

        Console.WriteLine(a Is b) 

    End Sub 

End Module 

StringLiteral  ::= 
 DoubleQuoteCharacter  [  StringCharacter+  ]  DoubleQuoteCharacter 

DoubleQuoteCharacter  ::= 
 "  | 
 < Unicode left double-quote character (0x201C) >  | 
 < Unicode right double-quote character (0x201D) > 

StringCharacter  ::= 
 < Character except for DoubleQuoteCharacter >  | 
 DoubleQuoteCharacter  DoubleQuoteCharacter 

2.4.5 Character Literals 

A character literal represents a single Unicode character of the Char type. Two double-quote characters is an 
escape sequence representing the double-quote character. 

Module Test 

    Sub Main() 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 13 

        ' This prints out: a. 

        Console.WriteLine("a"c) 

 

        ' This prints out: ". 

        Console.WriteLine(""""c) 

    End Sub 

End Module 

CharacterLiteral  ::=  DoubleQuoteCharacter  StringCharacter  DoubleQuoteCharacter  C 

2.4.6 Date Literals 

A date literal represents a particular moment in time expressed as a value of the Date type. The literal may 
specify both a date and a time, just a date, or just a time. If the date value is omitted, then January 1 of the year 1 
in the Gregorian calendar is assumed. If the time value is omitted, then 12:00:00 AM is assumed. 

To avoid problems with interpreting the year value in a date value, the year value cannot be two digits. When 
expressing a date in the first century AD/CE, leading zeros must be specified. 

A time value may be specified either using a 24-hour value or a 12-hour value; time values that omit an AM or 
PM are assumed to be 24-hour values. If a time value omits the minutes, the literal 0 is used by default. If a time 
value omits the seconds, the literal 0 is used by default. If both minutes and second are omitted, then AM or PM 
must be specified. If the date value specified is outside the range of the Date type, a compile-time error occurs.  

The following example contains several date literals. 

Dim d As Date 

d = # 8/23/1970 3:45:39AM # 

d = # 8/23/1970 #              ' Date value: 8/23/1970 12:00:00AM. 

d = # 3:45:39AM #              ' Date value: 1/1/1 3:45:39AM. 

d = # 3:45:39 #                ' Date value: 1/1/1 3:45:39AM. 

d = # 13:45:39 #               ' Date value: 1/1/1 1:45:39PM. 

d = # 1AM #                    ' Date value: 1/1/1 1:00:00AM. 

d = # 13:45:39PM #             ' This date value is not valid. 

DateLiteral  ::=  #  [  Whitespace+  ]  DateOrTime  [  Whitespace+  ]  # 

DateOrTime  ::= 
 DateValue  Whitespace+  TimeValue  | 
 DateValue  | 
 TimeValue 

DateValue  ::= 
 MonthValue  /  DayValue  /  YearValue  | 
 MonthValue  –  DayValue  -  YearValue 

TimeValue  ::= 
 HourValue  :  MinuteValue  [  :  SecondValue  ]  [  WhiteSpace+  ]  [  AMPM  ] 

MonthValue  ::=  IntLiteral 

DayValue  ::=  IntLiteral 

YearValue  ::=  IntLiteral 



Visual Basic Language Specification 

14 Copyright © Microsoft Corporation 2005. All rights reserved. 

HourValue  ::=  IntLiteral 

MinuteValue  ::=  IntLiteral 

SecondValue  ::=  IntLiteral 

AMPM  ::=  AM  |  PM 

2.4.7 Nothing 

Nothing is a special literal; it does not have a type and is convertible to all types in the type system, including 
type parameters. When converted to a particular type, it is the equivalent of the default value of that type. 

Nothing  ::=  Nothing 

2.5 Separators 
The following ASCII characters are separators: 

Separator  ::=  (  |  )  |  {  |  }  |  !  |  #  |  ,  |  .  |  :  |  := 

2.6 Operator Characters 
The following ASCII characters or character sequences denote operators: 

Operator  ::= 
 &  |  *  |  +  |  -  |  /  |  \  |  ̂   |  <  |  =  |  >  |  <=  |  >=  |  <>  |  <<  |  >>  | 
 &=  |  *=  |  +=  |  -=  |  /=  |  \=  |  ̂ =  |  <<=  |  >>= 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 15 

3. Preprocessing Directives 

Once a file has been lexically analyzed, several kinds of source preprocessing occur. The most important, 
conditional compilation, determines which source is processed by the syntactic grammar; two other types of 
directives — external source directives and region directives — provide meta-information about the source but 
have no effect on compilation.  

3.1 Conditional Compilation 
Conditional compilation controls whether sequences of logical lines are translated into actual code. At the 
beginning of conditional compilation, all logical lines are enabled; however, enclosing lines in conditional 
compilation statements may selectively disable those lines within the file, causing them to be ignored during the 
rest of the compilation process. Because the conditional compilation process is done after lexical analysis, even 
disabled lines must be lexically valid. 

For example, the program 

#Const A = True 

#Const B = False 

Class C 

#If A Then 

    Sub F() 

    End Sub 

#Else 

    Sub G() 

    End Sub 

#End If 

#If B Then 

    Sub H() 

    End Sub 

#Else 

    Sub I() 

    End Sub 

#End If 

End Class 

produces the exact same sequence of tokens as the program 

Class C 

    Sub F() 

    End Sub 

 

    Sub I() 

    End Sub 



Visual Basic Language Specification 

16 Copyright © Microsoft Corporation 2005. All rights reserved. 

End Class 

The constant expressions allowed in conditional compilation directives are a subset of general constant 
expressions. 

Start  ::=  [  CCStatement+  ] 

CCStatement  ::= 
 CCConstantDeclaration  | 
 CCIfGroup  | 
 LogicalLine 

CCExpression  ::= 
 LiteralExpression  | 
 CCParenthesizedExpression  | 
 SimpleNameExpression  | 
 CCCastExpression  | 
 CCOperatorExpression 

CCParenthesizedExpression  ::=  (  CCExpression  ) 

CCCastExpression  ::=  CastTarget  (  CCExpression  ) 

CCOperatorExpression  ::= 
 CCUnaryOperator  CCExpression 
 CCExpression  CCBinaryOperator  CCExpression 

CCUnaryOperator  ::=  +  |  -  |  Not 

CCBinaryOperator  ::=  +  |  -  |  *  |  /  |  \  |  Mod  |  ̂   |  =  |  <>  |  <  |  >  | 

 <=  |  >=  |  &  |  And  |  Or  |  Xor  |  AndAlso  |  OrElse  |  <<  |  >> 

3.1.1 Conditional Constant Directives 

Conditional constant statements define constants that exist in a separate conditional compilation declaration 
space scoped to the source file. The declaration space is special in that no explicit declaration of conditional 
compilation constants is necessary – conditional constants can be implicitly defined in a conditional compilation 
directive. 

Prior to being assigned a value, a conditional compilation constant has the value Nothing. When a conditional 
compilation constant is assigned a value, which must be a constant expression, the type of the constant becomes 
the type of the value being assigned to it. A conditional compilation constant may be redefined multiple times 
throughout a source file. 

For example, the following code prints only the string about to print value and the value of Test. 

Module M1 

    Sub PrintValue(ByVal Test As Integer) 

#Const DebugCode = True 

#If DebugCode Then 

        Console.WriteLine("about to print value") 

#End If 

#Const DebugCode = False 

        Console.WriteLine(Test) 

#If DebugCode Then 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 17 

        Console.WriteLine("printed value") 

#End If 

    End Sub 

End Module 

The compilation environment may also define conditional constants in a conditional compilation declaration 
space. 

CCConstantDeclaration  ::=  #  Const  Identifier  =  CCExpression  LineTerminator 

3.1.2 Conditional Compilation Directives 

Conditional compilation directives control conditional compilation and can only reference constant expressions 
and conditional compilation constants. Each of the constant expressions within a single conditional compilation 
group is evaluated and converted to the Boolean type in textual order from first to last until one of the 
conditional expressions evaluates to True. If an expression is not convertible to Boolean, a compile-time error 
results. Permissive semantics and binary string comparisons are always used when evaluating conditional 
compilation constant expressions, regardless of any Option directives or compilation environment settings. 

All lines enclosed by the group, including nested conditional compilation directives, are disabled except for 
lines between the statement containing the True expression and the next conditional statement of the group, or 
lines between the Else statement and the End If statement if an Else appears in the group and all of the 
expressions evaluate to False. 

In this example, the call to WriteToLog in the Trace conditional compilation directive is not processed 
because the surrounding Debug conditional compilation directive evaluates to False. 

#Const Debug = False   ' Debugging off 

#Const Trace = True    ' Tracing on 

 

Class PurchaseTransaction 

    Sub Commit() 

#If Debug Then 

        CheckConsistency() 

#If Trace Then 

        WriteToLog(Me.ToString()) 

#End If 

#End If 

        CommitHelper() 

    End Sub 

End Class 

CCIfGroup  ::= 
 #  If  CCExpression  [  Then  ]  LineTerminator 
 [  CCStatement+  ] 
 [  CCElseIfGroup+  ] 
 [  CCElseGroup  ] 
 #  End  If  LineTerminator 



Visual Basic Language Specification 

18 Copyright © Microsoft Corporation 2005. All rights reserved. 

CCElseIfGroup  ::= 
 #  ElseIf  CCExpression  [  Then  ]  LineTerminator 
 [  CCStatement+  ] 

CCElseGroup  ::= 
 #  Else  LineTerminator 
 [  CCStatement+  ] 

3.2 External Source Directives 
A source file may include external source directives that indicate a mapping between source lines and text 
external to the source. External source directives have no effect on compilation and may not be nested. For 
example: 

Module Test 

    Sub Main() 

#ExternalSource("c:\wwwroot\inetpub\test.aspx", 30) 

        Console.WriteLine("In test.aspx") 

#End ExternalSource 

    End Sub 

End Module 

Start  ::=  [  ExternalSourceStatement+  ] 

ExternalSourceStatement  ::=  ExternalSourceGroup  |  LogicalLine 

ExternalSourceGroup  ::= 
 #  ExternalSource  (  StringLiteral  ,  IntLiteral  )  LineTerminator 
 [  LogicalLine+  ] 
 #  End  ExternalSource  LineTerminator 

3.3 Region Directives 
Region directives group lines of source code but have no other effect on compilation. The entire group can be 
collapsed and hidden, or expanded and viewed, in the integrated development environment (IDE). These 
directives are special in that they can neither start nor terminate within a method body. For example: 

Module Test 

#Region "Startup code – do not edit" 

    Sub Main() 

    End Sub 

#End Region 

End Module 

Start  ::=  [  RegionStatement+  ] 

RegionStatement  ::=  RegionGroup  |  LogicalLine 

RegionGroup  ::= 
 #  Region  StringLiteral  LineTerminator 
 [  LogicalLine+  ] 
 #  End  Region  LineTerminator 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 19 

3.4 External Checksum Directives 
A source file may include an external checksum directive that indicates what checksum should be emitted for a 
file referenced in an external source directive. In all other respects external source directives have no effect on 
compilation. 

An external checksum directive contains the filename of the external file, a globally unique identifier (GUID) 
associated with the file and the checksum for the file. The GUID is specified as a string constant of the form 
"{xxxxxxxx-xxxx-xxxx-xxxx-xxxxxxxxxxxx}", where x is a hexadecimal digit. The checksum is specified as a 
string constant of the form "xxxx…", where x is a hexadecimal digit. The number of digits in a checksum must 
be an even number. 

An external file may have multiple external checksum directives associated with it provided that all of the GUID 
and checksum values match exactly. If the name of the external file matches the name of a file being compiled, 
the checksum is ignored in favor of the compiler’s checksum calculation.  

For example: 

#ExternalChecksum("c:\wwwroot\inetpub\test.aspx", _ 

    "{12345678-1234-1234-1234-123456789abc}", _ 

    "1a2b3c4e5f617239a49b9a9c0391849d34950f923fab9484") 

Module Test 

    Sub Main() 

#ExternalSource("c:\wwwroot\inetpub\test.aspx", 30) 

        Console.WriteLine("In test.aspx") 

#End ExternalSource 

    End Sub 

End Module 

Start  ::=  [  ExternalChecksumStatement+  ] 

ExternalChecksumStatement  ::= 
 #  ExternalChecksum  (  StringLiteral  ,  StringLiteral  ,  StringLiteral  )  LineTerminator 





 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 21 

4. General Concepts 

This chapter covers a number of concepts that are required to understand the semantics of the Microsoft Visual 
Basic language. Many of the concepts should be familiar to Visual Basic programmers or C/C++ programmers, 
but their precise definitions may differ. 

4.1 Declarations 
A Visual Basic program is made up of named entities. These entities are introduced through declarations and 
represent the "meaning" of the program. 

At a top level, namespaces are entities that organize other entities, such as nested namespaces and types. Types 
are entities that describe values and define executable code. Types may contain nested types and type members. 
Type members are constants, variables, methods, operators, properties, events, enumeration values, and 
constructors. 

An entity that can contain other entities defines a declaration space. Entities are introduced into a declaration 
space either through declarations or inheritance; the containing declaration space is called the entities' 
declaration context. Declaring an entity in a declaration space in turn defines a new declaration space that can 
contain further nested entity declarations; thus, the declarations in a program form a hierarchy of declaration 
spaces.  

Except in the case of overloaded type members, it is invalid for declarations to introduce identically named 
entities of the same kind into the same declaration context. Additionally, a declaration space may never contain 
different kinds of entities with the same name; for example, a declaration space may never contain a variable 
and a method by the same name. 

The declaration space of a namespace is "open ended," so two namespace declarations with the same fully 
qualified name contribute to the same declaration space. In the example below, the two namespace declarations 
contribute to the same declaration space, in this case declaring two classes with the fully qualified names 
Data.Customer and Data.Order: 

Namespace Data 

    Class Customer 

    End Class 

End Namespace 

 

Namespace Data 

    Class Order 

    End Class 

End Namespace 

Because the two declarations contribute to the same declaration space, a compile-time error would occur if each 
contained a declaration of a class with the same name.  

4.1.1 Overloading and Signatures 

The only way to declare identically named entities of the same kind in a declaration space is through 
overloading. Only methods, operators, instance constructors, and properties may be overloaded. 



Visual Basic Language Specification 

22 Copyright © Microsoft Corporation 2005. All rights reserved. 

Overloaded type members must possess unique signatures. The signature of a type member consists of the name 
of the type member, the number of type parameters, and the number and types of the member's parameters. 
Conversion operators also include the return type of the operator in the signature. 

The following are not part of a member's signature, and hence cannot be overloaded on:  

• Modifiers to a type member (for example, Shared or Private).  

• Modifiers to a parameter (for example, ByVal or ByRef).  

• The names of the parameters. 

• The return type of a method or operator (except for conversion operators) or the element type of a property. 

• Constraints on a type parameter. 

The following example shows a set of overloaded method declarations along with their signatures. This 
declaration would not be valid since several of the method declarations have identical signatures. 

Interface ITest 

    Sub F()                               ' Signature is F(). 

    Sub F(x As Integer)                   ' Signature is F(Integer). 

    Sub F(ByRef x As Integer)             ' Signature is F(Integer). 

    Sub F(x As Integer, y As Integer)     ' Signature is F(Integer, 
Integer). 

    Function F(s As String) As Integer    ' Signature is F(String). 

    Function F(x As Integer) As Integer   ' Signature is F(Integer). 

    Sub F(a() As String)                  ' Signature is F(String()). 

    Sub F(ParamArray ByVal a() As String) ' Signature is F(String()). 

    Sub F(Of T)()                         ' Signature is F!1(). 

    Sub F(Of T, U)(x As T, y As U)        ' Signature is F!2(!1, !2) 

    Sub F(Of U, T)(x As U, y As T)        ' Signature is F!2(!2, !1) 

    Sub F(Of T)(x As T)                   ' Signature is F!1(!1) 

    Sub F(Of T As IDisposable)(x As T)    ' Signature is F!1(!1) 

End Interface  

A method with optional parameters is considered to have multiple signatures, one for each set of parameters that 
can be passed in by the caller. For example, the following method has three corresponding signatures: 

Sub F(ByVal x As Short, _ 

      ByVal Optional y As Integer = 10, _ 

      ByVal Optional z As Long = 20) 

These are the method's signatures: 

• F(Short) 

• F(Short, Integer) 

• F(Short, Integer, Long) 

It is valid to define a generic type that may contain members with identical signatures based on the type 
arguments supplied. Overload resolution rules are used to try and disambiguate between such overloads, 
although there may be situations in which it is impossible to disambiguate. For example: 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 23 

Class C(Of T) 

    Sub F(ByVal x As Integer) 

    End Sub 

 

    Sub F(ByVal x As T) 

    End Sub 

 

    Sub G(Of U)(ByVal x As T, ByVal y As U) 

    End Sub 

 

    Sub G(Of U)(ByVal x As U, ByVal y As T) 

    End Sub 

End Class 

 

Module Test 

    Sub Main() 

        Dim x As New C(Of Integer) 

        x.F(10)                   ' Calls C(Of T).F(Integer) 

        x.G(Of Integer)(10,10)    ' Error: Can't choose between overloads 

    End Sub 

End Module 

4.2 Scope 
The scope of an entity's name is the set of all declaration spaces within which it is possible to refer to that name 
without qualification. In general, the scope of an entity's name is its entire declaration context; however, an 
entity's declaration may contain nested declarations of entities with the same name. In that case, the nested entity 
shadows, or hides, the outer entity, and access to the shadowed entity is only possible through qualification. 

Shadowing through nesting occurs in namespaces or types nested within namespaces, in types nested within 
other types, and in the bodies of type members. Shadowing through the nesting of declarations always occurs 
implicitly; no explicit syntax is required.  

In the following example, within the F method, the instance variable i is shadowed by the local variable i, but 
within the G method, i still refers to the instance variable. 

Class Test 

    Private i As Integer = 0 

    Sub F() 

        Dim i As Integer = 1 

    End Sub 

 

    Sub G() 

        i = 1 

    End Sub 

End Class 



Visual Basic Language Specification 

24 Copyright © Microsoft Corporation 2005. All rights reserved. 

When a name in an inner scope hides a name in an outer scope, it shadows all overloaded occurrences of that 
name. In the following example, the call F(1) invokes the F declared in Inner because all outer occurrences of 
F are hidden by the inner declaration. For the same reason, the call F("Hello") is in error. 

Class Outer 

    Shared Sub F(i As Integer) 

    End Sub 

 

    Shared Sub F(s As String) 

    End Sub 

 

    Class Inner 

        Shared Sub F(l As Long) 

        End Sub 

 

        Sub G() 

            F(1) ' Invokes Outer.Inner.F. 

            F("Hello") ' Error. 

        End Sub 

    End Class 

End Class 

4.3 Inheritance 
An inheritance relationship is one in which one type (the derived type) derives from another (the base type), 
such that the derived type's declaration space implicitly contains the accessible nonconstructor type members 
and nested types of its base type. In the following example, class A is the base class of B, and B is derived from 
A. 

Class A 

End Class  

 

Class B 

    Inherits A 

End Class  

Since A does not explicitly specify a base class, its base class is implicitly Object. 

The following are important aspects of inheritance: 

• Inheritance is transitive. If type C is derived from type B, and type B is derived from type A, type C inherits 
the type members declared in type B as well as the type members declared in type A. 

• A derived type extends, but cannot narrow, its base type. A derived type can add new type members, and it 
can shadow inherited type members, but it cannot remove the definition of an inherited type member. 

• Because an instance of a type contains all of the type members of its base type, a conversion always exists 
from a derived type to its base type. 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 25 

• All types must have a base type, except for the type Object. Thus, Object is the ultimate base type of all 
types, and all types can be converted to it. 

• Circularity in derivation is not permitted. That is, when a type B derives from a type A, it is an error for type 
A to derive directly or indirectly from type B. 

• A type may not directly or indirectly derive from a type nested within it. 

The following example produces a compile-time error because the classes circularly depend on each other. 

Class A 

    Inherits B 

End Class  

 

Class B 

    Inherits C 

End Class  

 

Class C 

    Inherits A 

End Class  

The following example also produces a compile-time error because B indirectly derives from its nested class C 
through class A. 

Class A 

    Inherits B.C 

End Class  

 

Class B 

    Inherits A 

 

    Public Class C 

    End Class  

End Class  

The next example does not produce an error because class A does not derive from class B. 

Class A 

    Class B 

        Inherits A 

    End Class  

End Class  

4.3.1 MustInherit and NotInheritable Classes 

A MustInherit class is an incomplete type that can act only as a base type. A MustInherit class cannot be 
instantiated, so it is an error to use the New operator on one. It is valid to declare variables of MustInherit 
classes; such variables can only be assigned Nothing or a value that is of a class derived from the 
MustInherit class.  



Visual Basic Language Specification 

26 Copyright © Microsoft Corporation 2005. All rights reserved. 

When a regular class is derived from a MustInherit class, the regular class must override all inherited 
MustOverride members. For example: 

MustInherit Class A 

    Public MustOverride Sub F() 

End Class  

 

MustInherit Class B 

    Inherits A 

 

    Public Sub G() 

    End Sub 

End Class  

 

Class C 

    Inherits B 

 

    Public Overrides Sub F() 

    End Sub  

End Class 

The MustInherit class A introduces a MustOverride method F. Class B introduces an additional method G, 
but does not provide an implementation of F. Class B must therefore also be declared MustInherit. Class C 
overrides F and provides an actual implementation. Since there are no outstanding MustOverride members in 
class C, it is not required to be MustInherit. 

A NotInheritable class is a class from which another class cannot be derived. NotInheritable classes are 
primarily used to prevent unintended derivation. 

In this example, class B is in error because it attempts to derive from the NotInheritable class A. A class can 
not be marked both MustInherit and NotInheritable. 

NotInheritable Class A 

End Class 

 

Class B 

    ' Error, a class cannot derive from a NotInheritable class. 

    Inherits A 

End Class 

4.3.2 Interfaces and Multiple Inheritance 

Unlike other types, which only derive from a single base type, an interface may derive from multiple base 
interfaces. Because of this, an interface can inherit an identically named type member from different base 
interfaces. In such a case, the multiply-inherited name is not available in the derived interface, and referring to 
any of those type members through the derived interface causes a compile-time error, regardless of signatures or 
overloading. Instead, conflicting type members must be referenced through a base interface name. 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 27 

In the following example, the first two statements cause compile-time errors because the multiply-inherited 
member Count is not available in interface IListCounter: 

Interface IList 

    Property Count() As Integer 

End Interface  

 

Interface ICounter 

    Sub Count(ByVal i As Integer) 

End Interface 

 

Interface IListCounter 

    Inherits IList 

    Inherits ICounter  

End Interface  

 

Module Test 

    Sub F(ByVal x As IListCounter) 

        x.Count(1)                  ' Error, Count is not available. 

        x.Count = 1                 ' Error, Count is not available. 

        CType(x, IList).Count = 1   ' Ok, invokes IList.Count. 

        CType(x, ICounter).Count(1) ' Ok, invokes ICounter.Count. 

    End Sub  

End Module  

As illustrated by the example, the ambiguity is resolved by casting x to the appropriate base interface type. Such 
casts have no run-time costs; they merely consist of viewing the instance as a less-derived type at compile time. 

When a single type member is inherited from the same base interface through multiple paths, the type member is 
treated as if it were only inherited once. In other words, the derived interface only contains one instance of each 
type member inherited from a particular base interface. For example: 

Interface IBase 

    Sub F(ByVal i As Integer) 

End Interface 

 

Interface ILeft 

    Inherits IBase 

End Interface 

 

Interface IRight 

    Inherits IBase 

End Interface 

 

Interface IDerived 



Visual Basic Language Specification 

28 Copyright © Microsoft Corporation 2005. All rights reserved. 

    Inherits ILeft, IRight 

End Interface 

 

Class Derived 

    Implements IDerived 

 

    ' Only have to implement F once. 

    Sub F(ByVal i As Integer) Implements IDerived.F 

    End Sub 

End Class 

If a type member name is shadowed in one path through the inheritance hierarchy, then the name is shadowed in 
all paths. In the following example, the IBase.F member is shadowed by the ILeft.F member, but is not 
shadowed in IRight: 

Interface IBase 

    Sub F(ByVal i As Integer) 

End Interface  

 

Interface ILeft 

    Inherits IBase 

    Shadows Sub F(ByVal i As Integer) 

End Interface  

 

Interface IRight 

    Inherits IBase 

    Sub G() 

End Interface  

 

Interface IDerived 

    Inherits ILeft, IRight  

End Interface  

 

Class Test 

    Sub H(ByVal d As IDerived) 

        d.F(1)                  ' Invokes ILeft.F. 

        CType(d, IBase).F(1)    ' Invokes IBase.F. 

        CType(d, ILeft).F(1)    ' Invokes ILeft.F. 

        CType(d, IRight).F(1)   ' Invokes IBase.F. 

    End Sub  

End Class 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 29 

The invocation d.F(1) selects ILeft.F, even though IBase.F appears to not be shadowed in the access path 
that leads through IRight. Because the access path from IDerived to ILeft to IBase shadows IBase.F, the 
member is also shadowed in the access path from IDerived to IRight to IBase. 

4.3.3 Shadowing 

A derived type shadows the name of an inherited type member by redeclaring it. Shadowing a name does not 
remove the inherited type members with that name; it merely makes all of the inherited type members with that 
name unavailable in the derived class. The shadowing declaration may be any type of entity.  

Entities than can be overloaded can choose one of two forms of shadowing. Shadowing by name is specified 
using the Shadows keyword. An entity that shadows by name hides everything by that name in the base class, 
including all overloads. Shadowing by name and signature is specified using the Overloads keyword. An 
entity that shadows by name and signature hides everything by that name with the same signature as the entity. 
For example: 

Class Base 

    Sub F() 

    End Sub 

 

    Sub F(ByVal i As Integer) 

    End Sub 

 

    Sub G() 

    End Sub 

 

    Sub G(ByVal i As Integer) 

    End Sub 

End Class 

 

Class Derived 

    Inherits Base 

 

    ' Only hides F(Integer). 

    Overloads Sub F(ByVal i As Integer) 

    End Sub 

 

    ' Hides G() and G(Integer). 

    Shadows Sub G(ByVal i As Integer) 

    End Sub 

End Class 

 

Module Test 

    Sub Main() 

        Dim x As Derived = New Derived() 



Visual Basic Language Specification 

30 Copyright © Microsoft Corporation 2005. All rights reserved. 

 

        x.F() ' Calls Base.F(). 

        x.G() ' Error: No such method. 

    End Sub 

End Module 

Shadowing a method with a ParamArray argument by name and signature hides only the individual signature, 
not all possible expanded signatures. This is true even if the signature of the shadowing method matches the 
unexpanded signature of the shadowed method. The following example: 

Class Base 

    Sub F(ByVal ParamArray x As Integer()) 

        Console.WriteLine("Base") 

    End Sub 

End Class 

 

Class Derived  

    Inherits Base 

 

    Overloads Sub F(ByVal x As Integer()) 

        Console.WriteLine("Derived") 

    End Sub 

End Class 

 

Module Test 

    Sub Main 

        Dim d As Derived = New Derived() 

        d.F(10) 

    End Sub 

End Module 

prints Base, even though Derived.F has the same signature as the unexpanded form of Base.F. 

A shadowing method or property that does not specify Shadows or Overloads assumes Overloads if the 
method or property is declared Overrides, Shadows otherwise. If one member of a set of overloaded entities 
specifies the Shadows or Overloads keyword, they all must specify it. The Shadows and Overloads 
keywords cannot be specified at the same time. Neither Shadows nor Overloads can be specified in a standard 
module; members in a standard module implicitly shadow members inherited from Object. 

It is valid to shadow the name of a type member that has been multiply-inherited through interface inheritance 
(and which is thereby unavailable), thus making the name available in the derived interface. 

For example: 

Interface ILeft 

    Sub F() 

End Interface 

 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 31 

Interface IRight 

    Sub F() 

End Interface 

 

Interface ILeftRight 

    Inherits ILeft, IRight 

    Shadows Sub F() 

End Interface 

 

Module Test 

    Sub G(ByVal i As ILeftRight) 

        i.F() ' Calls ILeftRight.F. 

        CType(i, ILeft).F() ' Calls ILeft.F. 

        CType(i, IRight).F() ' Calls IRight.F. 

    End Sub 

End Module 

Because methods are allowed to shadow inherited methods, it is possible for a class to contain several 
Overridable methods with the same signature. This does not present an ambiguity problem, since only the 
most-derived method is visible. In the following example, the C and D classes contain two Overridable 
methods with the same signature: 

Class A 

    Public Overridable Sub F() 

        Console.WriteLine("A.F") 

    End Sub  

End Class  

 

Class B 

    Inherits A 

 

    Public Overrides Sub F() 

        Console.WriteLine("B.F") 

    End Sub  

End Class  

 

Class C 

    Inherits B 

 

    Public Shadows Overridable Sub F() 

        Console.WriteLine("C.F") 

    End Sub  

End Class  



Visual Basic Language Specification 

32 Copyright © Microsoft Corporation 2005. All rights reserved. 

 

Class D 

    Inherits C 

 

    Public Overrides Sub F() 

        Console.WriteLine("D.F") 

    End Sub  

End Class  

 

Module Test 

    Sub Main() 

        Dim d As New D() 

        Dim a As A = d 

        Dim b As B = d 

        Dim c As C = d 

        a.F() 

        b.F() 

        c.F() 

        d.F() 

    End Sub  

End Module  

There are two Overridable methods here: one introduced by class A and the one introduced by class C. The 
method introduced by class C hides the method inherited from class A. Thus, the Overrides declaration in class 
D overrides the method introduced by class C, and it is not possible for class D to override the method introduced 
by class A. The example produces the output: 

B.F 

B.F 

D.F 

D.F 

It is possible to invoke the hidden Overridable method by accessing an instance of class D through a less-
derived type in which the method is not hidden. 

It is not valid to shadow a MustOverride method, because in most cases this would make the class unusable. 
For example: 

MustInherit Class Base 

    Public MustOverride Sub F() 

End Class 

 

MustInherit Class Derived 

    Inherits Base 

 

    Public Shadows Sub F() 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 33 

    End Sub 

End Class 

 

Class MoreDerived 

    Inherits Derived 

 

    ' Error: MustOverride method Base.F is not overridden. 

End Class 

In this case, the class MoreDerived is required to override the MustOverride method Base.F, but because 
the class Derived shadows Base.F, this is not possible. There is no way to declare a valid descendent of 
Derived. 

In contrast to shadowing a name from an outer scope, shadowing an accessible name from an inherited scope 
causes a warning to be reported, as in the following example: 

Class Base 

    Public Sub F() 

    End Sub 

 

    Private Sub G() 

    End Sub  

End Class 

 

Class Derived 

    Inherits Base 

 

    Public Sub F() ' Warning: shadowing an inherited name. 

    End Sub 

 

    Public Sub G() ' No warning, Base.G is not accessible here. 

    End Sub 

End Class  

The declaration of method F in class Derived causes a warning to be reported. Shadowing an inherited name is 
specifically not an error, since that would preclude separate evolution of base classes. For example, the above 
situation might have come about because a later version of class Base introduced a method F that was not 
present in an earlier version of the class. Had the above situation been an error, any change made to a base class 
in a separately versioned class library could potentially cause derived classes to become invalid. 

The warning caused by shadowing an inherited name can be eliminated through use of the Shadows or 
Overloads modifier: 

Class Base 

    Public Sub F() 

    End Sub  

End Class  



Visual Basic Language Specification 

34 Copyright © Microsoft Corporation 2005. All rights reserved. 

 

Class Derived 

    Inherits Base 

 

    Public Shadows Sub F() 'OK. 

    End Sub 

End Class  

The Shadows modifier indicates the intention to shadow the inherited member. It is not an error to specify the 
Shadows or Overloads modifier if there is no type member name to shadow. 

A declaration of a new member shadows an inherited member only within the scope of the new member, as in 
the following example: 

Class Base 

    Public Shared Sub F() 

    End Sub  

End Class  

 

Class Derived 

    Inherits Base 

 

    Private Shared Shadows Sub F() ' Shadows Base.F in class Derived only. 

    End Sub  

End Class  

 

Class MoreDerived 

    Inherits Derived 

 

    Shared Sub G() 

        F() ' Invokes Base.F. 

    End Sub  

End Class  

In the example above, the declaration of method F in class Derived shadows the method F that was inherited 
from class Base, but since the new method F in class Derived has Private access, its scope does not extend 
to class MoreDerived. Thus, the call F() in MoreDerived.G is valid and will invoke Base.F. In the case of 
overloaded type members, the entire set of overloaded type members is treated as if they all had the most 
permissive access for the purposes of shadowing. 

Class Base 

    Public Sub F() 

    End Sub 

End Class 

 

Class Derived 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 35 

    Inherits Base 

 

    Private Shadows Sub F() 

    End Sub 

 

    Public Shadows Sub F(ByVal i As Integer) 

    End Sub 

End Class 

 

Class MoreDerived 

    Inherits Derived 

 

    Public Sub G() 

        F()   ' Error. No accessible member with this signature. 

    End Sub 

End Class 

In this example, even though the declaration of F() in Derived is declared with Private access, the 
overloaded F(Integer) is declared with Public access. Therefore, for the purpose of shadowing, the name F 
in Derived is treated as if it was Public, so both methods shadow F in Base. 

4.4 Implementation 
An implementation relationship exists when a type declares that it implements an interface and the type 
implements all the type members of the interface. A type that implements a particular interface is convertible to 
that interface. Interfaces cannot be instantiated, but it is valid to declare variables of interfaces; such variables 
can only be assigned a value that is of a class that implements the interface. For example: 

Interface ITestable 

    Function Test(ByVal Value As Byte) As Boolean 

End Interface 

 

Class TestableClass 

    Implements ITestable 

 

    Function Test(ByVal Value As Byte) _ 

             As Boolean Implements ITestable.Test 

        Return (Value > 128) 

    End Function 

End Class 

 

Module Test 

    Sub F() 

        Dim x As ITestable = New TestableClass 



Visual Basic Language Specification 

36 Copyright © Microsoft Corporation 2005. All rights reserved. 

        Dim b As Boolean 

 

        b = x.Test(34) 

    End Sub 

End Module 

A type implementing an interface with multiply-inherited type members must still implement those methods, 
even though they cannot be accessed directly from the derived interface being implemented. For example: 

Interface ILeft 

    Sub Test() 

End Interface 

 

Interface IRight 

    Sub Test() 

End Interface 

 

Interface ILeftRight 

    Inherits ILeft, IRight 

End Interface 

 

Class LeftRight 

    Implements ILeftRight 

 

    ' Has to reference ILeft explicitly. 

    Sub TestLeft() Implements ILeft.Test 

    End Sub 

 

    ' Has to reference IRight explicitly. 

    Sub TestRight() Implements IRight.Test 

    End Sub 

 

    ' This causes an error because Test is not available in ILeftRight. 

    Sub TestLeftRight() Implements ILeftRight.Test 

    End Sub 

End Class 

Even MustInherit classes must provide implementations of all the members of implemented interfaces; 
however, they can defer implementation of these methods by declaring them as MustOverride. For example: 

Interface ITest 

    Sub Test1() 

    Sub Test2() 

End Interface 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 37 

 

MustInherit Class TestBase 

    Implements ITest 

 

    ' Provides an implementation. 

    Sub Test1() Implements ITest.Test1 

    End Sub 

 

    ' Defers implementation. 

    MustOverride Sub Test2() Implements ITest.Test2 

End Class 

 

Class TestDerived 

    Inherits TestBase 

 

    ' Have to implement MustOverride method. 

    Overrides Sub Test2() 

    End Sub 

End Class 

A type may choose to re-implement an interface that its base type implements. To re-implement the interface, 
the type must explicitly state that it implements the interface. A type re-implementing an interface may choose 
to re-implement only some, but not all, of the members of the interface – any members not re-implemented 
continue to use the base type’s implementation. For example: 

Class TestBase 

    Implements ITest 

 

    Sub Test1() Implements ITest.Test1 

        Console.WriteLine("TestBase.Test1") 

    End Sub 

 

    Sub Test2() Implements ITest.Test2 

        Console.WriteLine("TestBase.Test2") 

    End Sub 

End Class 

 

Class TestDerived 

    Inherits TestBase 

    Implements ITest  ' Required to re-implement 

 

    Sub DerivedTest1() Implements ITest.Test1 

        Console.WriteLine("TestDerived.DerivedTest1") 



Visual Basic Language Specification 

38 Copyright © Microsoft Corporation 2005. All rights reserved. 

    End Sub 

End Class 

 

Module Test 

    Sub Main() 

        Dim Test As ITest = New TestDerived() 

        Test.Test1() 

        Test.Test2() 

    End Sub 

End Module 

This example prints: 

TestDerived.DerivedTest1 

TestBase.Test2 

When a derived type implements an interface whose base interfaces are implemented by the derived type's base 
types, the derived type can choose to only implement the interface's type members that are not already 
implemented by the base types. For example: 

Interface IBase 

    Sub Base() 

End Interface 

 

Interface IDerived 

    Inherits IBase 

 

    Sub Derived() 

End Interface 

 

Class Base 

    Implements IBase 

 

    Public Sub Base() Implements IBase.Base 

    End Sub 

End Class 

 

Class Derived 

    Inherits Base 

    Implements IDerived 

 

    ' Required: IDerived.Derived not implemented by Base. 

    Public Sub Derived() Implements IDerived.Derived 

    End Sub 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 39 

End Class 

An interface method can also be implemented using an overridable method in a base type. In that case, a derived 
type may also override the overridable method and alter the implementation of the interface. For example: 

Class Base 

    Implements ITest 

 

    Public Sub Test1() Implements ITest.Test1 

        Console.WriteLine("TestBase.Test1") 

    End Sub 

 

    Public Overridable Sub Test2() Implements ITest.Test2 

        Console.WriteLine("TestBase.Test2") 

    End Sub 

End Class 

 

Class Derived 

    Inherits Base 

 

    ' Overrides base implementation. 

    Public Overrides Sub Test2() 

        Console.WriteLine("TestDerived.Test2") 

    End Sub 

End Class 

4.4.1 Implementing Methods 

A type implements a type member of an implemented interface by supplying a method with an Implements 
clause. The two type members must have the same number of parameters, all of the types and modifiers of the 
parameters must match, including the default value of optional parameters, and all of the constraints on method 
parameters must match. For example: 

Interface ITest 

    Sub F(ByRef x As Integer) 

    Sub G(ByVal Optional y As Integer = 20) 

    Sub H(ByVal Paramarray z() As Integer) 

End Interface 

 

Class Test 

    Implements ITest 

 

    ' Error: ByRef/ByVal mismatch. 

    Sub F(ByVal x As Integer) Implements ITest.F 

    End Sub 



Visual Basic Language Specification 

40 Copyright © Microsoft Corporation 2005. All rights reserved. 

 

    ' Error: Defaults do not match. 

    Sub G(ByVal Optional y As Integer = 10) Implements ITest.G 

    End Sub 

 

    ' Error: Paramarray does not match. 

    Sub H(ByVal z() As Integer) Implements ITest.H 

    End Sub 

End Class 

A single method may implement any number of interface type members if they all meet the above criteria. For 
example: 

Interface ITest 

    Sub F(ByVal i As Integer) 

    Sub G(ByVal i As Integer) 

End Interface 

 

Class Test 

    Implements ITest 

 

    Sub F(ByVal i As Integer) Implements ITest.F, ITest.G 

    End Sub 

End Class 

When implementing a method in a generic interface, the implementing method must supply the type arguments 
that correspond to the interface’s type parameters. For example: 

Class I1(Of U, V)  

    Public Sub M(ByVal x As U, ByVal y As List(Of V))  

End Class 

 

Class C1(Of W, X) 

    Implements I1(Of W, X) 

 

    ' W corresponds to U and X corresponds to V 

    Public Sub M(ByVal x As W, ByVal y As List(Of X)) _ 

        Implements I1(Of W, X).M 

    End Sub  

End Class 

 

Class C2 

    Implements I1(Of String, Integer) 

 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 41 

    ' String corresponds to U and Integer corresponds to V 

    Public Sub M(ByVal x As String, ByVal y As List(Of Integer)) _ 

        Implements I1(Of String, Integer).M 

    End Sub 

End Class 

Note that it is possible that a generic interface may not be implementable for some set of type arguments. 

Interface I1(Of T, U) 

    Sub S1(ByVal x As T) 

    Sub S1(ByVal y As U) 

End Interface 

 

Class C1 

    ' Unable to implement because I1.S1 has two identical signatures 

    Implements I1(Of Integer, Integer) 

End Class 

4.5 Polymorphism 
Polymorphism provides the ability to vary the implementation of a method or property. With polymorphism, the 
same method or property can perform different actions depending on the run-time type of the instance that 
invokes it. Methods or properties that are polymorphic are called overridable. By contrast, the implementation 
of a non-overridable method or property is invariant; the implementation is the same whether the method or 
property is invoked on an instance of the class in which it is declared or an instance of a derived class. When a 
non-overridable method or property is invoked, the compile-time type of the instance is the determining factor. 
For example: 

Class Base 

    Public Overridable Property X() As Integer 

        Get 

        End Get 

 

        Set 

        End Set 

    End Property 

End Class 

 

Class Derived 

    Public Overrides Property X() As Integer 

        Get 

        End Get 

 

        Set 

        End Set 

    End Property 



Visual Basic Language Specification 

42 Copyright © Microsoft Corporation 2005. All rights reserved. 

End Class 

 

Module Test 

    Sub F() 

        Dim Z As Base 

 

        Z = New Base() 

        Z.X = 10            ' Calls Base.X 

        Z = New Derived() 

        Z.X = 10            ' Calls Derived.X 

    End Sub 

End Module 

An overridable method may also be MustOverride, which means that it provides no method body and must be 
overridden. MustOverride methods are only allowed in MustInherit classes. 

In the following example, the class Shape defines the abstract notion of a geometrical shape object that can 
paint itself: 

MustInherit Public Class Shape 

    Public MustOverride Sub Paint(ByVal g As Graphics, _ 

                                  ByVal r As Rectangle) 

End Class  

 

Public Class Ellipse 

    Inherits Shape 

 

    Public Overrides Sub Paint(ByVal g As Graphics, ByVal r As Rectangle) 

        g.drawEllipse(r) 

    End Sub  

End Class  

 

Public Class Box 

    Inherits Shape 

 

    Public Overrides Sub Paint(ByVal g As Graphics, ByVal r As Rectangle) 

        g.drawRect(r) 

    End Sub  

End Class  

The Paint method is MustOverride because there is no meaningful default implementation. The Ellipse 
and Box classes are concrete Shape implementations. Because these classes are not MustInherit, they are 
required to override the Paint method and provide an actual implementation. 

It is an error for a base access to reference a MustOverride method, as the following example demonstrates:  

Class A 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 43 

    Public MustOverride Sub F() 

End Class 

 

Class B 

    Inherits A 

 

    Public Overrides Sub F() 

        MyBase.F() ' Error, MyBase.F is MustOverride. 

    End Sub  

End Class  

An error is reported for the MyBase.F() invocation because it references a MustOverride method. 

4.5.1 Overriding Methods 

A type may override an inherited overridable method by declaring a method with the same name and signature, 
and marking the declaration with the Overrides modifier. Whereas an Overridable method declaration 
introduces a new method, an Overrides method declaration replaces the inherited implementation of the 
method.  

An overriding method may be declared NotOverridable, which prevents any further overriding of the method 
in derived types. In effect, NotOverridable methods become non-overridable in any further derived classes.  

Consider the following example: 

Class A 

    Public Overridable Sub F() 

        Console.WriteLine("A.F") 

    End Sub 

 

    Public Overridable Sub G() 

        Console.WriteLine("A.G") 

    End Sub 

End Class 

 

Class B 

    Inherits A 

 

    Public Overrides NotOverridable Sub F() 

        Console.WriteLine("B.F") 

    End Sub 

 

    Public Overrides Sub G() 

        Console.WriteLine("B.G") 

    End Sub 

End Class 



Visual Basic Language Specification 

44 Copyright © Microsoft Corporation 2005. All rights reserved. 

 

Class C 

    Inherits B 

 

    Public Overrides Sub G() 

        Console.WriteLine("C.G") 

    End Sub 

End Class 

In the example, class B provides two Overrides methods: a method F that has the NotOverridable modifier 
and a method G that does not. Use of the NotOverridable modifier prevents class C from further overriding 
method F. 

An overriding method may also be declared MustOverride, even if the method that it is overriding is not 
declared MustOverride. This requires that the containing class be declared MustInherit and that any further 
derived classes that are not declared MustInherit must override the method. For example: 

Class A 

    Public MustOverride Sub F() 

        Console.WriteLine("A.F") 

    End Sub 

End Class 

 

MustInherit Class B 

    Inherits A 

 

    Public Overrides MustOverride Sub F() 

End Class 

In the example, class B overrides A.F with a MustOverride method. This means that any classes derived from 
B will have to override F, unless they are declared MustInherit as well. 

A compile-time error occurs unless all of the following are true of an overriding method: 

• The declaration context contains a single accessible inherited method with the same signature as the 
overriding method. 

• The inherited method being overridden is overridable. In other words, the inherited method being 
overridden is not Shared or NotOverridable. 

• The accessibility domain of the method being declared is the same as the accessibility domain of the 
inherited method being overridden. There is one exception: a Protected Friend method must be 
overridden by a Protected method if the two methods are not in the same program. 

• The parameters of the overriding method match the overridden method's parameters in regards to usage of 
the ByVal, ByRef, ParamArray, and Optional modifiers, including the values provided for optional 
parameters.  

• The type parameters of the overriding method match the overridden method’s type parameters in regards to 
type constraints. 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 45 

When overriding a method in a base generic type, the overriding method must supply the type arguments that 
correspond to the base type parameters. For example: 

Class Base(Of U, V)  

    Public Overridable Sub M(ByVal x As U, ByVal y As List(Of V))  

    End Sub 

End Class 

 

Class Derived(Of W, X) 

    Inherits C(Of W, X) 

 

    ' W corresponds to U and X corresponds to V 

    Public Overrides Sub M(ByVal x As W, ByVal y As List(Of X))  

    End Sub  

End Class 

 

Class MoreDerived 

    Inherits Derived(Of String, Integer) 

 

    ' String corresponds to U and Integer corresponds to V 

    Public Overrides Sub M(ByVal x As String, ByVal y As List(Of Integer)) 

    End Sub 

End Class 

Note that it is possible that an overridable method in a generic class may not be able to be overridden for some 
sets of type arguments. If the method is declared MustOverride, this means that some inheritance chains may 
not be possible. For example: 

MustInherit Class Base(Of T, U) 

    Public MustOverride Sub S1(ByVal x As T) 

    End Sub 

 

    Public MustOverride Sub S1(ByVal y As U) 

    End Sub 

End Class 

 

Class Derived 

    Inherits Base(Of Integer, Integer) 

 

    ' Error: Can't override both S1's at once 

    Public Overrides Sub S1(ByVal x As Integer) 

    End Sub 

End Class 

An override declaration can access the overridden base method using a base access, as in the following example:  



Visual Basic Language Specification 

46 Copyright © Microsoft Corporation 2005. All rights reserved. 

Class Base 

    Private x As Integer 

 

    Public Overridable Sub PrintVariables() 

        Console.WriteLine("x = " & x) 

    End Sub 

End Class 

 

Class Derived 

    Inherits Base 

 

    Private y As Integer 

 

    Public Overrides Sub PrintVariables() 

        MyBase.PrintVariables() 

        Console.WriteLine("y = " & y) 

    End Sub 

End Class 

In the example, the invocation of MyBase.PrintVariables() in class Derived invokes the 
PrintVariables method declared in class Base. A base access disables the overridable invocation 
mechanism and simply treats the base method as a non-overridable method. Had the invocation in Derived 
been written CType(Me, Base).PrintVariables(), it would recursively invoke the PrintVariables 
method declared in Derived, not the one declared in Base. 

Only when it includes an Overrides modifier can a method override another method. In all other cases, a 
method with the same signature as an inherited method simply shadows the inherited method, as in the example 
below: 

Class Base 

    Public Overridable Sub F() 

    End Sub 

End Class 

 

Class Derived 

    Inherits Base 

 

    Public Overridable Sub F() ' Warning, shadowing inherited F(). 

    End Sub 

End Class 

In the example, the method F in class Derived does not include an Overrides modifier and therefore does not 
override method F in class Base. Rather, method F in class Derived shadows the method in class Base, and a 
warning is reported because the declaration does not include a Shadows or Overloads modifier. 

In the following example, method F in class Derived shadows the overridable method F inherited from class 
Base: 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 47 

Class Base 

    Public Overridable Sub F() 

    End Sub 

End Class 

 

Class Derived 

    Inherits Base 

 

    Private Shadows Sub F() ' Shadows Base.F within Derived. 

    End Sub 

End Class 

 

Class MoreDerived 

    Inherits Derived 

 

    Public Overrides Sub F() ' Ok, overrides Base.F. 

    End Sub 

End Class 

Since the new method F in class Derived has Private access, its scope only includes the class body of 
Derived and does not extend to class MoreDerived. The declaration of method F in class MoreDerived is 
therefore permitted to override the method F inherited from class Base. 

When an Overridable method is invoked, the most derived implementation of the instance method is called, 
based on the type of the instance, regardless of whether the call is to the method in the base class or the derived 
class. The most derived implementation of an Overridable method M with respect to a class R is determined as 
follows: 

• If R contains the introducing Overridable declaration of M, this is the most derived implementation of M. 

• Otherwise, if R contains an override of M, this is the most derived implementation of M. 

• Otherwise, the most derived implementation of M is the same as that of the direct base class of R. 

4.6 Accessibility 
A declaration specifies the accessibility of the entity it declares. An entity's accessibility does not change the 
scope of an entity's name. The accessibility domain of a declaration is the set of all declaration spaces in which 
the declared entity is accessible. 

The five access types are Public, Protected, Friend, Protected Friend, and Private. Public is the 
most permissive access type, and the four other types are all subsets of Public. The least permissive access 
type is Private, and the four other access types are all supersets of Private. 

The access type for a declaration is specified via an optional access modifier, which can be Public, 
Protected, Friend, Private, or the combination of Protected and Friend. If no access modifier is 
specified, the default access type depends on the declaration context; the permitted access types also depend on 
the declaration context. 

• Entities declared with the Public modifier have Public access. There are no restrictions on the use of 
Public entities. 



Visual Basic Language Specification 

48 Copyright © Microsoft Corporation 2005. All rights reserved. 

• Entities declared with the Protected modifier have Protected access. Protected access can only be 
specified on members of classes (both regular type members and nested classes) or on Overridable 
members of standard modules and structures (which must, by definition, be inherited from 
System.Object or System.ValueType). A Protected member is accessible to a derived class, 
provided that either the member is not an instance member, or the access takes place through an instance of 
the derived class. Protected access is not a superset of Friend access. 

• Entities declared with the Friend modifier have Friend access. An entity with Friend access is 
accessible only within the program that contains the entity declaration. 

• Entities declared with the Protected Friend modifiers have the union of Protected and Friend 
access. 

• Entities declared with the Private modifier have Private access. A Private entity is accessible only 
within its declaration context, including any nested entities. 

For a generic type, the declaration context includes type parameters. This means that a generic type with one set 
of type arguments does not have access to the Private or Protected members of the generic type with a different 
set of type arguments. For example: 

Class C(Of T) 

    Private x As T 

    Protected y As T 

 

    Sub F() 

        Dim z As C(Of String) 

        ' Error: C(Of T) cannot access C(Of String)'s private members 

        z.x = "a" 

    End Sub 

End Class 

Annotation 

The C# language (and possibly other languages) allows a generic type to access Private and Protected 
members regardless of what type arguments are supplied. This should be kept in mind when designing generic 
classes that contain Protected members. 

The accessibility in a declaration does not depend on the accessibility of the declaration context. For example, a 
type declared with Private access may contain a type member with Public access. 

The following code demonstrates various accessibility domains: 

Public Class A 

    Public Shared X As Integer 

    Friend Shared Y As Integer 

    Private Shared Z As Integer 

End Class 

 

Friend Class B 

    Public Shared X As Integer 

    Friend Shared Y As Integer 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 49 

    Private Shared Z As Integer 

 

    Public Class C 

        Public Shared X As Integer 

        Friend Shared Y As Integer 

        Private Shared Z As Integer 

    End Class 

 

    Private Class D 

        Public Shared X As Integer 

        Friend Shared Y As Integer 

        Private Shared Z As Integer 

    End Class 

End Class 

The classes and members have the following accessibility domains: 

• The accessibility domain of A and A.X is unlimited. 

• The accessibility domain of A.Y, B, B.X, B.Y, B.C, B.C.X, and B.C.Y is the containing program. 

• The accessibility domain of A.Z is A. 

• The accessibility domain of B.Z and B.D is B, including B.C and B.D. 

• The accessibility domain of B.C.Z is B.C. 

• The accessibility domain of B.D.X, B.D.Y, and B.D.Z is B.D. 

As the example illustrates, the accessibility domain of a member is never larger than that of a containing type. 
For example, even though all X members have Public declared accessibility, all but A.X have accessibility 
domains that are constrained by a containing type. 

Access to Protected instance members must be through an instance of the derived type so that unrelated types 
cannot gain access to each other's protected members. For example: 

Public Class User 

    Protected Password As String 

End Class 

 

Public Class Employee 

    Inherits User 

End Class 

 

Public Class Guest 

    Inherits User 

 

    Public Function GetPassword(ByVal U As User) As String 

        ' Error: protected access has to go through derived type. 



Visual Basic Language Specification 

50 Copyright © Microsoft Corporation 2005. All rights reserved. 

        Return U.Password 

    End Function 

End Class 

In the above example, the class Guest only has access to the protected Password field if it is qualified with an 
instance of Guest. This prevents Guest from gaining access to the Password field of an Employee object 
simply by casting it to User. 

AccessModifier  ::=  Public  |  Protected  |  Friend  |  Private  |  Protected  Friend 

4.6.1 Constituent Types 

The constituent types of a declaration are the types that are referenced by the declaration. For example, the type 
of a constant, the return type of a method and the parameter types of a constructor are all constituent types. The 
accessibility domain of a constituent type of a declaration must be the same as or a superset of the accessibility 
domain of the declaration itself. For example: 

Public Class X 

    Private Class Y 

    End Class 

 

    ' Error: Exposing private class Y outside of X. 

    Public Function Z() As Y 

    End Function 

 

    ' Valid: Not exposing outside of X. 

    Private Function A() As Y 

    End Function 

End Class 

 

Private Class B 

    Private Class C 

    End Class 

 

    ' Error: Exposing private class Y outside of B. 

    Public Function D() As C 

    End Function 

End Class 

4.7 Type and Namespace Names 
Many language constructs require a namespace or type to be specified; these can be specified by using a 
qualified form of the namespace or type's name. A qualified name consists of a series of identifiers separated by 
periods; the identifier on the right side of a period is resolved in the declaration space specified by the identifier 
on the left side of the period. 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 51 

The fully qualified name of a namespace or type is a qualified name that contains the name of all containing 
namespaces and types. In other words, the fully qualified name of a namespace or type is N.T, where T is the 
name of the entity and N is the fully qualified name of its containing entity. 

The example below shows several namespace and type declarations together with their associated fully qualified 
names in in-line comments. 

Class A            ' A. 

End Class 

 

Namespace X        ' X. 

    Class B        ' X.B. 

        Class C    ' X.B.C. 

        End Class 

    End Class 

 

    Namespace Y    ' X.Y. 

        Class D    ' X.Y.D. 

        End Class 

    End Namespace  

End Namespace  

 

Namespace X.Y      ' X.Y. 

    Class E        ' X.Y.E. 

    End Class 

End Namespace  

In some situations, a qualified name may begin with the keyword Global. The keyword represents the 
unnamed outermost namespace, which is useful in situations where a declaration shadows an enclosing 
namespace. The Global keyword allows “escaping” out to the outermost namespace in that situation. For 
example: 

Class System 

End Class 

 

Module Test 

 Sub Main() 

  ' Error: Class System does not contain Int32 

  Dim x As System.Int32 

 

 

  ' Legal, binds to System in outermost namespace 

  Dim y As Global.System.Int32 

 End Sub 

End Module 



Visual Basic Language Specification 

52 Copyright © Microsoft Corporation 2005. All rights reserved. 

In the above example, the first method call is invalid because the identifier System binds to the class System, 
not the namespace System. The only way to access the System namespace is to use Global to escape out to 
the outermost namespace. Global cannot be used in an Imports statement or Namespace declaration. 

Because other languages may introduce types and namespaces that match keywords in the language, Visual 
Basic recognizes keywords to be part of a qualified name as long as they follow a period. Keywords used in this 
way are treated as identifiers. For example, the qualified identifier X.Default.Class is a valid qualified 
identifier, while Default.Class is not. 

QualifiedIdentifier  ::= 
 Identifier  | 
 Global  .  IdentifierOrKeyword    | 
 QualifiedIdentifier  .  IdentifierOrKeyword 

4.7.1 Qualified Name Resolution 

Given a qualified namespace or type name of the form N.R, where R is the rightmost identifier in the qualified 
name, the following steps describe how to determine to which namespace or type the qualified name refers: 

• Resolve N, which may be either a qualified or unqualified name. 

• If resolution of N fails, resolves to a type parameter, or does not resolve to a namespace or type, a compile-
time error occurs. If R matches the name of a namespace or type in N, then the qualified name refers to that 
namespace or type. 

• If N contains one or more standard modules, and R matches the name of a type in exactly one standard 
module, then the qualified name refers to that type. If R matches the name of types in more than one 
standard module, a compile-time error occurs. 

• Otherwise, a compile-time error occurs.  

Note   An implication of this resolution process is that type members do not shadow namespaces or 
types when resolving namespace or type names. 

4.7.2 Unqualified Name Resolution 

Given an unqualified name R, the following steps describe how to determine to which namespace or type an 
unqualified name refers: 

• For each nested type containing the name reference, starting from the innermost type and going to the 
outermost, if R matches the name of an accessible nested type or a type parameter in the current type, then 
the unqualified name refers to that type or type parameter. 

• For each nested namespace containing the name reference, starting from the innermost namespace and going 
to the outermost namespace, do the following: 

• If R matches the name of an accessible type or nested namespace in the current namespace, then the 
unqualified name refers to that type or nested namespace. 

• If the namespace contains one or more accessible standard modules, and R matches the name of an 
accessible nested type in exactly one standard module, then the unqualified name refers to that nested 
type. If R matches the name of accessible nested types in more than one standard module, a compile-
time error occurs. 

• If the source file has one or more import aliases, and R matches the name of one of them, then the 
unqualified name refers to that import alias. 

• If the source file containing the name reference has one or more imports: 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 53 

• If R matches the name of an accessible type in exactly one import, then the unqualified name refers to 
that type. If R matches the name of an accessible type in more than one import and all are not the same 
entity, a compile-time error occurs. 

• If R matches the name of a namespace in exactly one import, then the unqualified name refers to that 
namespace. If R matches the name of a namespace in more than one import and all are not the same 
entity, a compile-time error occurs. 

• If the imports contain one or more accessible standard modules, and R matches the name of an 
accessible nested type in exactly one standard module, then the unqualified name refers to that type. If R 
matches the name of accessible nested types in more than one standard module, a compile-time error 
occurs. 

• If the compilation environment defines one or more import aliases, and R matches the name of one of them, 
then the unqualified name refers to that import alias. 

• If the compilation environment defines one or more imports: 

• If R matches the name of an accessible type in exactly one import, then the unqualified name refers to 
that type. If R matches the name of an accessible type in more than one import, a compile-time error 
occurs. 

• If R matches the name of a namespace in exactly one import, then the unqualified name refers to that 
namespace. If R matches the name of a namespace in more than one import, a compile-time error 
occurs. 

• If the imports contain one or more accessible standard modules, and R matches the name of an 
accessible nested type in exactly one standard module, then the unqualified name refers to that type. If R 
matches the name of accessible nested types in more than one standard module, a compile-time error 
occurs. 

• Otherwise, a compile-time error occurs. 

Note   An implication of this resolution process is that type members do not shadow namespaces or 
types when resolving namespace or type names. 

If the type name is a constructed type name (i.e. it includes a type argument list), then only types with the same 
arity as the type argument list are matched. 

Normally, a name can only occur once in a particular namespace. However, because namespaces can be 
declared across multiple .NET assemblies, it is possible to have a situation where two assemblies define a type 
with the same fully qualified name. In that case, a type declared in the current set of source files is preferred 
over a type declared in an external .NET assembly. Otherwise, the name is ambiguous and there is no way to 
disambiguate the name. 

4.8 Variables 
A variable represents a storage location. Every variable has a type that determines what values can be stored in 
the variable. Because Visual Basic is a type-safe language, every variable in a program has a type and the 
language guarantees that values stored in variables are always of the appropriate type. Variables are always 
initialized to the default value of their type before any reference to the variable can be made. It is not possible to 
access uninitialized memory. 

4.9 Generic Types and Methods 
Types (except for standard modules) and methods can declare type parameters, which are types that will not be 
provided until an instance of the type is declared or the method is invoked. Types and methods with type 



Visual Basic Language Specification 

54 Copyright © Microsoft Corporation 2005. All rights reserved. 

parameters are also known as generic types and generic methods, respectively, because the type or method must 
be written generically, without specific knowledge of the types that will be supplied by code that uses the type 
or method. 

Annotation 

At this time, even though methods and delegates can be generic, properties, events and operators cannot be 
generic themselves. They may, however, use type parameters from the containing class. 

From the perspective of the generic type or method, a type parameter is a placeholder type that will be filled in 
with an actual type when the type or method is used. Type arguments are substituted for the type parameters in 
the type or method at the point at which the type or method is used. For example, a generic stack class could be 
implemented as: 

Public Class Stack(Of ItemType) 

    Protected Items(0 To 99) As ItemType 

    Protected CurrentIndex As Integer = 0 

 

    Public Sub Push(ByVal Data As ItemType) 

        If CurrentIndex = 100 Then 

            Throw New ArgumentException("Stack is full.") 

        End If 

 

        Items(CurrentIndex) = Data 

        CurrentIndex += 1 

    End Sub 

 

    Public Function Pop() As ItemType 

        If CurrentIndex = 0 Then 

            Throw New ArgumentException("Stack is empty.") 

        End If 

 

        CurrentIndex -= 1 

        Return Items(CurrentIndex + 1)  

    End Function 

End Class 

Declarations that use the Stack(Of ItemType) class must supply a type argument for the type parameter 
ItemType. This type is then filled in wherever ItemType is used within the class: 

Option Strict On 

 

Module Test 

    Sub Main() 

        Dim s1 As Stack(Of Integer) 

        Dim s2 As Stack(Of Double) 

 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 55 

        s1.Push(10.10)   ' Error: Stack(Of Integer).Push takes an Integer 

        s2.Push(10.10)   ' OK: Stack(Of Double).Push takes a Double 

        Console.WriteLine(s2.Pop().GetType().ToString()) ' Prints: Double 

    End Sub 

End Module 

4.9.1 Type Parameters 

Type parameters may be supplied on type or method declarations. Each type parameter is an identifier which is 
a place-holder for a type argument that is supplied to create a constructed type or method. By contrast, a type 
argument is the actual type that is substituted for the type parameter when a generic type or method is used. 

Each type parameter in a type or method declaration defines a name in the declaration space of that type or 
method. Thus, it cannot have the same name as another type parameter, a type member, a method parameter, or 
a local variable. The scope of a type parameter on a type or method is the entire type or method. Because type 
parameters are scoped to the entire type declaration, nested types can use outer type parameters. This also means 
that type parameters must always be specified when accessing types nested inside generic types: 

Public Class Outer(Of T) 

    Public Class Inner 

        Public Sub F(ByVal x As T) 

            ... 

        End Sub 

    End Class 

End Class 

 

Module Test 

    Sub Main() 

        Dim x As New Outer(Of Integer).Inner 

        ... 

    End Sub 

End Module 

Unlike other members of a class, type parameters are not inherited. Type parameters in a type can only be 
referred to by their simple name; in other words, they cannot be qualified with the containing type name. 
Although it is bad programming style, the type parameters in a nested type can hide a member or type parameter 
declared in the outer type: 

Class Outer(Of T) 

    Class Inner(Of T) 

        Public t1 As T    ' Refers to Inner's T 

    End Class 

End Class 

Types and methods may be overloaded based on the number of type parameters (or arity) that the types or 
methods declare. For example, the following declarations are legal: 

Module C 

    Sub M() 



Visual Basic Language Specification 

56 Copyright © Microsoft Corporation 2005. All rights reserved. 

    End Sub 

 

    Sub M(Of T)() 

    End Sub 

 

    Sub M(Of T, U)() 
    End Sub 

End Module 

 

Structure C(Of T) 

End Structure 

 

Class C(Of T, U) 

End Class 

In the case of types, overloads are always matched against the number of type arguments specified. This is 
useful when using both generic and non-generic classes together in the same program: 

Class Queue  

End Class    

  

Class Queue(Of T) 

End Class 

 

Class X 

    Dim q1 As Queue                      ' Non-generic queue 

    Dim q2 As Queue(Of Integer)     ' Generic queue 

End Class 

Rules for methods overloaded on type parameters are covered in the section on method overload resolution. 

Within the containing declaration, type parameters are considered full types. Since a type parameter can be 
instantiated with many different actual type arguments, type parameters have slightly different operations and 
restrictions than other types as described below: 

• A type parameter cannot be used directly to declare a base class or interface. 

• The rules for member lookup on type parameters depend on the constraints, if any, applied to the type 
parameter. 

• The available conversions for a type parameter depend on the constraints, if any, applied to the type 
parameters. 

• In the absence of a Structure constraint, a value with a type represented by a type parameter can be 
compared with Nothing using Is and IsNot. 

• A type parameter can only be used in a New expression if the type parameter is constrained by a New 
constraint. 

• A type parameter cannot be used anywhere within an attribute exception within a GetType expression.  



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 57 

Type parameters can be used as type arguments to other generic types and parameters. The following example is 
a generic type that extends the Stack(Of ItemType) class: 

Class MyStack(Of ItemType) 

    Inherits Stack(Of ItemType) 

 

    Public ReadOnly Property Size() As Integer 

        Get 

            Return CurrentIndex 

        End Get 

    End Property 

End Class 

When a declaration supplies a type argument to MyStack, the same type argument will be applied to Stack as 
well. 

As a type, type parameters are purely a compile-time construct. At run-time, each type parameter is bound to a 
run-time type that was specified by supplying a type argument to the generic declaration. Thus, the type of a 
variable declared with a type parameter will, at run-time, be a non-generic type or a specific constructed type. 
The run-time execution of all statements and expressions involving type parameters uses the actual type that was 
supplied as the type argument for that parameter. 

TypeParameterList  ::= 
 (  Of  TypeParameters  ) 

TypeParameters  ::= 
 TypeParameter  | 
 TypeParameters  ,  TypeParameter 

TypeParameter  ::= 
 Identifier  [  TypeParameterConstraints  ] 

4.9.2 Type Constraints 

Because a type argument can be any type in the type system, a generic type or method cannot make any 
assumptions about a type parameter. Thus, the members of a type parameter are considered to be the members 
of the type Object, since all types derive from Object. 

In the case of a collection like Stack(Of ItemType), this fact may not be a particularly important restriction, 
but there may be cases where a generic type may wish to make an assumption about the types that will be 
supplied as type arguments. Type constraints can be placed on type parameters that restrict which types can be 
supplied as a type parameter and allow generic types or methods to assume more about type parameters. 

Public Class DisposableStack(Of ItemType As IDisposable) 

    Implements IDisposable 

 

    Protected Items(0 To 99) As ItemType 

    Protected CurrentIndex As Integer = 0 

 

    Public Sub Push(ByVal Data As ItemType) 

        ... 

    End Sub 



Visual Basic Language Specification 

58 Copyright © Microsoft Corporation 2005. All rights reserved. 

 

    Public Function Pop() As ItemType 

        ... 

    End Function 

 

    Private Sub Dispose() Implements IDispoable.Dispose 

        For Each Item As IDisposable In Items 

            Item.Dispose() 

        Next 

    End Sub 

End Class 

In this example, the DisposableStack(Of ItemType) constrains its type parameter to only types that 
implement the interface System.IDisposable. As a result, it can implement a Dispose method that disposes 
any objects still left in the queue. 

Type constraints that are classes specify a common base class that a type argument must either be the same as or 
inherit from. Type constraints that are interfaces specify an interface that a type argument must implement. 
Whenever a generic type or method is referenced, the type arguments supplied must derive from or implement 
all of the bounds given for the matching type parameter.  

Type constraints must satisfy the following rules: 

• The type must be a class or an interface. 

• The type may not be NotInheritable. 

• The type may not be one of the following special types: System.Array, System.Delegate, 
System.MulticastDelegate, System.Enum, or System.ValueType. 

• The type constraint must not be Object. Since all types derive from Object, such a constraint would have 
no effect if it were permitted. 

• The type constraint must be at least as accessible as the generic type or method being declared. 

A type parameter with a class or interface constraint is considered to have the same members as that class or 
interface constraint. If a type parameter has multiple constraints, then the type parameter is considered to have 
the union of all the members of the constraints. If there are members with the same name in more than one 
constraint, then members are preferred in the following order, with the class constraint being the most preferred: 
the class constraint, the interface constraints, Object. If a member with the same name appears in more than 
one interface constraint the member is unavailable (as in multiple interface inheritance) and the type parameter 
must be cast to the desired interface. 

Class C1 

    Sub S1(ByVal x As Integer) 

    End Sub 

End Class 

 

Interface I1 

    Sub S1(ByVal x As Integer) 

End Interface 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 59 

 

Interface I2 

    Sub S1(ByVal y As Double) 

End Interface 

 

Module Test 

    Sub T1(Of T As {C1, I1, I2})() 

        Dim a As T 

        a.S1(10)       ' Calls C1.S1, which is preferred 

        a.S1(10.10)    ' Also calls C1.S1, class is still preferred 

    End Sub 

 

    Sub T2(Of T As {I1, I2})() 

        Dim a As T 

        a.S1(10)    ' Error: Call is ambiguous between I1.S1, I2.S1 

    End Sub 

End Module 

Type constraints can use the containing types or any of the containing types’ type parameters. In the following 
example, the constraint requires that the type argument supplied implements a generic interface using itself as a 
type argument: 

Class Sorter(Of V As IComparable(Of V)) 

    ... 

End Class 

In the case where a type constraint uses a containing type’s type parameter, the constraint requires that the type 
parameter be the same as or inherit from the type supplied for the type parameter. For example: 

Class List(Of T) 

    Sub AddRange(Of S As T)(ByVal Collection As IEnumerable(Of S)) 

        ... 

    End Sub 

End Class 

In this example, the type parameter S on AddRange is constrained to the type parameter T of List. This means 
that a List(Of Control) would constrain AddRange’s type parameter to any type that is or inherits from 
Control. 

When overriding a method or implementing an interface member, it is possible that a type parameter constrained 
on another type parameter would require specifying a type constraint that is illegal. In those cases, the following 
relaxations apply: 

• Multiple class constraints may be applied as long as they have an inheritance relationship. The most derived 
class is considered to be the constraint. 

• The same interface constraint, Class constraint or Structure constraint can be applied multiple times. 

• The type may be NotInheritable. 



Visual Basic Language Specification 

60 Copyright © Microsoft Corporation 2005. All rights reserved. 

• The type may be one of the following special types: System.Array, System.Delegate, 
System.MulticastDelegate, System.Enum, or System.ValueType. 

A type parameter constrained to one of the types allowed by the above relaxations can only use the conversions 
allowed by the DirectCast operator. For example: 

MustInherit Class Base(Of T) 

    MustOverride Sub S1(Of U As T)(ByVal x As U) 

End Class 

 

Class Derived 

    Inherits Base(Of Integer) 

 

    ' The constraint of U must be Integer, which is normally not allowed. 

    Overrides Sub S1(Of U As Integer)(ByVal x As U) 

        Dim y As Integer = x    ' OK 

        Dim z As Long = x       ' Error: Can't convert 

    End Sub 

End Class 

There is a special type constraint called New that requires that the type be able to be used in New expressions. If 
New is specified as a type parameter bound, any type argument used for that type parameter must have an 
accessible parameterless constructor and cannot be declared MustInherit. For example: 

Class Factory(Of T As New) 

    Function CreateInstance() As T 

        Return New T() 

    End Function 

End Class 

There are also two special type constraints, Class and Structure, which limit the kind of type that can be 
used to satisfy the constraint. The Class constraint constrains the type parameter to references types only. The 
Structure constraint constrains the type parameter to value types only, with the exception of 
System.Nullable(Of T). 

Annotation 

Structure constraints do not allow System.Nullable(Of T) so that it is not possible to supply 
System.Nullable(Of T) as a type argument to itself. 

Multiple type constraints can be specified for a single type parameter by enclosing the type constraints in curly 
braces ({}). Only one type constraint for a given type parameter can be a class. 

Class ControlFactory(Of T As {Control, New}) 

    … 

End Class 

When supplying type parameters as type arguments, the type parameters must satisfy the constraints of the 
matching type parameters. 

Class Base(Of T As Class) 

End Class 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 61 

 

Class Derived(Of V) 

    ' Error: V does not satisfy the constraints of T 

    Inherits Base(Of V) 

End Class 

Values of a constrained type parameter can be used to access the instance members, including instance methods, 
specified in the constraint. 

Interface IPrintable 

    Sub Print() 

End Interface 

 

Class Printer(Of V As IPrintable) 

    Sub PrintOne(ByVal v1 As V) 

        V1.Print() 

    End Sub 

End Class 

TypeParameterConstraints  ::= 
 As  Constraint  | 
 As  {  ConstraintList  } 

ConstraintList  ::= 
 ConstraintList  ,  Constraint  | 
 Constraint 

Constraint  ::=  TypeName  |  New 





 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 63 

5. Attributes 

The Visual Basic language enables the programmer to specify modifiers on declarations, which represent 
information about the entities being declared. For example, affixing a class method with the modifiers Public, 
Protected, Friend, Protected Friend, or Private specifies its accessibility. 

In addition to the modifiers defined by the language, Visual Basic also enables programmers to create new 
modifiers, called attributes, and to use them when declaring new entities. These new modifiers, which are 
defined through the declaration of attribute classes, are then assigned to entities through attribute blocks.  

Note   Attributes may be retrieved at run time through the .NET Framework's reflection APIs. These APIs 
are outside the scope of this specification. 

For instance, a framework might define a Help attribute that can be placed on program elements such as classes 
and methods to provide a mapping from program elements to documentation, as the following example 
demonstrates: 

<AttributeUsage(AttributeTargets.All)> _ 

Public Class HelpAttribute 

    Inherits Attribute 

 

    Public Sub New(ByVal UrlValue As String) 

        Me.UrlValue = UrlValue 

    End Sub 

 

    Public Topic As String 

    Private UrlValue As String 

 

    Public ReadOnly Property Url() As String 

        Get 

            Return UrlValue 

        End Get 

    End Property 

End Class 

The example defines an attribute class named HelpAttribute, or Help for short, that has one positional 
parameter (UrlValue) and one named argument (Topic). 

The next example shows several uses of the attribute: 

<Help("http://www.example.com/.../Class1.htm")> _ 

Public Class Class1 

    <Help("http://www.example.com/.../Class1.htm", Topic := "F")> _ 

        Public Sub F() 

    End Sub 

End Class 



Visual Basic Language Specification 

64 Copyright © Microsoft Corporation 2005. All rights reserved. 

The next example checks to see if Class1 has a Help attribute, and writes out the associated Topic and Url 
values if the attribute is present. 

Module Test 

    Sub Main() 

        Dim type As Type = GetType(Class1) 

        Dim arr() As Object() = _ 

            type.GetCustomAttributes(GetType(HelpAttribute), True) 

 

        If arr.Length = 0 Then 

            Console.WriteLine("Class1 has no Help attribute.") 

        Else 

            Dim ha As HelpAttribute = CType(arr(0), HelpAttribute) 

            Console.WriteLine("Url = " & ha.Url & "Topic = " & ha.Topic) 

        End If 

    End Sub 

End Module 

5.1 Attribute Classes 
An attribute class is a non-generic class that derives from System.Attribute and is not MustInherit. The 
attribute class must have a System.AttributeUsage attribute that declares what the attribute is valid on, 
whether it may be used multiple times in a declaration, and whether it is inherited. The following example 
defines an attribute class named SimpleAttribute that can be placed on class declarations and interface 
declarations: 

<AttributeUsage(AttributeTargets.Class Or AttributeTargets.Interface)> _ 

Public Class SimpleAttribute 

    Inherits System.Attribute 

End Class 

The next example shows a few uses of the Simple attribute. Although the attribute class is named 
SimpleAttribute, uses of this attribute may omit the Attribute suffix, thus shortening the name to Simple: 

<Simple()> Class Class1 

End Class 

<Simple()> Interface Interface1 

End Interface 

The System.AttributeUsage attribute has a variable initializer, AllowMultiple, which specifies whether 
the indicated attribute can be specified more than once for a given declaration. If AllowMultiple for an 
attribute is True, it is a multiple-use attribute class, and can be specified more than once on a declaration. If 
AllowMultiple for an attribute is False or unspecified for an attribute, it is a single-use attribute class, and 
can be specified at most once on a declaration. 

The following example defines a multiple-use attribute class named AuthorAttribute: 

<AttributeUsage(AttributeTargets.Class, AllowMultiple := True)> _ 

Public Class AuthorAttribute 

    Inherits System.Attribute 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 65 

 

    Public Sub New(ByVal Value As String) 

    End Sub 

 

    Public ReadOnly Property Value() As String 

        Get 

        End Get 

    End Property 

End Class 

The example shows a class declaration with two uses of the Author attribute: 

<Author("Maria Hammond"), Author("Ramesh Meyyappan")> _ 

Class Class1 

End Class 

The System.AttributeUsage attribute has a public instance variable, Inherited, that specifies whether the 
attribute, when specified on a base type, is also inherited by types that derive from this base type. If the 
Inherited public instance variable is not initialized, a default value of False is used. Properties and events do 
not inherit attributes, although the methods defined by properties and events do. Interfaces do not inherit 
attributes. 

If a single-use attribute is both inherited and specified on a derived type, the attribute specified on the derived 
type overrides the inherited attribute. If a multiple-use attribute is both inherited and specified on a derived type, 
both attributes are specified on the derived type. For example: 

<AttributeUsage(AttributeTargets.Class, AllowMultiple := True, _ 

                Inherited := True > _ 

Class MultiUseAttribute 

    Inherits System.Attribute 

 

    Public Sub New(ByVal Value As Boolean) 

    End Sub 

End Class 

 

<AttributeUsage(AttributeTargets.Class, Inherited := True)> _ 

Class SingleUseAttribute 

    Inherits Attribute 

 

    Public Sub New(ByVal Value As Boolean) 

    End Sub 

End Class 

 

<SingleUse(True), MultiUse(True)> Class Base 

End Class 

 



Visual Basic Language Specification 

66 Copyright © Microsoft Corporation 2005. All rights reserved. 

' Derived has three attributes defined on it: SingleUse(False), 

' MultiUse(True) and MultiUse(False) 

<SingleUse(False), MultiUse(False)> _ 

Class Derived 

    Inherits Base 

End Class 

The positional parameters of the attribute are defined by the parameters of the public constructors of the 
attribute class. Positional parameters must be ByVal and may not specify ByRef, Optional or Paramarray. 
Public instance variables and properties are defined by public read-write properties or instance variables of the 
attribute class. The types that can be used in positional parameters and public instance variables and properties 
are restricted to attribute types. A type is an attribute type if it is one of the following: 

• Any primitive type except for Date and Decimal. 

• The type Object. 

• The type System.Type. 

• An enumerated type, provided that it and the types in which it is nested (if any) have Public accessibility. 

• A one-dimensional array of one of the previous types in this list. 

5.2 Attribute Blocks 
Attributes are specified in attribute blocks. Each attribute block is delimited by angle brackets ("<>"), and 
multiple attributes can be specified in a comma-separated list within an attribute block or in multiple attribute 
blocks. The order in which attributes are specified is not significant. For example, the attribute blocks <A, B>, 
<B, A>, <A> <B> and <B> <A> are all equivalent. 

An attribute may not be specified on a kind of declaration it does not support, and single-use attributes may not 
be specified more than once in an attribute block. The example below causes errors both because it attempts to 
use HelpString on the interface Interface1 and more than once on the declaration of Class1. 

<AttributeUsage(AttributeTargets.Class)> _ 

Public Class HelpStringAttribute 

    Inherits System.Attribute 

 

    Private InternalValue As String 

 

    Public Sub New(ByVal Value As String) 

        Me.InternalValue = Value 

    End Sub 

 

    Public ReadOnly Property Value() As String 

        Get 

            Return InternalValue 

        End Get 

    End Property 

End Class 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 67 

 

' Error: HelpString only applies to classes. 

<HelpString("Description of Interface1")> _ 

Interface Interface1 

    Sub Sub1() 

End Interface 

 

' Error: HelpString is single-use. 

<HelpString("Description of Class1"), _ 

    HelpString("Another description of Class1")> _ 

Public Class Class1 

End Class 

An attribute consists of an optional attribute modifier, an attribute name, an optional list of positional arguments, 
and variable/property initializers. If there are no parameters or initializers, the parentheses may be omitted. If an 
attribute has a modifier, it must be in an attribute block at the top of a source file. 

If a source file contains an attribute block at the top of the file that specifies attributes for the assembly or 
module that will contain the source file, each attribute in the attribute block must be prefixed by either the 
Assembly or Module modifier and a colon. 

Attributes  ::= 
 AttributeBlock  | 
 Attributes  AttributeBlock 

AttributeBlock  ::=  <  AttributeList  > 

AttributeList  ::= 
 Attribute  | 
 AttributeList  ,  Attribute 

Attribute  ::= 
 [  AttributeModifier  :  ]  SimpleTypeName  [  (  [  AttributeArguments  ]  )  ] 

AttributeModifier  ::=  Assembly  |  Module 

5.2.1 Attribute Names 

The name of an attribute specifies an attribute class. By convention, attribute classes are named with the suffix 
Attribute. Uses of an attribute may either include or omit this suffix. Consequently the name of an attribute 
class that corresponds to an attribute identifier is either the identifier itself or the concatenation of the qualified 
identifier and Attribute. When the compiler resolves an attribute name, it appends Attribute to the name 
and tries the lookup. If that lookup fails, the compiler tries the lookup without the suffix. For example, uses of 
an attribute class SimpleAttribute may omit the Attribute suffix, thus shortening the name to Simple: 

<Simple()> _ 

Class Class1 

End Class 

 

<Simple()> _ 

Interface Interface1 



Visual Basic Language Specification 

68 Copyright © Microsoft Corporation 2005. All rights reserved. 

End Interface  

The example above is semantically equivalent to the following: 

<SimpleAttribute()> _ 

Class Class1 

End Class 

 

<SimpleAttribute()> _ 

Interface Interface1 

End Interface 

In general, attributes named with the suffix Attribute are preferred. The following example shows two 
attribute classes named X and XAttribute. 

<AttributeUsage(AttributeTargets.All)> _ 

Public Class X 

    Inherits System.Attribute 

End Class 

 

<AttributeUsage(AttributeTargets.All)> _ 

Public Class XAttribute 

    Inherits System.Attribute 

End Class 

 

' Refers to XAttribute. 

<X()> _ 

Class Class1  

End Class 

 

' Refers to XAttribute. 

<XAttribute()> _ 

Class Class2  

End Class 

Both the attribute block <X> and the attribute block <XAttribute> refer to the attribute class named 
XAttribute. It is not possible to use X as an attribute until you remove the declaration for class XAttribute. 

5.2.2 Attribute Arguments 

Arguments to an attribute may take two forms: positional arguments and instance variable/property initializers. 
Any positional arguments to the attribute must precede the instance variable/property initializers. A positional 
argument consists of a constant expression, a one-dimensional array-creation expression or a GetType 
expression. An instance variable/property initializer consists of an identifier, which can match keywords, 
followed by a colon and equal sign, and terminated by a constant expression or a GetType expression. 

Given an attribute with attribute class T, positional argument list P, and instance variable/property initializer list 
N, these steps determine whether the arguments are valid: 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 69 

• Follow the compile-time processing steps for compiling an expression of the form New T(P). This either 
results in a compile-time error or determines a constructor on T that is most applicable to the argument list. 

• If the constructor determined in step 1 has parameters that are not attribute types or is inaccessible at the 
declaration site, a compile-time error occurs. 

• For each instance variable/property initializer Arg in N: 

• Let Name be the identifier of the instance variable/property initializer Arg. 

• Name must identify a non-Shared, writeable, Public instance variable or parameterless property on T 
whose type is an attribute type. If T has no such instance variable or property, a compile-time error 
occurs. 

For example: 

<AttributeUsage(AttributeTargets.All)> _ 

Public Class GeneralAttribute 

    Inherits Attribute 

 

    Public Sub New(ByVal x As Integer) 

    End Sub 

 

    Public Sub New(Byval x As Double) 

    End Sub 

 

    Public y As Type 

 

    Public Property z As Integer 

        Get 

        End Get 

 

        Set 

        End Set 

    End Property 

End Class 

 

' Calls the first constructor. 

<General(10, z := 30, y := GetType(Integer))> _ 

Class Foo 

End Class 

 

' Calls the second constructor. 

<General(10.5, z := 10)> _ 

Class Bar 

End Class 



Visual Basic Language Specification 

70 Copyright © Microsoft Corporation 2005. All rights reserved. 

Type parameters cannot be used anywhere in attribute arguments. However, constructed types may be used: 

<AttributeUsage(AttributeTargets.All)> _ 

Class A  

   Inherits System.Attribute  

     

   Public Sub New(ByVal t As Type) 

   End Sub  

End Class 

 

Class List(Of T)  

    ' Error: attribute argument cannot use type parameter 

    <A(GetType(T))> Dim t1 As T  

 

    ' OK: closed type 

    <A(GetType(List(Of Integer)))> Dim y As Integer 

End Class 

AttributeArguments  ::= 
 AttributePositionalArgumentList  | 
 AttributePositionalArgumentList  ,  VariablePropertyInitializerList  | 
 VariablePropertyInitializerList 

AttributePositionalArgumentList  ::= 
 AttributeArgumentExpression  | 
 AttributePositionalArgumentList  ,  AttributeArgumentExpression 

VariablePropertyInitializerList  ::= 
 VariablePropertyInitializer  | 
 VariablePropertyInitializerList  ,  VariablePropertyInitializer 

VariablePropertyInitializer  ::= 
 IdentifierOrKeyword  :=  AttributeArgumentExpression 

AttributeArgumentExpression  ::= 
 ConstantExpression  | 
 GetTypeExpression  | 
 ArrayCreationExpression 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 71 

6. Source Files and Namespaces 

A Visual Basic program consists of one or more source files. When a program is compiled, all of the source files 
are processed together; thus, source files can depend on each other, possibly in a circular fashion, without any 
forward-declaration requirement. The textual order of declarations in the program text is generally of no 
significance. 

A source file consists of an optional set of option statements, import statements, and attributes, which are 
followed by a namespace body. The attributes, which must each have either the Assembly or Module modifier, 
apply to the .NET assembly or module produced by the compilation. The body of the source file functions as an 
implicit namespace declaration for the global namespace, meaning that all declarations at the top level of a 
source file are placed in the global namespace. For example: 

FileA.vb: 

    Class A 

    End Class 

 

FileB.vb: 

    Class B 

    End Class 

The two source files contribute to the global namespace, in this case declaring two classes with the fully 
qualified names A and B. Because the two source files contribute to the same declaration space, it would have 
been an error if each contained a declaration of a member with the same name.  

Note   The compilation environment may override the namespace declarations into which a source file is 
implicitly placed. 

Except where noted, statements within a Visual Basic program can be terminated either by a line terminator or 
by a colon.  

Start  ::= 
 [  OptionStatement+  ] 
 [  ImportsStatement+  ] 
 [  AttributesStatement+  ] 
 [  NamespaceMemberDeclaration+  ] 

StatementTerminator  ::=  LineTerminator  |  : 

AttributesStatement  ::=  Attributes  StatementTerminator 

6.1 Program Startup and Termination 
Program startup occurs when the execution environment executes a designated method, which is referred to as 
the program's entry point. This entry point method, which must always be named Main, must be shared, cannot 
be contained in a generic type, and must have one of the following signatures: 

Sub Main() 

Sub Main(ByVal Args() As String) 

Function Main() As Integer 



Visual Basic Language Specification 

72 Copyright © Microsoft Corporation 2005. All rights reserved. 

Function Main(ByVal Args() As String) As Integer 

The accessibility of the entry point method is irrelevant. If a program contains more than one suitable entry 
point, the compilation environment must designate one as the entry point. Otherwise, a compile-time error 
occurs. The compilation environment may also create an entry point method if one does not exist. 

When a program begins, if the entry point has a parameter, the argument supplied by the execution environment 
contains the command-line arguments to the program represented as strings. If the entry point has a return type 
of Integer, then the value returned from the function is returned to the execution environment as the result of 
the program. 

In all other respects, entry point methods behave in the same manner as other methods. When execution leaves 
the invocation of the entry point method made by the execution environment, the program terminates. 

6.2 Compilation Options 
A source file can specify compilation options in the source code using option statements. An Option statement 
applies only to the source file in which it appears, and only one of each type of Option statement may appear in 
a source file. For example: 

Option Strict On 

Option Compare Text 

Option Strict Off    ' Not allowed, Option Strict is already specified. 

Option Compare Text  ' Not allowed, Option Compare is already specified. 

There are three compilation options: strict type semantics, explicit declaration semantics, and comparison 
semantics. If a source file does not include a particular Option statement, then the compilation environment 
determines which particular set of semantics will be used. There is also a fourth compilation option, integer 
overflow checks, which can only be specified through the compilation environment. 

OptionStatement  ::= 
 OptionExplicitStatement  | 
 OptionStrictStatement  | 
 OptionCompareStatement 

6.2.1 Option Explicit Statement 

The Option Explicit statement determines whether local variables may be implicitly declared. The keywords 
On or Off may follow the statement; if neither is specified, the default is On. If no statement is specified in a 
file, the compilation environment determines which will be used.  

Note   Explicit and Off are not reserved words. 

Option Explicit Off 

 

Module Test 

    Sub Main() 

        x = 5 ' Valid because Option Explicit is off. 

    End Sub 

End Module 

In this example, the local variable x is implicitly declared by assigning to it. The type of x is Object. 

OptionExplicitStatement  ::=  Option  Explicit  [  OnOff  ]  StatementTerminator 

OnOff  ::=  On  |  Off 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 73 

6.2.2 Option Strict Statement 

The Option Strict statement determines whether conversions and operations on Object are governed by 
strict or permissive type semantics and whether types are implicitly typed as Object if no As clause is 
specified. The statement may be followed by the keywords On or Off; if neither is specified, the default is On. If 
no statement is specified in a file, the compilation environment determines which will be used.  

Note   Strict and Off are not reserved words. 

Option Strict On 

 

Module Test 

    Sub Main() 

        Dim x ' Error, no type specified. 

        Dim o As Object 

        Dim b As Byte = o ' Error, narrowing conversion. 

 

        o.Foo() ' Error, late binding disallowed. 

        o = o + 1 ' Error, addition is not defined on Object. 

    End Sub 

End Module 

Under strict semantics, the following are disallowed: 

• Narrowing conversions without an explicit cast operator. 

• Late binding. 

• Operations on type Object other than =, <>, TypeOf...Is, and Is. 

• Omitting the As clause in a declaration. 

OptionStrictStatement  ::=  Option  Strict  [  OnOff  ]  StatementTerminator 

6.2.3 Option Compare Statement 

The Option Compare statement determines the semantics of string comparisons. String comparisons are 
carried out either using binary comparisons (in which the binary Unicode value of each character is compared) 
or text comparisons (in which the lexical meaning of each character is compared using the current culture). If no 
statement is specified in a file, the compilation environment controls which type of comparison will be used.  

Note   Compare, Binary, and Text are not reserved words. 

Option Compare Text 

 

Module M 

    Sub Main() 

        Console.WriteLine("a" = "A")    ' Prints True. 

    End Sub 

End Module 

In this case, the string comparison is done using a text comparison that ignores case differences. If Option 
Compare Binary had been specified, then this would have printed False. 



Visual Basic Language Specification 

74 Copyright © Microsoft Corporation 2005. All rights reserved. 

OptionCompareStatement  ::=  Option  Compare  CompareOption  StatementTerminator 

CompareOption  ::=  Binary  |  Text 

6.2.4 Integer Overflow Checks 

Integer operations can either be checked or not checked for overflow conditions at run time. If overflow 
conditions are checked and an integer operation overflows, a System.OverflowException exception is 
thrown. If overflow conditions are not checked, integer operation overflows do not throw an exception. The 
compilation environment determines whether this option is on or off. 

6.3 Imports Statement 
Imports statements import the names of entities into a source file, allowing the names to be referenced without 
qualification.  

Within member declarations in a source file that contains an Imports statement, the types contained in the 
given namespace can be referenced directly, as seen in the following example: 

Imports N1.N2 

 

Namespace N1.N2 

    Class A 

    End Class 

End Namespace  

 

Namespace N3 

    Class B 

        Inherits A 

    End Class 

End Namespace  

Here, within the source file, the type members of namespace N1.N2 are directly available, and thus class N3.B 
derives from class N1.N2.A. 

Imports statements must appear after any Option statements but before any type declarations. The 
compilation environment may also define implicit Imports statements. 

Imports statements make names available in a source file, but do not declare anything in the global 
namespace's declaration space. The scope of the names imported by an Imports statement extends over the 
namespace member declarations contained in the source file. The scope of an Imports statement specifically 
does not include other Imports statements, nor does it include other source files. Imports statements may not 
refer to one another. 

In this example, the last Imports statement is in error because it is not affected by the first import alias. 

Imports R1 = N1 ' OK. 

Imports R2 = N1.N2 ' OK. 

Imports R3 = R1.N2 ' Error: Can't refer to R1. 

 

Namespace N1.N2 

End Namespace  



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 75 

Note   The namespace or type names that appear in Imports statements are always treated as if they are 
fully qualified. That is, the leftmost identifier in a namespace or type name always resolves in the global 
namespace and the rest of the resolution proceeds according to normal name resolution rules. This is the 
only place in the language that applies such a rule; the rule ensures that a name cannot be completely hidden 
from qualification. Without the rule, if a name in the global namespace were hidden in a particular source 
file, it would be impossible to specify any names from that namespace in a qualified way. 

In this example, the Imports statement always refers to the global System namespace, and not the class in the 
source file. 

Imports System   ' Imports the namespace, not the class. 

 

Class System 

End Class 

ImportsStatement  ::=  Imports  ImportsClauses  StatementTerminator 

ImportsClauses  ::= 
 ImportsClause  | 
 ImportsClauses  ,  ImportsClause 

ImportsClause  ::=  ImportsAliasClause  |  ImportsNamespaceClause 

6.3.1 Import Aliases 

An import alias defines an alias for a namespace or type.  

Imports A = N1.N2.A 

 

Namespace N1.N2 

    Class A 

    End Class 

End Namespace 

 

Namespace N3 

    Class B 

        Inherits A 

    End Class 

End Namespace 

Here, within the source file, A is an alias for N1.N2.A, and thus class N3.B derives from class N1.N2.A. The 
same effect can be obtained by creating an alias R for N1.N2 and then referencing R.A: 

Imports R = N1.N2 

 

Namespace N3 

    Class B 

        Inherits R.A 

    End Class 

End Namespace  



Visual Basic Language Specification 

76 Copyright © Microsoft Corporation 2005. All rights reserved. 

The identifier of an import alias must be unique within the declaration space of the global namespace (not just 
the global namespace declaration in the source file in which the import alias is defined), even though it does not 
declare a name in the global namespace's declaration space.  

Annotation 

Declarations in a module do not introduce names into the containing declaration space. Thus, it is valid for a 
declaration in a module to have the same name as an import alias, even though the declaration’s name will be 
accessible in the containing declaration space. 

Imports A = N3.A 

 

Class A 

End Class 

 

Namespace N3 

    Class A 

    End Class 

End Namespace 

Here, the global namespace already contains a member A, so it is an error for an import alias to use that 
identifier. It is likewise an error for two or more import aliases in the same source file to declare aliases by the 
same name. 

An import alias can create an alias for any namespace or type. Accessing a namespace or type through an alias 
yields exactly the same result as accessing the namespace or type through its declared name. 

Imports R1 = N1 

Imports R2 = N1.N2 

 

Namespace N1.N2 

    Class A 

    End Class 

End Namespace 

 

Namespace N3 

    Class B 

        Private a As N1.N2.A 

        Private b As R1.N2.A 

        Private c As R2.A 

    End Class 

End Namespace  

Here, the names N1.N2.A, R1.N2.A, and R2.A are equivalent, and all refer to the class whose fully qualified 
name is N1.N2.A. 

Declarations in the source file may shadow the import alias name. 

Imports R = N1.N2 

 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 77 

Namespace N1.N2 

    Class A 

    End Class 

End Namespace 

 

Namespace N3 

    Class R 

    End Class 

 

    Class B 

        Inherits R.A  ' Error, R has no member A 

    End Class 

End Namespace  

In the preceding example the reference to R.A in the declaration of B causes an error because R refers to N3.R, 
not N1.N2. 

An import alias makes an alias available within a particular source file, but it does not contribute any new 
members to the underlying declaration space. In other words, an import alias is not transitive, but rather affects 
only the source file in which it occurs. 

File1.vb: 

Imports R = N1.N2 

 

Namespace N1.N2 

    Class A 

    End Class 

End Namespace 

 

File2.vb: 

Class B 

    Inherits R.A ' Error, R unknown. 

End Class 

In the above example, because the scope of the import alias that introduces R only extends to declarations in the 
source file in which it is contained, R is unknown in the second source file.  

ImportsAliasClause  ::= 
 Identifier  =  QualifiedIdentifier  | 
 Identifier  =  ConstructedTypeName 

6.3.2 Namespace Imports 

A namespace import imports all of the members of a namespace or type, allowing the identifier of each member 
of the namespace or type to be used without qualification. In the case of types, a namespace import only allows 
access to the shared members of the type without requiring qualification of the class name. In particular, it 
allows the members of enumerated types to be used without qualification. For example: 



Visual Basic Language Specification 

78 Copyright © Microsoft Corporation 2005. All rights reserved. 

Imports Colors 

 

Enum Colors 

    Red 

    Green 

    Blue 

End Enum 

 

Module M1 

    Sub Main() 

        Dim c As Colors = Red 

    End Sub 

End Module 

Unlike an import alias, a namespace import has no restrictions on the names it imports and may import 
namespaces and types whose identifiers are already declared within the global namespace. The names imported 
by a regular import are shadowed by import aliases and declarations in the source file.  

In the following example, A refers to N3.A rather than N1.N2.A within member declarations in the N3 
namespace. 

Imports N1.N2 

 

Namespace N1.N2 

    Class A 

    End Class 

End Namespace 

 

Namespace N3 

    Class A 

    End Class 

 

    Class B 

        Inherits A 

    End Class 

End Namespace  

When more than one imported namespace contains members by the same name (and that name is not otherwise 
shadowed by an import alias or declaration), a reference to that name is ambiguous and causes a compile-time 
error.  

Imports N1 

Imports N2 

 

Namespace N1 

    Class A 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 79 

    End Class 

End Namespace  

 

Namespace N2 

    Class A 

    End Class 

End Namespace  

 

Namespace N3 

    Class B 

        Inherits A ' Error, A is ambiguous. 

    End Class 

End Namespace 

In the above example, both N1 and N2 contain a member A. Because N3 imports both, referencing A in N3 causes 
a compile-time error. In this situation, the conflict can be resolved either through qualification of references to A, 
or by introducing an import alias that picks a particular A, as in the following example: 

Imports N1 

Imports N2 

Imports A = N1.A 

 

Namespace N3 

    Class B 

        Inherits A ' A means N1.A. 

    End Class 

End Namespace  

Only namespaces, classes, structures, enumerated types, and standard modules may be imported. 

ImportsNamespaceClause  ::= 
 QualifiedIdentifier  | 
 ConstructedTypeName 

6.4 Namespaces 
Visual Basic programs are organized using namespaces. Namespaces both internally organize a program as well 
as organize the way program elements are exposed to other programs. 

Unlike other entities, namespaces are open-ended, and may be declared multiple times within the same program 
and across many programs, with each declaration contributing members to the same namespace. In the 
following example, the two namespace declarations contribute to the same declaration space, declaring two 
classes with the fully qualified names N1.N2.A and N1.N2.B. 

Namespace N1.N2 

    Class A 

    End Class 

End Namespace 

 



Visual Basic Language Specification 

80 Copyright © Microsoft Corporation 2005. All rights reserved. 

Namespace N1.N2 

    Class B 

    End Class 

End Namespace 

Because the two declarations contribute to the same declaration space, it would be an error if each contained a 
declaration of a member with the same name. 

There is a global namespace that has no name and whose nested namespaces and types can always be accessed 
without qualification. The scope of a namespace member declared in the global namespace is the entire program 
text. Otherwise, the scope of a type or namespace declared in a namespace whose fully qualified name is N is the 
program text of each namespace whose corresponding namespace's fully qualified name begins with N or is N 
itself. (Note that a compiler can choose to put declarations in a particular namespace by default. This does not 
alter the fact that there is still a global, unnamed namespace.) 

In this example, the class B can see the class A because B's namespace N1.N2.N3 is conceptually nested within 
the namespace N1.N2. 

Namespace N1.N2 

    Class A 

    End Class 

End Namespace 

 

Namespace N1.N2.N3 

    Class B 

        Inherits A 

    End Class 

End Namespace 

6.4.1 Namespace Declarations 

A namespace declaration consists of the keyword Namespace followed by a qualified identifier and optional 
namespace member declarations. If the namespace name is qualified, the namespace declaration is treated as if it 
is lexically nested within namespace declarations corresponding to each name in the qualified name. For 
example, the following two namespaces are semantically equivalent: 

Namespace N1.N2 

    Class A 

    End Class 

 

    Class B 

    End Class 

End Namespace  

 

Namespace N1 

    Namespace N2 

        Class A 

        End Class 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 81 

 

        Class B 

        End Class 

    End Namespace 

End Namespace 

When dealing with the members of a namespace, it is not important where a particular member is declared. If 
two programs define an entity with the same name in the same namespace, attempting to resolve the name in the 
namespace causes an ambiguity error. 

Namespaces are by definition Public, so a namespace declaration cannot include any access modifiers.  

NamespaceDeclaration  ::= 
 Namespace  QualifiedIdentifier  StatementTerminator 
 [  NamespaceMemberDeclaration+  ] 
 End  Namespace  StatementTerminator 

6.4.2 Namespace Members 

Namespace members can only be namespace declarations and type declarations. Type declarations may have 
Public or Friend access. The default access for types is Friend access.  

NamespaceMemberDeclaration  ::= 
 NamespaceDeclaration  | 
 TypeDeclaration 

TypeDeclaration  ::= 
 ModuleDeclaration  | 
 NonModuleDeclaration 

NonModuleDeclaration  ::= 
 EnumDeclaration  | 
 StructureDeclaration  | 
 InterfaceDeclaration  | 
 ClassDeclaration  | 
 DelegateDeclaration 





 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 83 

7. Types 

The two fundamental categories of types in Visual Basic are value types and reference types. Primitive types 
(except strings), enumerations, and structures are value types. Classes, strings, standard modules, interfaces, 
arrays, and delegates are reference types.  

Every type has a default value, which is the value that is assigned to variables of that type upon initialization. 

TypeName  ::= 
 ArrayTypeName  | 
 NonArrayTypeName 

NonArrayTypeName  ::= 
 SimpleTypeName  | 
 ConstructedTypeName 

SimpleTypeName  ::= 
 QualifiedIdentifier  | 
 BuiltInTypeName 

BuiltInTypeName  ::=  Object  |  PrimitiveTypeName 

TypeModifier  ::=  AccessModifier  |  Shadows 

7.1 Value Types and Reference Types 
Although value types and reference types can be similar in terms of declaration syntax and usage, their 
semantics are distinct. 

Reference types are stored on the run-time heap; they may only be accessed through a reference to that storage. 
Because reference types are always accessed through references, their lifetime is managed by the .NET 
Framework. Outstanding references to a particular instance are tracked and the instance is destroyed only when 
no more references remain. A variable of reference type contains a reference to a value of that type, a value of a 
more derived type, or a null reference. A null reference is a reference that refers to nothing; it is not possible to 
do anything with a null reference except assign it. Assignment to a variable of a reference type creates a copy of 
the reference rather than a copy of the referenced value. For a variable of a reference type, the default value is a 
null reference. 

Value types are stored directly on the stack, either within an array or within another type; their storage can only 
be accessed directly. Because value types are stored directly within variables, their lifetime is determined by the 
lifetime of the variable that contains them. When the location containing a value type instance is destroyed, the 
value type instance is also destroyed. Value types are always accessed directly; it is not possible to create a 
reference to a value type. Prohibiting such a reference makes it impossible to refer to a value class instance that 
has been destroyed. Because value types are always NotInheritable, a variable of a value type always 
contains a value of that type. Because of this, the value of a value type cannot be a null reference, nor can it 
reference an object of a more derived type. Assignment to a variable of a value type creates a copy of the value 
being assigned. For a variable of a value type, the default value is the result of initializing each variable member 
of the type to its default value. 

The following example shows the difference between reference types and value types: 

Class Class1 

    Public Value As Integer = 0 



Visual Basic Language Specification 

84 Copyright © Microsoft Corporation 2005. All rights reserved. 

End Class 

 

Module Test 

    Sub Main() 

        Dim val1 As Integer = 0 

        Dim val2 As Integer = val1 

        val2 = 123 

        Dim ref1 As Class1 = New Class1() 

        Dim ref2 As Class1 = ref1 

        ref2.Value = 123 

        Console.WriteLine("Values: " & val1 & ", " & val2) 

        Console.WriteLine("Refs: " & ref1.Value & ", " & ref2.Value) 

    End Sub 

End Module 

The output of the program is: 

Values: 0, 123 

Refs: 123, 123 

The assignment to the local variable val2 does not impact the local variable val1 because both local variables 
are of a value type (the type Integer) and each local variable of a value type has its own storage. In contrast, 
the assignment ref2.Value = 123; affects the object that both ref1 and ref2 reference. 

One thing to note about the .NET Framework type system is that even though structures, enumerations and 
primitive types (except for String) are value types, they all inherit from reference types. Structures and the 
primitive types inherit from the reference type System.ValueType, which inherits from Object. Enumerated 
types inherit from the reference type System.Enum, which inherits from System.ValueType.. 

7.2 Interface Implementation 
Structure and class declarations may declare that they implement a set of interface types through one or more 
Implements clauses. All the types specified in the Implements clause must be interfaces, and the type must 
implement all members of the interfaces. For example: 

Interface ICloneable 

    Function Clone() As Object 

End Interface  

 

Interface IComparable 

    Function CompareTo(ByVal other As Object) As Integer 

End Interface  

 

Structure ListEntry 

    Implements ICloneable, IComparable 

 

    Public Function Clone() As Object Implements ICloneable.Clone 

    End Function  



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 85 

 

    Public Function CompareTo(ByVal other As Object) As Integer _ 

        Implements IComparable.CompareTo 

    End Function  

End Structure 

A type that implements an interface also implicitly implements all of the interface's base interfaces. This is true 
even if the type does not explicitly list all base interfaces in the Implements clause. In this example, the 
TextBox structure implements both IControl and ITextBox. 

Interface IControl 

    Sub Paint() 

End Interface  

 

Interface ITextBox 

    Inherits IControl 

    Sub SetText(ByVal Text As String) 

End Interface  

 

Structure TextBox 

    Implements ITextBox 

 

    Public Sub Paint() Implements ITextBox.Paint 

    End Sub 

 

    Public Sub SetText(ByVal Text As String) Implements ITextBox.SetText 

    End Sub 

End Structure 

Declaring that a type implements an interface in and of itself does not declare anything in the declaration space 
of the type. Thus, it is valid to implement two interfaces with a method by the same name. 

Types cannot implement a type parameter on its own, although it may involve the type parameters that are in 
scope. 

Class C1(Of V) 

    Implements V  ' Error, can't implement type parameter directly 

    Implements IEnumerable(Of V)  ' OK, not directly implementing 

End Class 

Generic interfaces can be implemented multiple times using different type arguments. However, a generic type 
cannot implement a generic interface using a type parameter if the supplied type parameter (regardless of type 
constraints) could overlap with another implementation of that interface. For example: 

Interface I1(Of T) 

End Interface 

 

Class C1 



Visual Basic Language Specification 

86 Copyright © Microsoft Corporation 2005. All rights reserved. 

    Implements I1(Of Integer) 

    Implements I1(Of Double)    ' OK, no overlap 

End Class 

 

Class C2(Of T) 

    Implements I1(Of Integer) 

    Implements I1(Of T)         ' Error, T could be Integer 

End Class 

TypeImplementsClause  ::=  Implements  Implements  StatementTerminator 

Implements  ::= 
 NonArrayTypeName  | 
 Implements  ,  NonArrayTypeName 

7.3 Primitive Types 
The primitive types are identified through keywords, which are aliases for predefined types in the System 
namespace. A primitive type is completely indistinguishable from the type it aliases: writing the reserved word 
Byte is exactly the same as writing System.Byte. 

Because a primitive type aliases a regular type, every primitive type has members. For example, Integer has 
the members declared in System.Int32. Literals can be treated as instances of their corresponding types.  

The primitive types differ from other structure types in that they permit certain additional operations: 

• Primitive types permit values to be created by writing literals. For example, 123I is a literal of type 
Integer. 

• It is possible to declare constants of the primitive types. 

• When the operands of an expression are all primitive type constants, it is possible for the compiler to 
evaluate the expression at compile time. Such an expression is known as a constant expression. 

Visual Basic defines the following primitive types: 

• The integral value types Byte (1-byte unsigned integer), SByte (1-byte signed integer), UShort (2-byte 
unsigned integer), Short (2-byte signed integer), UInteger (4-byte unsigned integer), Integer (4-byte 
signed integer), ULong (8-byte unsigned integer), and Long (8-byte signed integer). These types map to 
System.Byte, System.SByte, System.UInt16, System.Int16, System.UInt32, System.Int32, 
System.UInt64 and System.Int64, respectively. The default value of an integral type is equivalent to 
the literal 0. 

• The floating-point value types Single (4-byte floating point) and Double (8-byte floating point). These 
types map to System.Single and System.Double, respectively. The default value of a floating-point 
type is equivalent to the literal 0.  

• The Decimal type (16-byte decimal value), which maps to System.Decimal. The default value of 
decimal is equivalent to the literal 0D. 

• The Boolean value type, which represents a truth value, typically the result of a relational or logical 
operation. The literal is of type System.Boolean. The default value of the Boolean type is equivalent to 
the literal False. 

• The Date value type, which represents a date and/or a time and maps to System.DateTime. The default 
value of the Date type is equivalent to the literal # 01/01/0001 12:00:00AM #. 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 87 

• The Char value type, which represents a single Unicode character and maps to System.Char. The default 
value of the Char type is equivalent to the constant expression ChrW(0). 

• The String reference type, which represents a sequence of Unicode characters and maps to 
System.String. The default value of the String type is a null reference. 

PrimitiveTypeName  ::=  NumericTypeName  |  Boolean  |  Date  |  Char  |  String 

NumericTypeName  ::=  IntegralTypeName  |  FloatingPointTypeName  |  Decimal 

IntegralTypeName  ::=  Byte  |  SByte  |  UShort  |  Short  |  UInteger  |  Integer  |  ULong  |  Long 

FloatingPointTypeName  ::=  Single  |  Double 

7.4 Enumerations 
Enumerations are value types that inherit from System.Enum and symbolically represent a set of values of one 
of the primitive integral types. For an enumeration type E, the default value is the value produced by the 
expression CType(0, E). 

The underlying type of an enumeration must be an integral type that can represent all the enumerator values 
defined in the enumeration. If an underlying type is specified, it must be Byte, SByte, UShort, Short, 
UInteger, Integer, ULong, Long, or one of their corresponding types in the System namespace. If no 
underlying type is explicitly specified, the default is Integer.  

The following example declares an enumeration with an underlying type of Long: 

Enum Color As Long 

    Red 

    Green 

    Blue 

End Enum 

A developer might choose to use an underlying type of Long, as in the example, to enable the use of values that 
are in the range of Long, but not in the range of Integer, or to preserve this option for the future. 

EnumDeclaration  ::= 
 [  Attributes  ]  [  TypeModifier+  ]  Enum  Identifier  [  As  QualifiedName  ]  StatementTerminator 
 EnumMemberDeclaration+ 
 End  Enum  StatementTerminator 

7.4.1 Enumeration Members 

The members of an enumeration are the enumerated values declared in the enumeration and the members 
inherited from class System.Enum. 

The scope of an enumeration member is the enumeration declaration body. This means that outside of an 
enumeration declaration, an enumeration member must always be qualified (unless the type is specifically 
imported into a namespace through a namespace import). 

Declaration order for enumeration member declarations is significant when constant expression values are 
omitted. Enumeration members implicitly have Public access only; no access modifiers are allowed on 
enumeration member declarations. 

EnumMemberDeclaration  ::=  [  Attributes  ]  Identifier  [  =  ConstantExpression  ]  StatementTerminator 



Visual Basic Language Specification 

88 Copyright © Microsoft Corporation 2005. All rights reserved. 

7.4.2 Enumeration Values 

The enumerated values in an enumeration member list are declared as constants typed as the underlying 
enumeration type, and they can appear wherever constants are required. An enumeration member definition with 
= gives the associated member the value indicated by the constant expression. The constant expression must 
evaluate to an integral type that is implicitly convertible to the underlying type and must be within the range of 
values that can be represented by the underlying type. The following example is in error because the constant 
values 1.5, 2.3, and 3.3 are not implicitly convertible to the underlying integral type Long with strict 
semantics. 

Option Strict On 

 

Enum Color As Long 

    Red = 1.5 

    Green = 2.3 

    Blue = 3.3 

End Enum  

Multiple enumeration members may share the same associated value, as shown below: 

Enum Color 

    Red 

    Green 

    Blue 

    Max = Blue 

End Enum  

The example shows an enumeration that has two enumeration members — Blue and Max — that have the same 
associated value. 

If the first enumerator value definition in the enumeration has no initializer, the value of the corresponding 
constant is 0. An enumeration value definition without an initializer gives the enumerator the value obtained by 
increasing the value of the previous enumeration value by 1. This increased value must be within the range of 
values that can be represented by the underlying type.  

Enum Color 

    Red 

    Green = 10 

    Blue 

End Enum  

 

Module Test 

    Sub Main() 

        Console.WriteLine(StringFromColor(Color.Red)) 

        Console.WriteLine(StringFromColor(Color.Green)) 

        Console.WriteLine(StringFromColor(Color.Blue)) 

    End Sub 

 

    Function StringFromColor(ByVal c As Color) As String 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 89 

        Select Case c 

            Case Color.Red 

                Return String.Format("Red = " & CInt(c)) 

 

            Case Color.Green 

                Return String.Format("Green = " & CInt(c)) 

 

            Case Color.Blue 

                Return String.Format("Blue = " & CInt(c)) 

 

            Case Else 

                Return "Invalid color" 

        End Select 

    End Function 

End Class 

The example above prints the enumeration values and their associated values. The output is: 

Red = 0 

Blue = 11 

Green = 10 

The reasons for the values are as follows: 

• The enumeration value Red is automatically assigned the value 0 (since it has no initializer and is the first 
enumeration value member). 

• The enumeration value Green is explicitly given the value 10. 

• The enumeration value Blue is automatically assigned the value one greater than the enumeration value that 
textually precedes it. 

The constant expression may not directly or indirectly use the value of its own associated enumeration value 
(that is, circularity in the constant expression is not allowed). The following example is invalid because the 
declarations of A and B are circular. 

Enum Circular 

    A = B 

    B 

End Enum  

A depends on B explicitly, and B depends on A implicitly. 

7.5 Classes 
A class is a data structure that may contain data members (constants, variables, and events), function members 
(methods, properties, indexers, operators, and constructors), and nested types. Classes are reference types. The 
following example shows a class that contains each kind of member: 

Class AClass 

 

    Public Sub New() 



Visual Basic Language Specification 

90 Copyright © Microsoft Corporation 2005. All rights reserved. 

        Console.WriteLine("Constructor") 

    End Sub 

 

    Public Sub New(ByVal value As Integer) 

        MyVariable = value 

        Console.WriteLine("Constructor") 

    End Sub 

 

    Public Const MyConst As Integer = 12 

    Public MyVariable As Integer = 34 

 

    Public Sub MyMethod() 

        Console.WriteLine("MyClass.MyMethod") 

    End Sub 

 

    Public Property MyProperty() As Integer 

        Get 

            Return MyVariable 

        End Get 

 

        Set (ByVal value As Integer) 

            MyVariable = value 

        End Set 

    End Property 

 

    Default Public Property Item(ByVal index As Integer) As Integer 

        Get 

            Return 0 

        End Get 

 

        Set (ByVal value As Integer) 

            Console.WriteLine("Item(" & index & ") = " & value) 

        End Set 

    End Property 

 

    Public Event MyEvent() 

 

    Friend Class MyNestedClass 

    End Class  

End Class  



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 91 

The following example shows uses of these members: 

Module Test 

 

    ' Event usage. 

    Dim WithEvents aInstance As AClass 

 

    Sub Main() 

        ' Constructor usage. 

        Dim a As AClass = New AClass() 

        Dim b As AClass = New AClass(123) 

 

        ' Constant usage. 

        Console.WriteLine("MyConst = " & AClass.MyConst) 

 

        ' Variable usage. 

        a.MyVariable += 1 

        Console.WriteLine("a.MyVariable = " & a.MyVariable) 

 

        ' Method usage. 

        a.MyMethod() 

 

        ' Property usage. 

        a.MyProperty += 1 

        Console.WriteLine("a.MyProperty = " & a.MyProperty) 

        a(1) = 1 

 

        ' Event usage. 

        aInstance = a 

    End Sub  

 

    Sub MyHandler() Handles aInstance.MyEvent 

        Console.WriteLine("Test.MyHandler") 

    End Sub  

End Module 

There are two class-specific modifiers, MustInherit and NotInheritable. It is invalid to specify them both.  

ClassDeclaration  ::= 
 [  Attributes  ]  [  ClassModifier+  ]  Class  Identifier  [  TypeParameterList  ]  StatementTerminator 
 [  ClassBase  ] 
 [  TypeImplementsClause+  ] 
 [  ClassMemberDeclaration+  ] 
 End  Class  StatementTerminator 



Visual Basic Language Specification 

92 Copyright © Microsoft Corporation 2005. All rights reserved. 

ClassModifier  ::=  TypeModifier  |  MustInherit  |  NotInheritable  |  Partial 

7.5.1 Class Base Specification 

A class declaration may include a base type specification that defines the direct base type of the class. If a class 
declaration has no explicit base type, the direct base type is implicitly Object. For example: 

Class Base 

End Class 

 

Class Derived 

    Inherits Base 

End Class 

Base types cannot be a type parameter on its own, although it may involve the type parameters that are in scope. 

Class C1(Of V)  

End Class 

 

Class C2(Of V) 

    Inherits V    ' Error, type parameter used as base class  

End Class 

 

Class C3(Of V) 

    Inherits C1(Of V)    ' OK: not directly inheriting from V. 

End Class 

Classes may only derive from Object and classes. It is invalid for a class to derive from System.ValueType, 
System.Enum, System.Array, System.MulticastDelegate or System.Delegate. A generic class 
cannot derive from System.Attribute or from a class that derives from it. 

Every class has exactly one direct base class, and circularity in derivation is prohibited. It is not possible to 
derive from a NotInheritable class, and the accessibility domain of the base class must be the same as or a 
superset of the accessibility domain of the class itself. 

ClassBase  ::=  Inherits  NonArrayTypeName  StatementTerminator 

7.5.2 Class Members 

The members of a class consist of the members introduced by its class member declarations and the members 
inherited from its direct base class. 

A class member declaration may have Public, Protected, Friend, Protected Friend, or Private 
access. When a class member declaration does not include an access modifier, the declaration defaults to 
Public access, unless it is a variable declaration; in that case it defaults to Private access. 

The scope of a class member is the class body in which the declaration occurs. If the member has Friend 
access, its scope extends to the class body of any derived class in the same program, and if the member has 
Public, Protected, or Protected Friend access, its scope extends to the class body of any derived class in 
any program. 

ClassMemberDeclaration  ::= 
 NonModuleDeclaration  | 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 93 

 EventMemberDeclaration  | 
 VariableMemberDeclaration  | 
 ConstantMemberDeclaration  | 
 MethodMemberDeclaration  | 
 PropertyMemberDeclaration  | 
 ConstructorMemberDeclaration  | 
 OperatorDeclaration 

7.6 Structures 
Structures are value types that inherit from System.ValueType. Structures are similar to classes in that they 
represent data structures that can contain data members and function members. Unlike classes, however, 
structures do not require heap allocation.  

In the case of classes, it is possible for two variables to reference the same object, and thus possible for 
operations on one variable to affect the object referenced by the other variable. With structures, the variables 
each have their own copy of the data, so it is not possible for operations on one to affect the other, as the 
following example illustrates:  

Structure Point 

    Public x, y As Integer 

 

    Public Sub New(ByVal x As Integer, ByVal y As Integer) 

        Me.x = x 

        Me.y = y 

    End Sub 

End Structure  

Given the above declaration the following code fragment outputs the value 10: 

Point a = new Point(10, 10) 

Point b = a 

 

a.x = 100 

System.Console.WriteLine(b.x) 

The assignment of a to b creates a copy of the value, and b is thus unaffected by the assignment to a.x. Had 
Point instead been declared as a class, the output would be 100 because a and b would reference the same 
object.  

StructureDeclaration  ::= 
 [  Attributes  ]  [  StructureModifier+  ]  Structure  Identifier  [  TypeParameterList  ] 
  StatementTerminator 
 [  TypeImplementsClause+  ] 
 [  StructMemberDeclaration+  ] 
 End  Structure  StatementTerminator 

StructureModifier  ::=  TypeModifier  |  Partial 

7.6.1 Structure Members 

The members of a structure are the members introduced by its structure member declarations and the members 
inherited from System.ValueType. Structures must contain at least one instance variable. 



Visual Basic Language Specification 

94 Copyright © Microsoft Corporation 2005. All rights reserved. 

Every structure implicitly has a Public parameterless instance constructor that produces the default value of 
the structure. As a result, it is not possible for a structure type declaration to declare a parameterless instance 
constructor. A structure type is, however, permitted to declare parameterized instance constructors, as in the 
following example: 

Structure Point 

    Private x, y As Integer 

 

    Public Sub New(ByVal x As Integer, ByVal y As Integer) 

        Me.x = x 

        Me.y = y 

    End Sub 

End Structure  

Given the above declaration, the following statements both create a Point with x and y initialized to zero. 

Dim p1 As Point = New Point() 

Dim p2 As Point = New Point(0, 0) 

Normally, a structure member declaration may only have Public, Friend, or Private access, but when 
overriding members inherited from Object, Protected and Protected Friend access may also be used. 
When a structure member declaration does not include an access modifier, the declaration defaults to Public 
access. The scope of a member declared by a structure is the structure body in which the declaration occurs. 

StructMemberDeclaration  ::= 
 NonModuleDeclaration  | 
 VariableMemberDeclaration  | 
 ConstantMemberDeclaration  | 
 EventMemberDeclaration  | 
 MethodMemberDeclaration  | 
 PropertyMemberDeclaration  | 
 ConstructorMemberDeclaration  | 
 OperatorDeclaration 

7.7 Standard Modules 
A standard module is a type whose members are implicitly Shared and scoped to the declaration space of the 
standard module's containing namespace, rather than just to the standard module declaration itself. Standard 
modules may never be instantiated. It is an error to declare a variable of a standard module type. 

A member of a standard module has two fully qualified names, one without the standard module name and one 
with the standard module name. More than one standard module in a namespace may define a member with a 
particular name; unqualified references to the name outside of either module are ambiguous. For example: 

Namespace N1 

    Module M1 

        Sub S1() 

        End Sub 

 

        Sub S2() 

        End Sub 

    End Module 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 95 

 

    Module M2 

        Sub S2() 

        End Sub 

    End Module 

 

    Module M3 

        Sub Main() 

            S1() ' Valid: Calls N1.M1.S1. 

            N1.S1() ' Valid: Calls N1.M1.S1. 

            S2() ' Not valid: ambiguous. 

            N1.S2() ' Not valid: ambiguous. 

            N1.M2.S2() ' Valid: Calls N1.M2.S2. 

        End Sub 

    End Module 

End Namespace 

A module may only be declared in a namespace and may not be nested in another type. Standard modules may 
not implement interfaces, they implicitly derive from Object, and they have only Shared constructors. 

ModuleDeclaration  ::= 
 [  Attributes  ]  [  TypeModifier+  ]  Module  Identifier  StatementTerminator 
 [  ModuleMemberDeclaration+  ] 
 End  Module  StatementTerminator 

7.7.1 Standard Module Members 

The members of a standard module are the members introduced by its member declarations and the members 
inherited from Object. Standard modules may have any type of member except instance constructors. All 
standard module type members are implicitly Shared. 

Normally, a standard module member declaration may only have Public, Friend, or Private access, but 
when overriding members inherited from Object, the Protected and Protected Friend access modifiers 
may be specified. When a standard module member declaration does not include an access modifier, the 
declaration defaults to Public access, unless it is a variable, which defaults to Private access. 

As previously noted, the scope of a standard module member is the declaration containing the standard module 
declaration. Members inherited from Object are not included in this special scoping; those members have no 
scope and must always be qualified with the name of the module. If the member has Friend access, its scope 
extends only to namespace members declared in the same program. 

ModuleMemberDeclaration  ::= 
 NonModuleDeclaration  | 
 VariableMemberDeclaration  | 
 ConstantMemberDeclaration  | 
 EventMemberDeclaration  | 
 MethodMemberDeclaration  | 
 PropertyMemberDeclaration  | 
 ConstructorMemberDeclaration 



Visual Basic Language Specification 

96 Copyright © Microsoft Corporation 2005. All rights reserved. 

7.8 Interfaces 
Interfaces are reference types that other types implement to guarantee that they support certain methods. An 
interface is never directly created and has no actual representation — other types must be converted to an 
interface type. An interface defines a contract. A class or structure that implements an interface must adhere to 
its contract. 

The following example shows an interface that contains a default property Item, an event E, a method F, and a 
property P: 

Interface IExample 

    Default Property Item(ByVal index As Integer) As String 

    Event E() 

    Sub F(ByVal value As Integer) 

    Property P() As String 

End Interface  

Interfaces may employ multiple inheritance. In the following example, the interface IComboBox inherits from 
both ITextBox and IListBox: 

Interface IControl 

    Sub Paint() 

End Interface  

 

Interface ITextBox 

    Inherits IControl 

    Sub SetText(ByVal Text As String) 

End Interface  

 

Interface IListBox 

    Inherits IControl 

    Sub SetItems(ByVal items() As String) 

End Interface  

 

Interface IComboBox 

    Inherits ITextBox, IListBox  

End Interface  

Classes and structures can implement multiple interfaces. In the following example, the class EditBox derives 
from the class Control and implements both IControl and IDataBound: 

Interface IDataBound 

    Sub Bind(ByVal b As Binder) 

End Interface  

 

Public Class EditBox 

    Inherits Control 

    Implements IControl, IDataBound 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 97 

 

    Public Sub Paint() Implements IControl.Paint 

        ' ... 

    End Sub 

 

    Public Sub Bind(ByVal b As Binder) Implements IDataBound.Bind 

    End Sub 

End Class 

InterfaceDeclaration  ::= 
 [  Attributes  ]  [  TypeModifier+  ]  Interface  Identifier  [  TypeParameterList  ]  StatementTerminator 
 [  InterfaceBase+  ] 
 [  InterfaceMemberDeclaration+  ] 
 End  Interface  StatementTerminator 

7.8.1 Interface Inheritance 

The base interfaces of an interface are the explicit base interfaces and their base interfaces. In other words, the 
set of base interfaces is the complete transitive closure of the explicit base interfaces, their explicit base 
interfaces, and so on. If an interface declaration has no explicit interface base, then there is no base interface for 
the type – interfaces do not inherit from Object (although they do have a widening conversion to Object). In 
the following example, the base interfaces of IComboBox are IControl, ITextBox, and IListBox. 

Interface IControl 

    Sub Paint() 

End Interface  

 

Interface ITextBox 

    Inherits IControl 

    Sub SetText(ByVal Text As String) 

End Interface  

 

Interface IListBox 

    Inherits IControl 

    Sub SetItems(ByVal items() As String) 

End Interface  

 

Interface IComboBox 

    Inherits ITextBox, IListBox  

End Interface  

An interface inherits all members of its base interfaces. In other words, the IComboBox interface above inherits 
members SetText and SetItems as well as Paint. 

A class or structure that implements an interface also implicitly implements all of the interface's base interfaces. 

If an interface appears more than once in the transitive closure of the base interfaces, it only contributes its 
members to the derived interface once. A type implementing the derived interface only has to implement the 



Visual Basic Language Specification 

98 Copyright © Microsoft Corporation 2005. All rights reserved. 

methods of the multiply defined base interface once. In the following example, Paint only needs to be 
implemented once, even though the class implements IComboBox and IControl. 

Class ComboBox 

    Implements IControl, IComboBox 

 

    Sub SetText(ByVal Text As String) Implements IComboBox.SetText 

    End Sub 

 

    Sub SetItems(ByVal items() As String) Implements IComboBox.SetItems 

    End Sub 

 

    Sub Print() Implements IComboBox.Paint 

    End Sub 

End Class 

An Inherits clause has no effect on other Inherits clauses. In the following example, IDerived must 
qualify the name of INested with IBase. 

Interface IBase 

    Interface INested 

        Sub Nested() 

    End Interface 

 

    Sub Base() 

End Interface 

 

Interface IDerived 

    Inherits IBase, INested   ' Error: Must specify IBase.INested. 

End Interface 

The accessibility domain of a base interface must be the same as or a superset of the accessibility domain of the 
interface itself. 

InterfaceBase  ::=  Inherits  InterfaceBases  StatementTerminator 

InterfaceBases  ::= 
 NonArrayTypeName  | 
 InterfaceBases  ,  NonArrayTypeName 

7.8.2 Interface Members 

The members of an interface consist of the members introduced by its member declarations and the members 
inherited from its base interfaces. 

Only nested types, methods, properties, and events may be members of an interface. Methods and properties 
may not have a body. Interface members are implicitly Public and may not specify an access modifier. 
Interface members have no scope, and they must always be qualified. 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 99 

InterfaceMemberDeclaration  ::= 
 NonModuleDeclaration  | 
 InterfaceEventMemberDeclaration  | 
 InterfaceMethodMemberDeclaration  | 
 InterfacePropertyMemberDeclaration 

7.9 Arrays 
An array is a reference type that contains variables accessed through indices corresponding in a one-to-one 
fashion with the order of the variables in the array. The variables contained in an array, also called the elements 
of the array, must all be of the same type, and this type is called the element type of the array. The elements of 
an array come into existence when an array instance is created, and cease to exist when the array instance is 
destroyed. Each element of an array is initialized to the default value of its type. The type System.Array is the 
base type of all array types and may not be instantiated. Every array type inherits the members declared by the 
System.Array type and is convertible to it (and Object). A one-dimensional array type with element T also 
implements the interface IList(Of T); if T is a reference type, then the array type also implements IList(Of 
U), where U is a base type of T. 

An array has a rank that determines the number of indices associated with each array element. The rank of an 
array determines the number of dimensions of the array. For example, an array with a rank of one is called a 
single-dimensional array, and an array with a rank greater than one is called a multidimensional array.  

The following example creates a single-dimensional array of integer values, initializes the array elements, and 
then prints each of them out: 

Module Test 

    Sub Main() 

        Dim arr(5) As Integer 

        Dim i As Integer 

 

        For i = 0 To arr.Length - 1 

            arr(i) = i * i 

        Next i 

 

        For i = 0 To arr.Length - 1 

            Console.WriteLine("arr(" & i & ") = " & arr(i)) 

        Next i 

    End Sub 

End Module 

The program outputs the following: 

arr(0) = 0 

arr(1) = 1 

arr(2) = 4 

arr(3) = 9 

arr(4) = 16 

arr(5) = 25 



Visual Basic Language Specification 

100 Copyright © Microsoft Corporation 2005. All rights reserved. 

Each dimension of an array has an associated length. Dimension lengths are not part of the type of the array, but 
rather are established when an instance of the array type is created at run time. The length of a dimension 
determines the valid range of indices for that dimension: for a dimension of length N, indices can range from 
zero to N – 1. If a dimension is of length zero, there are no valid indices for that dimension. The total number 
of elements in an array is the product of the lengths of each dimension in the array. If any of the dimensions of 
an array has a length of zero, the array is said to be empty. The element type of an array can be any type. 

Array types are specified by adding a modifier to an existing type name. The modifier consists of a left 
parenthesis, a set of zero or more commas, and a right parenthesis. The type modified is the element type of the 
array, and the number of dimensions is the number of commas plus one. If more than one modifier is specified, 
then the element type of the array is an array. The modifiers are read left to right, with the leftmost modifier 
being the outermost array. In the example 

Module Test 

    Dim arr As Integer(,)(,,)() 

End Module 

the element type of arr is a two-dimensional array of three-dimensional arrays of one-dimensional arrays of 
Integer. 

A variable may also be declared to be of an array type by putting an array type modifier or an array-size 
initialization modifier on the variable name. In that case, the array element type is the type given in the 
declaration, and the array dimensions are determined by the variable name modifier. For clarity, it is not valid to 
have an array type modifier on both a variable name and a type name in the same declaration. 

The following example shows a variety of local variable declarations that use array types with Integer as the 
element type: 

Module Test 

    Sub Main() 

        Dim a1() As Integer    ' Declares 1-dimensional array of integers. 

        Dim a2(,) As Integer   ' Declares 2-dimensional array of integers. 

        Dim a3(,,) As Integer  ' Declares 3-dimensional array of integers. 

 

        Dim a4 As Integer()    ' Declares 1-dimensional array of integers. 

        Dim a5 As Integer(,)   ' Declares 2-dimensional array of integers. 

        Dim a6 As Integer(,,)  ' Declares 3-dimensional array of integers. 

 

        ' Declare 1-dimensional array of 2-dimensional arrays of integers  

        Dim a7()(,) As Integer 

        ' Declare 2-dimensional array of 1-dimensional arrays of integers. 

        Dim a8(,)() As Integer 

 

        Dim a9() As Integer() ' Not allowed. 

    End Sub 

End Module 

An array type name modifier extends to all sets of parentheses that follow it. This means that in the situations 
where a set of arguments enclosed in parenthesis is allowed after a type name, it is not possible to specify the 
arguments for an array type name. For example: 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 101 

Module Test 

    Sub Main() 

        ' This calls the Integer constructor. 

        Dim x As New Integer(3) 

 

        ' This declares a variable of Integer(). 

        Dim y As Integer() 

 

        ' This gives an error. 

        ' Array sizes can not be specified in a type name. 

        Dim z As Integer()(3) 

    End Sub 

End Module 

In the last case, (3) is interpreted as part of the type name rather than as a set of constructor arguments. 

ArrayTypeName  ::=  NonArrayTypeName  ArrayTypeModifiers 

ArrayTypeModifiers  ::=  ArrayTypeModifier+ 

ArrayTypeModifier  ::=  (  [  RankList  ]  ) 

RankList  ::= 
 ,  | 
 RankList  , 

ArrayNameModifier  ::= 
 ArrayTypeModifiers  | 
 ArraySizeInitializationModifier 

7.10 Delegates 
A delegate is a reference type that refers to a Shared method of a type or to an instance method of an object. 
The closest equivalent of a delegate in other languages is a function pointer, but whereas a function pointer can 
only reference Shared functions, a delegate can reference both Shared and instance methods. In the latter case, 
the delegate stores not only a reference to the method's entry point, but also a reference to the object instance 
with which to invoke the method. 

The method declaration may not have attributes, modifiers, a Handles clause, an Implements clause, a 
method body, or an End construct. The parameter list of the method declaration may not contain Optional or 
ParamArray parameters. The accessibility domain of the return type and parameter types must be the same as 
or a superset of the accessibility domain of the delegate itself. 

The members of a delegate are the members inherited from class System.Delegate. A delegate also defines 
the following methods: 

• A constructor that takes two parameters, one of type Object and one of type System.IntPtr. 

• An Invoke method that has the same signature as the delegate. 

• A BeginInvoke method whose signature is the delegate signature, with three differences. First, the return 
type is changed to System.IAsyncResult. Second, two additional parameters are added to the end of the 
parameter list: the first of type System.AsyncCallback and the second of type Object. And finally, all 
ByRef parameters are changed to be ByVal. 



Visual Basic Language Specification 

102 Copyright © Microsoft Corporation 2005. All rights reserved. 

• An EndInvoke method whose return type is the same as the delegate. The parameters of the method are 
only the delegate parameters exactly that are ByRef parameters, in the same order they occur in the delegate 
signature.  In addition to those parameters, there is an additional parameter of type 
System.IAsyncResult at the end of the parameter list. 

There are three steps in defining and using delegates: declaration, instantiation, and invocation.  

Delegates are declared using delegate declaration syntax. The following example declares a delegate named 
SimpleDelegate that takes no arguments: 

Delegate Sub SimpleDelegate() 

The next example creates a SimpleDelegate instance and then immediately calls it: 

Module Test 

    Sub F() 

        System.Console.WriteLine("Test.F") 

    End Sub  

 

    Sub Main() 

        Dim d As SimpleDelegate = AddressOf F 

        d() 

    End Sub  

End Module  

There is not much point in instantiating a delegate for a method and then immediately calling via the delegate, as 
it would be simpler to call the method directly. Delegates show their usefulness when their anonymity is used. 
The next example shows a MultiCall method that repeatedly calls a SimpleDelegate instance: 

Sub MultiCall(ByVal d As SimpleDelegate, ByVal count As Integer) 

    Dim i As Integer 

 

    For i = 0 To count – 1 

        d() 

    Next i 

End Sub  

It is unimportant to the MultiCall method what the target method for the SimpleDelegate is, what 
accessibility this method has, or whether the method is Shared or nonshared. All that matters is that the 
signature of the target method is compatible with SimpleDelegate. 

DelegateDeclaration  ::= 
 [  Attributes  ]  [  TypeModifier+  ]  Delegate  MethodSignature  StatementTerminator 

MethodSignature  ::=  SubSignature  |  FunctionSignature 

7.11 Partial types 
Class and structure declarations can be partial declarations. A partial declaration may or may not fully describe 
the declared type within the declaration. Instead, the declaration of the type may be spread across multiple 
partial declarations within the program; partial types cannot be declared across program boundaries. A partial 
type declaration specifies the Partial modifier on the declaration. Then, any other declarations in the program 
for a type with the same fully-qualified name will be merged together with the partial declaration at compile-



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 103 

time to form a single type declaration. For example, the following code declares a single class Test with 
members Test.C1 and Test.C2. 

a.vb: 

Public Partial Class Test 

    Public Sub S1() 

    End Sub 

End Class 

 

b.vb: 

Public Class Test 

    Public Sub S2() 

    End Sub 

End Class 

When combining partial type declarations, at least one of the declarations must have a Partial modifier, 
otherwise a compile-time error results. 

Annotation 

Although it is possible to specify Partial on only one declaration among many partial declarations, it is better 
form to specify it on all partial declarations. In the situation where one partial declaration is visible but one or 
more partial declarations are hidden (such as the case of extending tool-generated code), it is acceptable to leave 
the Partial modifier off of the visible declaration but specify it on the hidden declarations. 

Only classes and structures can be declared using partial declarations. The arity of a type is considered when 
matching partial declarations together: two classes with the same name but different numbers of type parameters 
are not considered to be partial declarations of the same time. Partial declarations can specify attributes, class 
modifiers, Inherits statement or Implements statement. At compile time, all of the pieces of the partial 
declarations are combined together and used as a part of the type declaration. If there are any conflicts between 
attributes, modifiers, bases, interfaces, or type members, a compile-time error results. For example: 

Public Partial Class Test1 

    Implements IDisposable 

End Class 

Class Test1 

    Inherits Object 

    Implements IComparable 

End Class 

Public Partial Class Test2 

End Class 

Private Partial Class Test2 

End Class 

The previous example declares a type Test1 that is Public, inherits from Object and implements 
System.IDisposable and System.IComparable. The partial declarations of Test2 will cause a compile-
time error because one of the declarations says that Test2 is Public and another says that Test2 is Private. 



Visual Basic Language Specification 

104 Copyright © Microsoft Corporation 2005. All rights reserved. 

Partial types with type parameters can declare constraints on the type parameters, but the constraints from each 
partial declaration must match. Thus, constraints are special in that they are not automatically combined like 
other modifiers: 

Partial Public Class List(Of T As IEnumerable) 

End Class 

 

' Error: Constraints on T don't match 

Class List(Of T As INullable) 

End Class 

The fact that a type is declared using multiple partial declarations does not affect the name lookup rules within 
the type. As a result, a partial type declaration can use members declared in other partial type declarations, or 
may implement methods on interfaces declared in other partial type declarations. For example: 

Public Partial Class Test1 

    Implements IDisposable 

    Private IsDisposed As Boolean = False 

End Class 

Class Test1 

    Private Sub Dispose() Implements IDisposable.Dispose 

        If Not IsDisposed Then 

            ... 

        End If 

    End Sub 

End Class 

Nested types can have partial declarations but their containing type, by definition, must be partial as well. For 
example: 

Public Partial Class Test 

    Public Partial Class NestedTest 

        Public Sub S1() 

        End Sub 

    End Class 

End Class 

Public Partial Class Test 

    Public Partial Class NestedTest 

        Public Sub S2() 

        End Sub 

    End Class 

End Class 

Initializers within a partial declaration will still be executed in declaration order; however, there is no 
guaranteed order of execution for initializers that occur in separate partial declarations. 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 105 

7.12 Constructed Types 
A generic type declaration, by itself, does not denote a type. Instead, a generic type declaration can be used as a 
“blueprint” to form many different types by applying type arguments. A generic type that has type arguments 
applied to it is called a constructed type. The type arguments in a constructed type must always satisfy the 
constraints placed on the type parameters they match to. 

A type name might identify a constructed type even though it doesn’t specify type parameters directly. This can 
occur where a type is nested within a generic class declaration, and the instance type of the containing 
declaration is implicitly used for name lookup: 

Class Outer(Of T)  

    Public Class Inner  

    End Class 

 

    ' Type of i is the constructed type Outer(Of T).Inner 

    Public i As Inner  

End Class 

A constructed type C(Of T1,…,Tn) is accessible when the generic type and all the type arguments are 
accessible. For instance, if the generic type C is Public and all of the type arguments T1,…,Tn are Public, 
then the constructed type is Public. If either the type name or one of the type arguments is Private, however, 
then the accessibility of the constructed type is Private. If one type argument of the constructed type is 
Protected and another type argument is Friend, then the constructed type is accessible only in the class and 
its subclasses in this assembly. In other words, the accessibility domain for a constructed type is the intersection 
of the accessibility domains of its constituent parts. 

Annotation 

The fact that the accessibility domain of constructed type is the intersection of its constituted parts has the 
interesting side effect of defining a new accessibility level. A constructed type that contains an element that is 
Protected and an element that is Friend can only be accessed in contexts that can access both Friend and 
Protected members. However, there is no way to express this accessibility level in the language, as the 
accessibility Protected Friend means that an entity can be accessed in a context that can access either 
Friend or Protected members. 

The base, implemented interfaces and members of constructed types are determined by substituting the supplied 
type arguments for each occurrence of the type parameter in the generic type. 

ConstructedTypeName  ::= 
 QualifiedIdentifier  (  Of  TypeArgumentList  ) 

TypeArgumentList  ::= 
 TypeName  | 
 TypeArgumentList  ,  TypeName 

7.12.1 Open Types and Closed Types 

A constructed type for who one or more type arguments are type parameters of a containing type or method is 
called an open type. This is because some of the type parameters of the type are still not known, so the actual 
shape of the type is not yet fully known. In contrast, a generic type whose type arguments are all non-type 
parameters is called a closed type. The shape of a closed type is always fully known. For example: 

Class Base(Of T, V) 

End Class 



Visual Basic Language Specification 

106 Copyright © Microsoft Corporation 2005. All rights reserved. 

 

Class Derived(Of V) 

    Inherits Base(Of Integer, V) 

End Class 

 

Class MoreDerived 

    Inherits Derived(Of Double) 

End Class 

The constructed type Base(Of Integer, V) is an open type because although the type parameter T has been 
supplied, the type parameter U has been supplied another type parameter. Thus, the full shape of the type is not 
yet known. The constructed type Derived(Of Double), however, is a closed type because all type parameters 
in the inheritance hierarchy have been supplied. 

Open types are defined as follows: 

• A type parameter is an open type. 

• An array type is an open type if its element type is an open type. 

• A constructed type is an open type if one or more of its type arguments are an open type. 

• A closed type is a type that is not an open type. 

Because the program entry point cannot be in a generic type, all types used at run-time will be closed types. 

7.13 Special Types 
The .NET Framework contains a number of classes that are treated specially by the .NET Framework and by the 
Visual Basic language: 

• The type System.Void, which represents a void type in the .NET Framework, can be directly referenced 
only in GetType expressions. 

• The types System.RuntimeArgumentHandle, System.ArgIterator and System.TypedReference 
all can contain pointers into the stack and so cannot appear on the .NET Framework heap. Therefore, they 
cannot be used as array element types, return types, field types, generic type arguments, ByRef parameter 
types or the type of a value being converted to Object or System.ValueType. 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 107 

8. Conversions 

Conversion is the process of changing a value from one type to another. Conversions may either be widening or 
narrowing. A widening conversion is a conversion from one type to another type that is guaranteed to be able to 
contain it. Widening conversions never fail. A narrowing conversion may fall into one of two categories. One 
category is a conversion from one type to another type that is not guaranteed to be able to contain it. The other 
category is a conversion between types that are sufficiently unrelated as to have no obvious conversion. 
Narrowing conversions, which entail loss of information, may fail. 

The identity conversion (i.e. a conversion from a type to itself) is defined for all types. 

8.1 Implicit and Explicit Conversions 
Conversions can be either implicit or explicit. Implicit conversions occur without any special syntax. The 
following is an example of implicit conversion of an Integer value to a Long value: 

Module Test 

    Sub Main() 

        Dim intValue As Integer = 123 

        Dim longValue As Long = intValue 

 

        Console.WriteLine(intValue & " = " & longValue) 

    End Sub 

End Module  

Explicit conversions, on the other hand, require cast operators. Attempting to do an explicit conversion on a 
value without a cast operator causes a compile-time error. The following example uses an explicit conversion to 
convert a Long value to an Integer value.  

Module Test 

    Sub Main() 

        Dim longValue As Long = 134 

        Dim intValue As Integer = CInt(longValue) 

 

        Console.WriteLine(longValue & " = " & intValue) 

    End Sub 

End Module  

The set of implicit conversions depends on the compilation environment and the Option Strict statement. If 
strict semantics are being used, only widening conversions may occur implicitly. If permissive semantics are 
being used, all widening and narrowing conversions may occur implicitly. 

8.2 Boolean Conversions 
Although Boolean is not a numeric type, it does have conversions to and from the numeric types as if it were 
an enumerated type. The literal True converts to the literal 255 for Byte, 65535 for UShort, 4294967295 for 
UInteger, 18446744073709551615 for ULong, and to the expression -1 for SByte, Short, Integer, 



Visual Basic Language Specification 

108 Copyright © Microsoft Corporation 2005. All rights reserved. 

Long, Decimal, Single, and Double. The literal False converts to the literal 0. A zero numeric value 
converts to the literal False. All other numeric values convert to the literal True. 

8.3 Numeric Conversions 
Numeric conversions are conversions between the types Byte, SByte, UShort, Short, UInteger, Integer, 
ULong, Long, Decimal, Single and Double, and enumerated types. Enumerated types are treated as if they 
were their underlying types for the purpose of conversions. When converting from a numeric type to an 
enumerated type, the numeric type is never required to conform to the set of values defined in the enumerated 
type. 

Numeric conversions are processed at run-time as follows: 

• For a conversion from a numeric type to a wider numeric type, the value is simply converted to the wider 
type. Conversions from UInteger, Integer, ULong, Long, or Decimal to Single or Double are 
rounded to the nearest Single or Double value. While this conversion may cause a loss of precision, it will 
never cause a loss of magnitude. 

• For a conversion from an integral type to another integral type, or from Single, Double, or Decimal to an 
integral type, the result depends on whether integer overflow checking is on: 

If integer overflow is being checked: 

• If the source is an integral type, the conversion succeeds if the source argument is within the range of 
the destination type. The conversion throws a System.OverflowException exception if the source 
argument is outside the range of the destination type. 

• If the source is Single, Double, or Decimal, the source value is rounded up or down to the nearest 
integral value, and this integral value becomes the result of the conversion. If the source value is equally 
close to two integral values, the value is rounded to the value that has an even number in the least 
significant digit position. If the resulting integral value is outside the range of the destination type, a 
System.OverflowException exception is thrown. 

If integer overflow is not being checked: 

• If the source is an integral type, the conversion always succeeds and simply consists of discarding the 
most significant bits of the source value. 

• If the source is Single, Double, or Decimal, the conversion always succeeds and simply consists of 
rounding the source value towards the nearest integral value. If the source value is equally close to two 
integral values, the value is always rounded to the value that has an even number in the least significant 
digit position. 

• For a conversion from Double to Single, the Double value is rounded to the nearest Single value. If 
the Double value is too small to represent as a Single, the result becomes positive zero or negative 
zero. If the Double value is too large to represent as a Single, the result becomes positive infinity or 
negative infinity. If the Double value is NaN, the result is also NaN. 

• For a conversion from Single or Double to Decimal, the source value is converted to Decimal 
representation and rounded to the nearest number after the 28th decimal place if required. If the source value 
is too small to represent as a Decimal, the result becomes zero. If the source value is NaN, infinity, or too 
large to represent as a Decimal, a System.OverflowException exception is thrown. 

• For a conversion from Double to Single, the Double value is rounded to the nearest Single value. If the 
Double value is too small to represent as a Single, the result becomes positive zero or negative zero. If the 
Double value is too large to represent as a Single, the result becomes positive infinity or negative infinity. 
If the Double value is NaN, the result is also NaN. 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 109 

8.4 Reference Conversions 
A value typed as a reference type may always be converted to a base type. Conversions from a base type to a 
derived type only succeed at run time if the value being converted is a null reference or a reference type that is 
either the derived type itself or a more derived type. 

Within the .NET Framework, it is possible to know at compile time whether a class type implements a particular 
interface type. Consequently, a class type can always be cast to an interface type that it implements. Similarly, 
conversions from an interface type to a class type that implements it only succeed at run time if the value being 
converted is a null reference or a reference type that is either the class type itself or a type derived from the class 
type. Because an interface type will always contain an instance of a class that derives from Object, an interface 
type can always be cast to Object. 

However, classes that represent COM classes may have interface implementations that are not known until run 
time. Consequently, a class type may also be converted to an interface type that it does not implement, an 
interface type may be converted to a class type that does not implement it, and an interface type may be 
converted to another interface type with which it has no inheritance relationship. In all these cases, a check is 
performed at run time by the .NET Framework to determine if the class type involved implements the required 
interface types.  

If a reference conversion fails at run time, a System.InvalidCastException exception is thrown. 

8.5 Array Conversions 
Besides the conversions that are defined on arrays by virtue of the fact that they are reference types, several 
special conversions exist for arrays. 

For any two reference types A and B, if A is a derived type of B or implements B, a conversion exists from an 
array of type A to a compatible array of type B. A compatible array is an array of the same rank and type. This 
relationship is known as array covariance. Array covariance in particular means that an element of an array 
whose element type is B may actually be an element of an array whose element type is A, provided that both A 
and B are reference types and that B is a base type of A or is implemented by A. In the following example, the 
second invocation of F causes a System.ArrayTypeMismatchException exception to be thrown because 
the actual element type of b is String, not Object: 

Module Test 

    Sub F(ByRef x As Object) 

    End Sub 

 

    Sub Main() 

        Dim a(10) As Object 

        Dim b() As Object = New String(10) {} 

        F(a(0)) ' OK. 

        F(b(1)) ' Not allowed: System.ArrayTypeMismatchException. 

   End Sub 

End Module 

Because of array covariance, assignments to elements of reference type arrays include a run-time check that 
ensures that the value being assigned to the array element is actually of a permitted type.  

Module Test 

    Sub Fill(array() As Object, index As Integer, count As Integer, _ 

            value As Object) 



Visual Basic Language Specification 

110 Copyright © Microsoft Corporation 2005. All rights reserved. 

        Dim i As Integer 

 

        For i = index To (index + count) – 1 

            array(i) = value 

        Next i 

    End Sub 

 

    Sub Main() 

        Dim strings(100) As String 

 

        Fill(strings, 0, 101, "Undefined") 

        Fill(strings, 0, 10, Nothing) 

        Fill(strings, 91, 10, 0) 

    End Sub 

End Module 

In this example, the assignment to array(i) in method Fill implicitly includes a run-time check that ensures 
that the object referenced by the variable value is either Nothing or an instance of a type that is compatible 
with the actual element type of array array. In method Main, the first two invocations of method Fill 
succeed, but the third invocation causes a System.ArrayTypeMismatchException exception to be thrown 
upon executing the first assignment to array(i). The exception occurs because an Integer cannot be stored 
in a String array. 

Conversions also exist between an array of an enumerated type and an array of the enumerated type’s 
underlying type of the same rank. 

Enum Color As Byte 

    Red 

    Green 

    Blue 

End Enum 

 

Module Test 

    Sub Main() 

        Dim a(10) As Color 

        Dim b() As Integer 

        Dim c() As Byte 

 

        b = a    ' Error: Integer is not the underlying type of Color 

        c = a    ' OK 

        a = c    ' OK 

    End Sub 

End Module 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 111 

In this example, an array of Color is converted to and from an array of Byte, Color’s underlying type. The 
conversion to an array of Integer, however, will be an error because Integer is not the underlying type of 
Color. 

8.6 Value Type Conversions 
A value type value can be converted to one of its base reference types or an interface type that it implements 
through a process called boxing. When a value type value is boxed, the value is copied from the location where 
it lives onto the .NET Framework heap. A reference to this location on the heap is then returned and can be 
stored in a reference type variable. This reference is also referred to as a boxed instance of the value type. The 
boxed instance has the same semantics as a reference type instead of a value type. 

Boxed value types can be converted back to their original value type through a process called unboxing. When a 
boxed value type is unboxed, the value is copied from the heap into a variable location. From that point on, it 
behaves as if it was a value type. When unboxing a value type, the value must be a null reference or an instance 
of the value type. Otherwise a System.InvalidCastException exception is thrown. A null reference is 
treated as if it were the literal Nothing. 

Because boxed value types behave like reference types, it is possible to create multiple references to the same 
value. For the primitive types and enumerated types, this is irrelevant because instances of those types are 
immutable. That is, it is not possible to modify a boxed instance of those types, so it is not possible to observe 
the fact that there are multiple references to the same value. 

Structures, on the other hand, may be mutable if its instance variables are accessible or if its methods or 
properties modify its instance variables. If one reference to a boxed structure is used to modify the structure, 
then all references to the boxed structure will see the change. Because this result may be unexpected, when a 
value typed as Object is copied from one location to another boxed value types will automatically be cloned on 
the heap instead of merely having their references copied. For example: 

Class Class1 

    Public Value As Integer = 0 

End Class 

 

Structure Struct1 

    Public Value As Integer 

End Structure 

 

Module Test 

    Sub Main() 

        Dim val1 As Object = New Struct1() 

        Dim val2 As Object = val1 

 

        val2.Value = 123 

 

        Dim ref1 As Object = New Class1() 

        Dim ref2 As Object = ref1 

 

        ref2.Value = 123 



Visual Basic Language Specification 

112 Copyright © Microsoft Corporation 2005. All rights reserved. 

 

        Console.WriteLine("Values: " & val1.Value & ", " & val2.Value) 

        Console.WriteLine("Refs: " & ref1.Value & ", " & ref2.Value) 

    End Sub 

End Module 

The output of the program is: 

Values: 0, 123 

Refs: 123, 123 

The assignment to the field of the local variable val2 does not impact the field of the local variable val1 
because when the boxed Struct1 was assigned to val2, a copy of the value was made. In contrast, the 
assignment ref2.Value = 123 affects the object that both ref1 and ref2 references. 

Annotation 

Structure copying is not done for boxed structures typed as System.ValueType because it is not possible to 
late bind off of System.ValueType. 

There is one exception to the rule that boxed value types will be copied on assignment. If a boxed value type 
reference is stored within another boxed value type, the inner reference will not be copied. For example: 

Structure Struct1 

    Public Value As Object 

End Structure 

 

Module Test 

    Sub Main() 

        Dim val1 As Object 

        Dim val2 As Object 

 

        val1 = New Struct1() 

        val1.Value = New Struct1() 

        val1.Value.Value = 10 

 

        val2 = val1 

        val2.Value.Value = 123 

        Console.WriteLine("Values: " & val1.Value.Value & ", " & _ 

            val2.Value.Value) 

    End Sub 

End Module 

The output of the program is: 

Values: 123, 123 

This is because the inner boxed value is not copied when the outer boxed value is copied. Thus, both 
val1.Value and val2.Value have a reference to the same boxed value type. 

Annotation 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 113 

The fact that inner boxed value types are not copied is a limitation of the .NET type system – to ensure that all 
inner boxed value types were copied whenever a value of type Object was copied would be prohibitively 
expensive. 

As previously described, boxed value types can only be unboxed to their original type. Boxed primitive types, 
however, are treated specially when typed as Object. They can be converted to any other primitive type that 
they have a conversion to. For example: 

Module Test 

    Sub Main() 

        Dim o As Object = 5 

        Dim b As Byte = CByte(o)  ' Legal 

        Console.WriteLine(b) ' Prints 5 

    End Sub 

End Module 

Normally, the boxed Integer value 5 could not be unboxed into a Byte variable. However, because Integer 
and Byte are primitive types and have a conversion, the conversion is legal. 

It is important to note that converting a value type to an interface is different than a generic argument 
constrained to an interface. When accessing interface members on a constrained type parameter (or calling 
methods on Object), boxing does not occur as it does when a value type is converted to an interface and an 
interface member is accessed. For example, suppose an interface ICounter contains a method Increment 
which can be used to modify a value. If ICounter is used as a constraint, the implementation of the 
Increment method is called with a reference to the variable that Increment was called on, not a boxed copy: 

Interface ICounter 

   Sub Increment() 

End Interface 

 

Structure Counter 

   Implements ICounter 

 

   Public value As Integer 

 

   Sub Increment() Implements ICounter.Increment 

      value += 1 

   End Sub 

End Structure 

 

Module Test 

      Sub Test(Of T As ICounter)(ByVal x As T) 

         Console.WriteLine(x.value) 

         x.Increment()                     ' Modify x 

         Console.WriteLine(x.value) 

         CType(x, ICounter).Increment()    ' Modify boxed copy of x 

         Console.WriteLine(x.value) 



Visual Basic Language Specification 

114 Copyright © Microsoft Corporation 2005. All rights reserved. 

      End Sub 

 

      Sub Main() 

         Dim x As Counter 

         Test(x) 

      End Sub 

End Module 

The first call to Increment modifies the value in the variable x. This is not equivalent to the second call to 
Increment, which modifies the value in a boxed copy of x. Thus, the output of the program is: 

0 

1 

1 

8.7 String Conversions 
Converting Char into String results in a string whose first character is the character value. Converting 
String into Char results in a character whose value is the first character of the string. Converting an array of 
Char into String results in a string whose characters are the elements of the array. Converting String into an 
array of Char results in an array of characters whose elements are the characters of the string. 

The exact conversions between String and Boolean, Byte, SByte, UShort, Short, UInteger, Integer, 
ULong, Long, Decimal, Single, Double, Date, and vice versa, are beyond the scope of this specification and 
are implementation dependent with the exception of one detail. String conversions always consider the current 
culture of the run-time environment. As such, they must be performed at run time. 

8.8 Widening Conversions 
Widening conversions never overflow but may entail a loss of precision. The following conversions are 
widening conversions:  

• Conversions from any type to itself. 

• Conversions from any derived type to one of its base types. 

• Conversions from Byte to UShort, Short, UInteger, Integer, ULong, Long, Decimal, Single, or 
Double. 

• Conversions from SByte to Short, Integer, Long, Decimal, Single, or Double. 

• Conversions from UShort to UInteger, Integer, ULong, Long, Decimal, Single, or Double. 

• Conversions from Short to Integer, Long, Decimal, Single or Double. 

• Conversions from UInteger to ULong, Long, Decimal, Single, or Double. 

• Conversions from Integer to Long, Decimal, Single or Double. 

• Conversions from ULong to Decimal, Single, or Double. 

• Conversions from Long to Decimal, Single or Double. 

• Conversions from Decimal to Single or Double. 

• Conversions from Single to Double. 

• Conversions from the literal Nothing to any type. 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 115 

• Conversions from the literal 0 to any enumerated type. 

• Conversions from any enumerated type to its underlying type, or to any type that its underlying type has a 
widening conversion to. 

• Conversions from any reference or value type to an interface type that the value or reference type 
implements. 

• Conversions from any interface type to Object. 

• Conversions from an array type S with an element type SE to a covariant-array type T with an element type 
TE, provided all of the following are true: 

• S and T differ only in element type. 

• Both SE and TE are reference types. 

• A widening reference conversion exists from SE to TE. 

• Conversions from an array type S with an enumerated element type SE to an array type T with an element 
type TE, provided all of the following are true: 

• S and T differ only in element type. 

• TE is the underlying type of SE. 

• Conversions from Char to String. 

• Conversions from Char() to String. 

• Conversions from a constant expression of type ULong, Long, UInteger, Integer, UShort, Short, 
Byte, or SByte to a narrower type, provided the value of the constant expression is within the range of the 
destination type. 

Note Conversions from UInteger or Integer to Single, ULong or Long to Single or Double, or 
Decimal to Single or Double may cause a loss of precision, but will never cause a loss of magnitude. 
The other widening numeric conversions never lose any information. 

8.9 Narrowing Conversions 
Narrowing conversions are conversions that cannot be proved to always succeed, conversions that are known to 
possibly lose information, and conversions across domains of types sufficiently different to merit narrowing 
notation. The following conversions are classified as narrowing conversions: 

• Conversions from any type to a more derived type. 

• Conversions from Byte to SByte. 

• Conversions from SByte to Byte, UShort, UInteger, or ULong. 

• Conversions from UShort to Byte, SByte, or Short. 

• Conversions from Short to Byte, SByte, UShort, UInteger, or ULong. 

• Conversions from UInteger to Byte, SByte, UShort, Short, or Integer. 

• Conversions from Integer to Byte, SByte, UShort, Short, UInteger, or ULong. 

• Conversions from ULong to Byte, SByte, UShort, Short, UInteger, Integer, or Long. 

• Conversions from Long to Byte, SByte, UShort, Short, UInteger, Integer, or ULong. 



Visual Basic Language Specification 

116 Copyright © Microsoft Corporation 2005. All rights reserved. 

• Conversions from Decimal to Byte, SByte, UShort, Short, UInteger, Integer, ULong, or Long. 

• Conversions from Single to Byte, SByte, UShort, Short, UInteger, Integer, ULong, Long, or 
Decimal. 

• Conversions from Double to Byte, SByte, UShort, Short, UInteger, Integer, ULong, Long, 
Decimal, or Single. 

• Conversions from Boolean to any numeric type. 

• Conversions from any numeric type to Boolean. 

• Conversions from any numeric type to any enumerated type. 

• Conversions from any enumerated type to any type its underlying type has a narrowing conversion to. 

• Conversions from any enumerated type to any other enumerated type.  

• Conversions from any class type to any interface type, provided the class type does not implement the 
interface type. 

• Conversions from any interface type to any class type.  

• Conversions from any interface type to any value type that implements the interface type. 

• Conversions from any interface type to any other interface type, provided there is no inheritance relationship 
between the two types. 

• Conversions from an array type S with an element type SE, to a covariant-array type T with an element type 
TE, provided that all of the following are true: 

• S and T differ only in element type. 

• Both SE and TE are reference types. 

• A narrowing reference conversion exists from SE to TE. 

• Conversions from an array type S with an element type SE to an array type T with an enumerated element 
type TE, provided all of the following are true: 

• S and T differ only in element type. 

• SE is the underlying type of TE. 

• Conversions from String to Char. 

• Conversions from String to Char(). 

• Conversions from String to Boolean and from Boolean to String. 

• Conversions between String and Byte, SByte, UShort, Short, UInteger, Integer, ULong, Long, 
Decimal, Single, or Double. 

• Conversions from String to Date and from Date to String. 

8.10 Type Parameter Conversions 
For the purposes of determining permitted conversions, type parameters without a class constraint are 
considered to be a type derived from Object. This means that a type parameter T can be converted to and from 
Object and to and from any interface type. Note that if the type T is a value type at run-time, converting from T 
to Object or an interface type will be a boxing conversion and converting from Object or an interface type to 
T will be an unboxing conversion. 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 117 

A type parameter with an interface constraint does not define any additional conversions, but it does make 
conversions from the type parameter to the interface constraint into a widening conversion. A type parameter 
with a class constraint C defines additional conversions from the type parameter to C and its base classes, and 
vice versa. It also makes conversions from the type parameter to any interfaces C implements into widening 
conversions. 

An array whose element type is a type parameter with an interface constraint I has the same covariant array 
conversions as an array whose element type is I. An array whose element type is a type parameter with a class 
constraint C has the same covariant array conversions as an array whose element type is C. 

The above conversions rules do not permit conversions from unconstrained type parameters to non-interface 
types, which may be surprising. The reason for this is to prevent confusion about the semantics of such 
conversions. For example, consider the following declaration: 

Class X(Of T) 

    Public Shared Function F(ByVal t As T) As Long  

        Return CLng(t)    ' Error, explicit conversion not permitted 

    End Function 

End Class 

If the conversion of T to Integer were permitted, one might easily expect that X(Of Integer).F(7) would 
return 7L. However, it would not, because the predefined numeric conversions are only considered when the 
types are known to be numeric at compile time. In order to make the semantics clear, the above example must 
instead be written: 

Class X(Of T) 

    Public Shared Function F(ByVal t As T) As Long 

        Return CLng(CObj(t))    ' OK, conversions permitted 

    End Function 

End Class 

8.11 User-defined conversions 
User-defined conversions are defined by overloading the CType operator. When converting between types, if no 
predefined conversions are applicable then user-defined conversions will be considered. If there is a user-
defined conversion that is most specific for the source and target types, then the user-defined conversion will be 
used. Otherwise, a compile-time error results. The most specific conversion is the one whose operand is 
“closest” to the source type and whose result type is “closest” to the target type. When determining what user-
defined conversion to use, the most specific widening conversion will be used; if no widening conversion is 
most specific, the most specific narrowing conversion will be used. If there is no most specific narrowing 
conversion, then the conversion is undefined and a compile-time error occurs. 

The following sections cover how the most specific conversions are determined. They use the following terms: 

• If a predefined widening conversion exists from a type A to a type B, and if neither A nor B are interfaces, 
then A is encompassed by B, and B encompasses A. 

• The most encompassing type in a set of types is the one type that encompasses all other types in the set. If 
no single type encompasses all other types, then the set has no most encompassing type. In intuitive terms, 
the most encompassing type is the “largest” type in the set—the one type to which each of the other types 
can be converted through a widening conversion. 

• The most encompassed type in a set of types is the one type that is encompassed by all other types in the set. 
If no single type is encompassed by all other types, then the set has no most encompassed type. In intuitive 



Visual Basic Language Specification 

118 Copyright © Microsoft Corporation 2005. All rights reserved. 

terms, the most encompassed type is the “smallest” type in the set—the one type that can be converted to 
each of the other types through a narrowing conversion. 

At run-time, evaluating a user-defined conversion can involve up to three steps: 

• First, the value is converted from the source type to the operand type using a predefined conversion, if 
necessary. 

• Then, the user-defined conversion is invoked. 

• Finally, the result of the user-defined conversion is converted to the target type using a predefined 
conversion, if necessary. 

It is important to note that evaluation of a user-defined conversion will never involve more than one user-
defined conversion operator. 

8.11.1 Most specific widening conversion 

Determining the most specific user-defined widening conversion operator between two types is accomplished 
using the following steps: 

• First, all of the candidate conversion operators are collected. The candidate conversion operators are all of 
the user-defined widening conversion operators in the source type and all of the user-defined widening 
conversion operators in the target type.  

• Then, all non-applicable conversion operators are removed from the set. A conversion operator is applicable 
to a source type and target type if there is a predefined widening conversion operator from the source type to 
the operand type and there is a predefined widening conversion operator from the result of the operator to 
the target type. If there are no applicable conversion operators, then there is no most specific widening 
conversion. 

• Then, the most specific source type of the applicable conversion operators is determined: 

• If any of the conversion operators convert directly from the source type, then the source type is the most 
specific source type. 

• Otherwise, the most specific source type is the most encompassed type in the combined set of source 
types of the conversion operators. If no most encompassed type can be found, then there is no most 
specific widening conversion. 

• Then, the most specific target type of the applicable conversion operators is determined: 

• If any of the conversion operators convert directly to the target type, then the target type is the most 
specific target type. 

• Otherwise, the most specific target type is the most encompassing type in the combined set of target 
types of the conversion operators. If no most encompassing type can be found, then there is no most 
specific widening conversion. 

• Then, if exactly one conversion operator converts from the most specific source type to the most specific 
target type, then this is the most specific conversion operator. If more than one such operator exists, then 
there is no most specific widening conversion. 

8.11.2 Most specific narrowing conversion 

Determining the most specific user-defined narrowing conversion operator between two types is accomplished 
using the following steps: 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 119 

• First, all of the candidate conversion operators are collected. The candidate conversion operators are all of 
the user-defined conversion operators in the source type and all of the user-defined conversion operators in 
the target type.  

• Then, all non-applicable conversion operators are removed from the set. A conversion operator is applicable 
to a source type and target type if there is a predefined conversion operator from the source type to the 
operand type and there is a predefined conversion operator from the result of the operator to the target type. 
If there are no applicable conversion operators, then there is no most specific narrowing conversion. 

• Then, the most specific source type of the applicable conversion operators is determined: 

• If any of the conversion operators convert directly from the source type, then the source type is the most 
specific source type. 

• Otherwise, if any of the conversion operators convert from types that encompass the source type, then 
the most specific source type is the most encompassed type in the combined set of source types of those 
conversion operators. If no most encompassed type can be found, then there is no most specific 
narrowing conversion. 

• Otherwise, the most specific source type is the most encompassing type in the combined set of source 
types of the conversion operators. If no most encompassing type can be found, then there is no most 
specific narrowing conversion. 

• Then, the most specific target type of the applicable conversion operators is determined: 

• If any of the conversion operators convert directly to the target type, then the target type is the most 
specific target type. 

• Otherwise, if any of the conversion operators convert to types that are encompassed by the target type, 
then the most specific target type is the most encompassing type in the combined set of source types of 
those conversion operators. If no most encompassing type can be found, then there is no most specific 
narrowing conversion. 

• Otherwise, the most specific target type is the most encompassed type in the combined set of target 
types of the conversion operators. If no most encompassed type can be found, then there is no most 
specific narrowing conversion. 

• Then, if exactly one conversion operator converts from the most specific source type to the most specific 
target type, then this is the most specific conversion operator. If more than one such operator exists, then 
there is no most specific narrowing conversion. 





 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 121 

9. Type Members 

Type members define storage locations and executable code. They can be methods, constructors, events, 
constants, variables, and properties. 

9.1 Interface Method Implementation 
Methods, events, and properties can implement interface members. To implement an interface member, a 
member declaration specifies the Implements keyword and lists one or more interface members. Methods and 
properties that implement interface members are implicitly NotOverridable unless declared to be 
MustOverride, Overridable, or overriding another member. It is an error for a member implementing an 
interface member to be Shared. A member's accessibility has no effect on its ability to implement interface 
members. 

For an interface implementation to be valid, the implements list of the containing type must name an interface 
that contains a compatible member. A compatible member is one whose signature matches the signature of the 
implementing member. If a generic interface is being implemented, then the type argument supplied in the 
Implements clause is substituted into the signature when checking compatibility. For example: 

Interface I1(Of T) 

    Sub F(ByVal x As T) 

End Interface 

 

Class C1 

    Implements I1(Of Integer) 

 

    Sub F(ByVal x As Integer) Implements I1(Of Integer).F 

    End Sub 

End Class 

 

Class C2(Of U) 

    Implements I1(Of U) 

 

    Sub F(ByVal x As U) Implements I1(Of U).F 

    End Sub 

End Class 

If an event declared using a delegate type is implementing an interface event, then a compatible event is one 
whose underlying delegate type is the same type. Otherwise, the event uses the delegate type from the interface 
event it is implementing. If such an event implements multiple interface events, all the interface events must 
have the same underlying delegate type. For example: 

Interface ClickEvents 

    Event LeftClick(ByVal x As Integer, ByVal y As Integer) 

    Event RightClick(ByVal x As Integer, ByVal y As Integer) 



Visual Basic Language Specification 

122 Copyright © Microsoft Corporation 2005. All rights reserved. 

End Interface 

 

Class Button 

    Implements ClickEvents 

 

    ' OK. Signatures match, delegate type = ClickEvents.LeftClickHandler. 

    Event LeftClick(ByVal x As Integer, ByVal y As Integer) _ 

        Implements ClickEvents.LeftClick 

 

    ' OK. Signatures match, delegate type = ClickEvents.RightClickHandler. 

    Event RightClick(ByVal x As Integer, ByVal y As Integer) _ 

        Implements ClickEvents.RightClick 

End Class 

 

Class Label 

    Implements ClickEvents 

 

    ' Error. Signatures match, but can't be both delegate types. 

    Event Click(ByVal x As Integer, ByVal y As Integer) _ 

        Implements ClickEvents.LeftClick, ClickEvents.RightClick 

End Class 

An interface member in the implements list is specified using a type name, a period, and an identifier. The type 
name must be an interface in the implements list or a base interface of an interface in the implements list, and 
the identifier must be a member of the specified interface. A single member can implement more than one 
matching interface member. 

Interface ILeft 

    Sub F() 

End Interface 

 

Interface IRight 

    Sub F() 

End Interface 

 

Class Test 

    Implements ILeft, IRight 

 

    Sub F() Implements ILeft.F, IRight.F 

    End Sub 

End Class 

If the interface member being implemented is unavailable in all explicitly implemented interfaces because of 
multiple interface inheritance, the implementing member must explicitly reference a base interface on which the 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 123 

member is available. For example, if I1 and I2 contain a member M, and I3 inherits from I1 and I2, a type 
implementing I3 will implement I1.M and I2.M. If an interface shadows multiply inherited members, an 
implementing type will have to implement the inherited members and the member(s) shadowing them. 

Interface ILeft 

    Sub F() 

End Interface 

 

Interface IRight 

    Sub F() 

End Interface 

 

Interface ILeftRight 

    Inherits ILeft, IRight 

 

    Shadows Sub F() 

End Interface 

 

Class Test 

    Implements ILeftRight 

 

    Sub LeftF() Implements ILeft.F 

    End Sub 

 

    Sub RightF() Implements IRight.F 

    End Sub 

 

    Sub LeftRightF() Implements ILeftRight.F 

    End Sub 

End Sub 

If the containing interface of the interface member be implemented is generic, the same type arguments as the 
interface being implements must be supplied. For example: 

Interface I1(Of T) 

    Function F() As T 

End Interface 

 

Class C1 

    Implements I1(Of Integer) 

    Implements I1(Of Double) 

 

    Sub F1() As Integer Implements I1(Of Integer).F 

    End Sub 



Visual Basic Language Specification 

124 Copyright © Microsoft Corporation 2005. All rights reserved. 

 

    Sub F2() As Double Implements I1(Of Double).F 

    End Sub 

 

    ' Error: I1(Of String) is not implemented by C1 

    Sub F3() As String Implements I1(Of String).F 

    End Sub 

End Class 

 

Class C2(Of U) 

    Implements I1(Of U) 

 

    Sub F() As U Implements I1(Of U).F 

    End Sub 

End Class 

ImplementsClause  ::=  [  Implements  ImplementsList  ] 

ImplementsList  ::= 
 InterfaceMemberSpecifier  | 
 ImplementsList  ,  InterfaceMemberSpecifier 

InterfaceMemberSpecifier  ::=  NonArrayTypeName  .  IdentifierOrKeyword 

9.2 Methods 
Methods contain the executable statements of a program. Methods, which have an optional list of parameters 
and an optional return value, are either shared or nonshared. Shared methods are accessed through the class or 
instances of the class. Nonshared methods, also called instance methods, are accessed through instances of the 
class. The following example shows a class Stack that has several shared methods (Clone and Flip), and 
several instance methods (Push, Pop, and ToString): 

Public Class Stack 

    Public Shared Function Clone(ByVal s As Stack) As Stack 

    End Function 

 

    Public Shared Function Flip(ByVal s As Stack) As Stack 

    End Function 

 

    Public Function Pop() As Object 

    End Function 

 

    Public Sub Push(ByVal o As Object) 

    End Sub  

 

    Public Overrides Function ToString() As String 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 125 

    End Function  

End Class  

 

Module Test 

    Sub Main() 

        Dim s As Stack = New Stack() 

        Dim i As Integer 

 

        While i < 10 

            s.Push(i) 

        End While 

 

        Dim flipped As Stack = Stack.Flip(s) 

        Dim cloned As Stack = Stack.Clone(s) 

 

        Console.WriteLine("Original stack: " & s.ToString()) 

        Console.WriteLine("Flipped stack: " & flipped.ToString()) 

        Console.WriteLine("Cloned stack: " & cloned.ToString()) 

    End Sub 

End Module 

Methods can be overloaded, which means that multiple methods may have the same name so long as they have 
unique signatures. The signature of a method consists of the name of the method and the number and types of its 
parameters. The signature of a method specifically does not include the return type or parameter modifiers. The 
following example shows a class with a number of F methods: 

Module Test 

    Sub F() 

        Console.WriteLine("F()") 

    End Sub  

 

    Sub F(ByVal o As Object) 

        Console.WriteLine("F(Object)") 

    End Sub 

 

    Sub F(ByVal value As Integer) 

        Console.WriteLine("F(Integer)") 

    End Sub  

 

    Sub F(ByVal a As Integer, ByVal b As Integer) 

        Console.WriteLine("F(Integer, Integer)") 

    End Sub  

 



Visual Basic Language Specification 

126 Copyright © Microsoft Corporation 2005. All rights reserved. 

    Sub F(ByVal values() As Integer) 

        Console.WriteLine("F(Integer())") 

    End Sub  

 

    Sub Main() 

        F() 

        F(1) 

        F(CType(1, Object)) 

        F(1, 2) 

        F(New Integer() { 1, 2, 3 }) 

    End Sub 

End Module 

The output of the program is: 

F() 

F(Integer) 

F(Object) 

F(Integer, Integer) 

F(Integer()) 

MethodMemberDeclaration  ::=  MethodDeclaration  |  ExternalMethodDeclaration 

InterfaceMethodMemberDeclaration  ::=  InterfaceMethodDeclaration 

9.2.1 Regular Method Declarations 

There are two types of methods: subroutines, which do not return values, and functions, which do. The body and 
End construct of a method may only be omitted if the method is defined in an interface or has the 
MustOverride modifier. If no return type is specified on a function and strict semantics are being used, a 
compile-time error occurs; otherwise the type is implicitly Object or the type of the method's type character. 
The accessibility domain of the return type and parameter types of a method must be the same as or a superset of 
the accessibility domain of the method itself. 

Subroutine and function declarations are special in that their beginning and end statements must each start at the 
beginning of a logical line. Additionally, the body of a non-MustOverride subroutine or function declaration 
must start at the beginning of a logical line. For example: 

Module Test 

    ' Illegal: Subroutine doesn’t start the line 

    Public x As Integer : Sub F() : End Sub 

 

    ' Illegal: First statement doesn’t start the line 

    Sub G() : Console.WriteLine("G") 

    End Sub 

 

    ' Illegal: End Sub doesn’t start the line 

    Sub H() : End Sub 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 127 

End Module 

MethodDeclaration  ::= 
 SubDeclaration  | 
 MustOverrideSubDeclaration  | 
 FunctionDeclaration  | 
 MustOverrideFunctionDeclaration 

InterfaceMethodDeclaration  ::= 
 InterfaceSubDeclaration  | 
 InterfaceFunctionDeclaration 

SubSignature  ::=  Identifier  [  TypeParameterList  ]  [  (  [  ParameterList  ]  )  ] 

FunctionSignature  ::=  SubSignature  [  As  [  Attributes  ]  TypeName  ] 

SubDeclaration  ::= 
 [  Attributes  ]  [  ProcedureModifier+  ]  Sub  SubSignature  [  HandlesOrImplements  ]  LineTerminator 
 Block 
 End  Sub  StatementTerminator 

MustOverrideSubDeclaration  ::= 
 [  Attributes  ]  [  MustOverrideProcedureModifier+  ]  Sub  SubSignature  [  HandlesOrImplements  ] 
  StatementTerminator 

InterfaceSubDeclaration  ::= 
 [  Attributes  ]  [  InterfaceProcedureModifier+  ]  Sub  SubSignature  StatementTerminator 

FunctionDeclaration  ::= 
 [  Attributes  ]  [  ProcedureModifier+  ]  Function  FunctionSignature  [  HandlesOrImplements  ] 
  LineTerminator 
 Block 
 End  Function  StatementTerminator 

MustOverrideFunctionDeclaration  ::= 
 [  Attributes  ]  [  MustOverrideProcedureModifier+  ]  Function  FunctionSignature 
  [  HandlesOrImplements  ]  StatementTerminator 

InterfaceFunctionDeclaration  ::= 
 [  Attributes  ]  [  InterfaceProcedureModifier+  ]  Function  FunctionSignature  StatementTerminator 

ProcedureModifier  ::= 
 AccessModifier  | 
 Shadows  | 
 Shared  | 
 Overridable  | 
 NotOverridable  | 
 Overrides  | 
 Overloads 

MustOverrideProcedureModifier  ::=  ProcedureModifier  |  MustOverride 

InterfaceProcedureModifier  ::=  Shadows  |  Overloads 

HandlesOrImplements  ::=  HandlesClause  |  ImplementsClause 



Visual Basic Language Specification 

128 Copyright © Microsoft Corporation 2005. All rights reserved. 

9.2.2 External Method Declarations 

An external method declaration introduces a new method whose implementation is provided external to the 
program. Because an external method declaration provides no actual implementation, it has no method body or 
End construct. External methods are implicitly shared, may not have type parameters, and may not handle 
events or implement interface members. If no return type is specified on a function and strict semantics are 
being used, a compile-time error occurs. Otherwise the type is implicitly Object or the type of the method's 
type character. The accessibility domain of the return type and parameter types of an external method must be 
the same as or a superset of the accessibility domain of the external method itself. 

The library clause of an external method declaration specifies the name of the external file that implements the 
method. The optional alias clause is a string that specifies the numeric ordinal (prefixed by a @ character) or 
name of the method in the external file. A single-character set modifier may also be specified, which governs the 
character set used to marshal strings during a call to the external method. The Unicode modifier marshals all 
strings to Unicode values, the Ansi modifier marshals all strings to ANSI values, and the Auto modifier 
marshals the strings according to .NET Framework rules based on the name of the method, or the alias name if 
specified. If no modifier is specified, the default is Ansi. 

If Ansi or Unicode is specified, then the method name is looked up in the external file with no modification. If 
Auto is specified, then method name lookup depends on the platform. If the platform is considered to be ANSI 
(for example, Windows 95, Windows 98, Windows ME), then the method name is looked up with no 
modification. If the lookup fails, an A is appended and the lookup tried again. If the platform is considered to be 
Unicode (for example, Windows NT, Windows 2000, Windows XP), then a W is appended and the name is 
looked up. If the lookup fails, the lookup is tried again without the W. For example: 

Module Test 

    ' All platforms bind to "ExternSub". 

    Declare Ansi Sub ExternSub Lib "ExternDLL" () 

 

    ' All platforms bind to "ExternSub". 

    Declare Unicode Sub ExternSub Lib "ExternDLL" () 

 

    ' ANSI platforms: bind to "ExternSub" then "ExternSubA". 

    ' Unicode platforms: bind to "ExternSubW" then "ExternSub". 

    Declare Auto Sub ExternSub Lib "ExternDLL" () 

End Module 

Data types being passed to external methods are marshaled according to the .NET Framework data marshalling 
conventions with one exception. String variables that are passed by value (that is, ByVal x As String) are 
marshaled to the OLE Automation BSTR type, and changes made to the BSTR in the external method are 
reflected back in the string argument. This is because the type String in external methods is mutable, and this 
special marshalling mimics that behavior. String parameters that are passed by reference (i.e. ByRef x As 

String) are marshaled as a pointer to the OLE Automation BSTR type. It is possible to override these special 
behaviors by specifying the System.Runtime.InteropServices.MarshalAsAttribute attribute on the 
parameter. 

The example demonstrates use of external methods: 

Class Path 

    Declare Function CreateDirectory Lib "kernel32" ( _ 

        ByVal Name As String, ByVal sa As SecurityAttributes) As Boolean 

    Declare Function RemoveDirectory Lib "kernel32" ( _ 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 129 

        ByVal Name As String) As Boolean 

    Declare Function GetCurrentDirectory Lib "kernel32" ( _ 

        ByVal BufSize As Integer, ByVal Buf As String) As Integer 

    Declare Function SetCurrentDirectory Lib "kernel32" ( _ 

        ByVal Name As String) As Boolean 

End Class 

ExternalMethodDeclaration  ::= 
 ExternalSubDeclaration  | 
 ExternalFunctionDeclaration 

ExternalSubDeclaration  ::= 
 [  Attributes  ]  [  ExternalMethodModifier+  ]  Declare  [  CharsetModifier  ]  Sub  Identifier 
  LibraryClause  [  AliasClause  ]  [  (  [  ParameterList  ]  )  ]  StatementTerminator 

ExternalFunctionDeclaration  ::= 
 [  Attributes  ]  [  ExternalMethodModifier+  ]  Declare  [  CharsetModifier  ]  Function  Identifier 
  LibraryClause  [  AliasClause  ]  [  (  [  ParameterList  ]  )  ]  [  As  [  Attributes  ]  TypeName  ] 
  StatementTerminator 

ExternalMethodModifier  ::=  AccessModifier  |  Shadows  |  Overloads 

CharsetModifier  ::=  Ansi  |  Unicode  |  Auto 

LibraryClause  ::=  Lib  StringLiteral 

AliasClause  ::=  Alias  StringLiteral 

9.2.3 Overridable Methods 

The Overridable modifier indicates that a method is overridable. The Overrides modifier indicates that a 
method overrides a base-type overridable method that has the same signature. The NotOverridable modifier 
indicates that an overridable method cannot be further overridden. The MustOverride modifier indicates that a 
method must be overridden in derived classes. 

Certain combinations of these modifiers are not valid: 

• Overridable and NotOverridable are mutually exclusive and cannot be combined. 

• MustOverride implies Overridable (and so cannot specify it) and cannot be combined with 
NotOverridable. MustOverride methods cannot override other methods, and so cannot be combined 
with Overrides. 

• NotOverridable cannot be combined with Overridable or MustOverride and must be combined with 
Overrides. 

• Overrides implies Overridable (and so cannot specify it) and cannot be combined with 
MustOverride. 

There are also additional restrictions on overridable methods: 

• A MustOverride method may not include a method body or an End construct, may not override another 
method, and may only appear in MustInherit classes. 

• If a method specifies Overrides and there is no matching base method to override, a compile-time error 
occurs. An overriding method may not specify Shadows. 



Visual Basic Language Specification 

130 Copyright © Microsoft Corporation 2005. All rights reserved. 

• A method may not override another method if the overriding method's accessibility domain is not equal to 
the accessibility domain of the method being overridden. The one exception is that a method overriding a 
Protected Friend method in another assembly must specify Protected (not Protected Friend). 

• Private methods may not be Overridable, NotOverridable, or MustOverride, nor may they 
override other methods. 

• Methods in NotInheritable classes may not be declared Overridable or MustOverride. 

The following example illustrates the differences between overridable and nonoverridable methods: 

Class Base 

    Public Sub F() 

        Console.WriteLine("Base.F") 

    End Sub 

 

    Public Overridable Sub G() 

        Console.WriteLine("Base.G") 

    End Sub 

End Class 

 

Class Derived 

    Inherits Base 

 

    Public Shadows Sub F() 

        Console.WriteLine("Derived.F") 

    End Sub 

 

    Public Overrides Sub G() 

        Console.WriteLine("Derived.G") 

    End Sub 

End Class 

 

Module Test 

    Sub Main() 

        Dim d As Derived = New Derived() 

        Dim b As Base = d 

 

        b.F() 

        d.F() 

        b.G() 

        d.G() 

    End Sub 

End Module 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 131 

In the example, class Base introduces a method F and an Overridable method G. The class Derived 
introduces a new method F, thus shadowing the inherited F, and also overrides the inherited method G. The 
example produces the following output: 

Base.F 

Derived.F 

Derived.G 

Derived.G 

Notice that the statement b.G() invokes Derived.G, not Base.G. This is because the run-time type of the 
instance (which is Derived) rather than the compile-time type of the instance (which is Base) determines the 
actual method implementation to invoke. 

9.2.4 Shared Methods 

The Shared modifier indicates a method is a shared method. A shared method does not operate on a specific 
instance of a type and may be invoked directly from a type rather than through a particular instance of a type. It 
is valid, however, to use an instance to qualify a shared method. It is invalid to refer to Me, MyClass, or MyBase 
in a shared method. Shared methods may not be Overridable, NotOverridable, or MustOverride, and 
they may not override methods. Methods defined in standard modules and interfaces may not specify Shared, 
because they are implicitly Shared already. 

A method declared in a structure or class without a Shared modifier is an instance method. An instance method 
operates on a given instance of a type. Instance methods can only be invoked through an instance of a type and 
may refer to the instance through the Me expression. 

The following example illustrates the rules for accessing shared and instance members: 

Class Test 

    Private x As Integer 

    Private Shared y As Integer 

 

    Sub F() 

        x = 1 ' Ok, same as Me.x = 1. 

        y = 1 ' Ok, same as Test.y = 1. 

    End Sub 

 

    Shared Sub G() 

        x = 1 ' Error, cannot access Me.x. 

        y = 1 ' Ok, same as Test.y = 1. 

    End Sub 

 

    Shared Sub Main() 

        Dim t As Test = New Test() 

 

        t.x = 1 ' Ok. 

        t.y = 1 ' Ok. 

        Test.x = 1 ' Error, cannot access instance member through type. 



Visual Basic Language Specification 

132 Copyright © Microsoft Corporation 2005. All rights reserved. 

        Test.y = 1 ' Ok. 

    End Sub 

End Class 

Method F shows that in an instance function member, an identifier can be used to access both instance members 
and shared members. Method G shows that in a shared function member, it is an error to access an instance 
member through an identifier. Method Main shows that in a member access expression, instance members must 
be accessed through instances, but shared members can be accessed through types or instances. 

9.2.5 Method Parameters 

A parameter is a variable that can be used to pass information into and out of a method. Parameters of a method 
are declared by the method's parameter list, which consists of one or more parameters separated by commas. If 
no type is specified for a parameter and strict semantics are used, a compile-time error occurs. Otherwise the 
default type is Object or the type of the parameter's type character. Even under permissive semantics, if one 
parameter includes an As clause, all parameters must specify types.  

Parameters are specified as value, reference, optional, or paramarray parameters by the modifiers ByVal, 
ByRef, Optional, and ParamArray, respectively. A parameter that does not specify ByRef or ByVal defaults 
to ByVal. 

Parameter names are scoped to the entire body of the method and are always publicly accessible. A method 
invocation creates a copy, specific to that invocation, of the parameters, and the argument list of the invocation 
assigns values or variable references to the newly created parameters. Because external method declarations and 
delegate declarations have no body, duplicate parameter names are allowed in parameter lists, but discouraged. 

ParameterList  ::= 
 Parameter  | 
 ParameterList  ,  Parameter 

Parameter  ::= 
 [  Attributes  ]  ParameterModifier+  ParameterIdentifier  [  As  TypeName  ]  [  =  ConstantExpression  ] 

ParameterModifier  ::=  ByVal  |  ByRef  |  Optional  |  ParamArray 

ParameterIdentifier  ::=  Identifier  [  ArrayNameModifier  ] 

9.2.5.1 Value Parameters 

A value parameter is declared with an explicit ByVal modifier. If the ByVal modifier is used, the ByRef 
modifier may not be specified. A value parameter comes into existence with the invocation of the member the 
parameter belongs to, and is initialized with the value of the argument given in the invocation. A value 
parameter ceases to exist upon return of the member. 

A method is permitted to assign new values to a value parameter. Such assignments only affect the local storage 
location represented by the value parameter; they have no effect on the actual argument given in the method 
invocation. 

A value parameter is used when the value of an argument is passed into a method, and modifications of the 
parameter do not impact the original argument. A value parameter refers to its own variable, one that is distinct 
from the variable of the corresponding argument. This variable is initialized by copying the value of the 
corresponding argument. The following example shows a method F that has a value parameter named p: 

Module Test 

    Sub F(ByVal p As Integer) 

        Console.WriteLine("p = " & p) 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 133 

        p += 1 

    End Sub  

 

    Sub Main() 

        Dim a As Integer = 1 

 

        Console.WriteLine("pre: a = " & a) 

        F(a) 

        Console.WriteLine("post: a = " & a) 

    End Sub 

End Module 

The example produces the following output, even though the value parameter p is modified: 

pre: a = 1 

p = 1 

post: a = 1 

9.2.5.2 Reference Parameters 

A reference parameter is a parameter declared with a ByRef modifier. If the ByRef modifier is specified, the 
ByVal modifier may not be used. A reference parameter does not create a new storage location. Instead, a 
reference parameter represents the variable given as the argument in the method or constructor invocation. 
Conceptually, the value of a reference parameter is always the same as the underlying variable. 

A reference parameter is used when the parameter acts as an alias for a caller-provided argument. A reference 
parameter does not itself define a variable, but rather refers to the variable of the corresponding argument. 
Modifications of a reference parameter directly and immediately impact the corresponding argument. The 
following example shows a method Swap that has two reference parameters:  

Module Test 

    Sub Swap(ByRef a As Integer, ByRef b As Integer) 

        Dim t As Integer = a 

        a = b 

        b = t 

    End Sub  

 

    Sub Main() 

        Dim x As Integer = 1 

        Dim y As Integer = 2 

 

        Console.WriteLine("pre: x = " & x & ", y = " & y) 

        Swap(x, y) 

        Console.WriteLine("post: x = " & x & ", y = " & y) 

    End Sub  

End Module  



Visual Basic Language Specification 

134 Copyright © Microsoft Corporation 2005. All rights reserved. 

The output of the program is: 

pre: x = 1, y = 2 

post: x = 2, y = 1 

For the invocation of method Swap in class Main, a represents x, and b represents y. Thus, the invocation has 
the effect of swapping the values of x and y. 

In a method that takes reference parameters, it is possible for multiple names to represent the same storage 
location: 

Module Test 

    Private s As String 

 

    Sub F(ByRef a As String, ByRef b As String) 

        s = "One" 

        a = "Two" 

        b = "Three" 

    End Sub 

 

    Sub G() 

        F(s, s) 

    End Sub 

End Module 

In the example the invocation of method F in G passes a reference to s for both a and b. Thus, for that 
invocation, the names s, a, and b all refer to the same storage location, and the three assignments all modify the 
instance variable s. 

If the type of the variable being passed to a reference parameter is not compatible with the reference parameter's 
type, or if a non-variable is passed as an argument to a reference parameter, a temporary variable may be 
allocated and passed to the reference parameter. The value being passed in will be copied into this temporary 
variable before the method is invoked and will be copied back to the original variable (if there is one) when the 
method returns. Thus, a reference parameter may not necessarily contain a reference to the exact storage of the 
variable being passed in, and any changes to the reference parameter may not be reflected in the variable until 
the method exits. For example: 

Class Base 

End Class 

 

Class Derived 

    Inherits Base 

End Class 

 

Module Test 

    Sub F(ByRef b As Base) 

        b = New Base() 

    End Sub 

 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 135 

    Property G() As Base 

        Get 

        End Get 

        Set 

        End Set 

    End Property 

 

    Sub Main() 

        Dim d As Derived 

 

        F(G)   ' OK. 

        F(d)   ' Throws TypeMismatchException after F returns. 

    End Sub 

End Module 

In the case of the first invocation of F, a temporary variable, is created and the value of the property G is 
assigned to it and passed into F. Upon return from F, the value in the temporary variable is assigned back to the 
property of G. In the second case, another temporary variable is created and the value of d is assigned to it and 
passed into F. When returning from F, the value in the temporary variable is cast back to the type of the variable, 
Derived, and assigned to d. Since the value being passed back cannot be cast to Derived, an exception is 
thrown at run time. 

9.2.5.3 Optional Parameters 

An optional parameter is declared with the Optional modifier. Parameters that follow an optional parameter in 
the formal parameter list must be optional as well; failure to specify the Optional modifier on the following 
parameters will trigger a compile-time error. An optional parameter must specify a constant expression to be 
used as a replacement value if no argument is specified. The expression must be implicitly convertible to the 
type of the parameter, and the result of the conversion must be a constant expression. Consequently, parameters 
typed as structures cannot be optional parameters. Optional parameters are the only situation in which an 
initializer on a parameter is valid. The initialization is always done as a part of the invocation expression, not 
within the method body itself. 

Module Test 

    Sub F(ByVal x As Integer, Optional y As Integer = 20) 

        Console.WriteLine("x = " & x & ", y = " & y) 

    End Sub 

 

    Sub Main() 

        F(10) 

        F(30,40) 

    End Sub 

End Module 

The output of the program is: 

x = 10, y = 20 

x = 30, y = 40 



Visual Basic Language Specification 

136 Copyright © Microsoft Corporation 2005. All rights reserved. 

Optional parameters may not be specified in delegate or event declarations. 

9.2.5.4 ParamArray Parameters 

ParamArray parameters are declared with the ParamArray modifier. If the ParamArray modifier is present, 
the ByVal modifier must be specified, and no other parameter may use the ParamArray modifier. The 
ParamArray parameter's type must be a one-dimensional array, and it must be the last parameter in the 
parameter list. 

A ParamArray parameter represents an indeterminate number of parameters of the type of the ParamArray. 
Within the method itself, a ParamArray parameter is treated as its declared type and has no special semantics. 
A ParamArray parameter is implicitly optional, with a default value of an empty one-dimensional array of the 
type of the ParamArray. 

A ParamArray permits arguments to be specified in one of two ways in a method invocation: 

• The argument given for a ParamArray can be a single expression of a type that widens to the ParamArray 
type. In this case, the ParamArray acts precisely like a value parameter.  

• Alternatively, the invocation can specify zero or more arguments for the ParamArray, where each 
argument is an expression of a type that is implicitly convertible to the element type of the ParamArray. In 
this case, the invocation creates an instance of the ParamArray type with a length corresponding to the 
number of arguments, initializes the elements of the array instance with the given argument values, and uses 
the newly created array instance as the actual argument. 

Except for allowing a variable number of arguments in an invocation, a ParamArray is precisely equivalent to 
a value parameter of the same type, as the following example illustrates. 

Module Test 

    Sub F(ByVal ParamArray args As Integer) 

        Dim i As Integer 

 

        Console.Write("Array contains " & args.Length & " elements:") 

        For Each i In args 

            Console.Write(" " & i) 

        Next i 

        Console.WriteLine() 

    End Sub 

 

    Sub Main() 

        Dim a As Integer() = { 1, 2, 3 } 

 

        F(a) 

        F(10, 20, 30, 40) 

        F() 

    End Sub 

End Module 

The example produces the output 

Array contains 3 elements: 1 2 3 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 137 

Array contains 4 elements: 10 20 30 40 

Array contains 0 elements: 

The first invocation of F simply passes the array a as a value parameter. The second invocation of F 
automatically creates a four-element array with the given element values and passes that array instance as a 
value parameter. Likewise, the third invocation of F creates a zero-element array and passes that instance as a 
value parameter. The second and third invocations are precisely equivalent to writing: 

F(New Integer() {10, 20, 30, 40}) 

F(New Integer() {}) 

ParamArray parameters may not be specified in delegate or event declarations. 

9.2.6 Event Handling 

Methods can declaratively handle events raised by objects in instance or shared variables. To handle events, a 
method declaration specifies the Handles keyword and lists one or more events. An event in the Handles list 
is specified by two identifiers separated by a period: 

• The first identifier must be an instance or shared variable in the containing type that specifies the 
WithEvents modifier or the MyBase or Me keyword; otherwise, a compile-time error occurs. This variable 
contains the object that will raise the events handled by this method. 

• The second identifier must specify a member of the type of the first identifier. The member must be an 
event, and may be shared. If a shared variable is specified for the first identifier, then the event must be 
shared, or an error results. 

For a handler to be valid, the handled event's parameter types must exactly match those of the event handler. A 
single member can handle multiple matching events, and multiple methods may handle a single event. A 
method's accessibility has no effect on its ability to handle events. The following example shows how a method 
can handle events: 

Class Raiser 

    Public Event Constructed() 

 

    Public Sub New() 

        RaiseEvent Constructed 

    End Sub 

End Class 

 

Module Test 

    Private WithEvents x As Raiser 

 

    Public Sub Constructed() Handles x.Constructed 

        Console.WriteLine("Constructed") 

    Public End Sub 

 

    Public Sub Main() 

        x = New Raiser() 

        x = New Raiser() 



Visual Basic Language Specification 

138 Copyright © Microsoft Corporation 2005. All rights reserved. 

    End Sub 

End Module 

This will print out: 

Constructed 

Constructed 

A type inherits all event handlers provided by its base type. A derived type cannot in any way alter the event 
mappings it inherits from its base types, but may add additional handlers to the event. 

HandlesClause  ::=  [  Handles  EventHandlesList  ] 

EventHandlesList  ::= 
 EventMemberSpecifier  | 
 EventHandlesList  ,  EventMemberSpecifier 

EventMemberSpecifier  ::= 
 QualifiedIdentifier  .  IdentifierOrKeyword  | 
 MyBase  .  IdentifierOrKeyword  | 
 Me  .  IdentifierOrKeyword 

9.3 Constructors 
Constructors are special methods that allow control over initialization. They are run after the program begins or 
when an instance of a type is created. Unlike other members, constructors are not inherited and do not introduce 
a name into a type's declaration space. Constructors may only be invoked by object-creation expressions or by 
the .NET Framework; they may never be directly invoked. 

Note   Constructors have the same restriction on line placement that subroutines have. The beginning 
statement, end statement and block must all appear at the beginning of a logical line. 

ConstructorMemberDeclaration  ::= 
 [  Attributes  ]  [  ConstructorModifier+  ]  Sub  New  [  (  [  ParameterList  ]  )  ]  LineTerminator 
 [  Block  ] 
 End  Sub  StatementTerminator 

ConstructorModifier  ::=  AccessModifier  |  Shared 

9.3.1 Instance Constructors 

Instance constructors initialize instances of a type and are run by the .NET Framework when an instance is 
created. The parameter list of a constructor is subject to the same rules as the parameter list of a method. 
Instance constructors may be overloaded. 

All constructors in reference types must invoke another constructor. If the invocation is explicit, it must be the 
first statement in the constructor method body. The statement can either invoke another of the type's instance 
constructors — for example, Me.New(...) or MyClass.New(...) — or if it is not a structure it can invoke 
an instance constructor of the type's base type — for example, MyBase.New(...). It is invalid for a 
constructor to invoke itself. If a constructor omits a call to another constructor, MyBase.New() is implicit. If 
there is no parameterless base type constructor, a compile-time error occurs. Because Me is not considered to be 
constructed until after the call to a base class constructor, the parameters to a constructor invocation statement 
cannot reference Me, MyClass, or MyBase implicitly or explicitly. 

When a constructor's first statement is of the form MyBase.New(...), the constructor implicitly performs the 
initializations specified by the variable initializers of the instance variables declared in the type. This 
corresponds to a sequence of assignments that are executed immediately after invoking the direct base type 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 139 

constructor. Such ordering ensures that all base instance variables are initialized by their variable initializers 
before any statements that have access to the instance are executed. For example: 

Class A 

    Protected x As Integer = 1 

End Class 

 

Class B 

    Inherits A 

 

    Private y As Integer = x 

 

    Public Sub New() 

        Console.WriteLine("x = " & x & ", y = " & y) 

    End Sub 

End Class 

When New B() is used to create an instance of B, the following output is produced: 

x = 1, y = 1 

The value of y is 1 because the variable initializer is executed after the base class constructor is invoked. 
Variable initializers are executed in the textual order they appear in the type declaration. 

When a type declares only Private constructors, it is not possible in general for other types to derive from the 
type or create instances of the type; the only exception is types nested within the type. Private constructors are 
commonly used in types that contain only Shared members. 

If a type contains no instance constructor declarations, a default constructor is automatically provided. The 
default constructor simply invokes the parameterless constructor of the direct base type. If the direct base type 
does not have an accessible parameterless constructor, a compile-time error occurs. The declared access type for 
the default constructor is always Public.  

In the following example a default constructor is provided because the class contains no constructor 
declarations: 

Class Message 

    Private sender As Object 

    Private text As String 

End Class  

Thus, the example is precisely equivalent to the following: 

Class Message 

    Private sender As Object 

    Private text As String 

 

    Public Sub New() 

    End Sub 

End Class  



Visual Basic Language Specification 

140 Copyright © Microsoft Corporation 2005. All rights reserved. 

9.3.2 Shared Constructors 

Shared constructors initialize a type's shared variables; they are run after the program begins executing, but 
before any references to a member of the type. A shared constructor specifies the Shared modifier, unless it is 
in a standard module in which case the Shared modifier is implied.  

Unlike instance constructors, shared constructors have implicit public access, have no parameters, and may not 
call other constructors. Before the first statement in a shared constructor, the shared constructor implicitly 
performs the initializations specified by the variable initializers of the shared variables declared in the type. This 
corresponds to a sequence of assignments that are executed immediately upon entry to the constructor. The 
variable initializers are executed in the textual order they appear in the type declaration. 

The following example shows an Employee class with a shared constructor that initializes a shared variable: 

Imports System.Data 

 

Class Employee 

    Private Shared ds As DataSet 

 

    Shared Sub New() 

        ds = New DataSet() 

    End Sub 

 

    Public Name As String 

    Public Salary As Decimal 

End Class 

A separate shared constructor exists for each closed generic type. Because the shared constructor is executed 
exactly once for each closed type, it is a convenient place to enforce run-time checks on the type parameter that 
cannot be checked at compile-time via constraints. For example, the following type uses a shared constructor to 
enforce that the type parameter is Integer or Double: 

Class IntegerOrDouble(Of T) 

    Shared Sub New()  

        If SafeCast(T, Integer) Is Nothing AndAlso _ 

           SafeCast(T, Double) Is Nothing Then 

            Throw New ArgumentException("T must be Integer or Double") 

        End If 

    End Sub 

End Class 

Exactly when shared constructors are run is mostly implementation dependent, though several guarantees are 
provided if a shared constructor is explicitly defined: 

• Shared constructors are run before the first access to any static field of the type. 

• Shared constructors are run before the first invocation of any static method of the type. 

• Shared constructors are run before the first invocation of any constructor for the type. 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 141 

The above guarantees do not apply in the situation where a shared constructor is implicitly created for shared 
initializers. The output from the following example is uncertain, because the exact ordering of loading and 
therefore of shared constructor execution is not defined: 

Module Test 

    Sub Main() 

        A.F() 

        B.F() 

    End Sub 

End Module 

 

Class A 

    Shared Sub New() 

        Console.WriteLine("Init A") 

    End Sub 

 

    Public Shared Sub F() 

        Console.WriteLine("A.F") 

    End Sub 

End Class 

 

Class B 

    Shared Sub New() 

        Console.WriteLine("Init B") 

    End Sub 

 

    Public Shared Sub F() 

        Console.WriteLine("B.F") 

    End Sub 

End Class 

The output could be either of the following: 

Init A 

A.F 

Init B 

B.F 

or  

Init B 

Init A 

A.F 

B.F 



Visual Basic Language Specification 

142 Copyright © Microsoft Corporation 2005. All rights reserved. 

By contrast, the following example produces predictable output. Note that the Shared constructor for the class 
A never executes, even though class B derives from it: 

Module Test 

    Sub Main() 

        B.G() 

    End Sub 

End Module 

 

Class A 

    Shared Sub New() 

        Console.WriteLine("Init A") 

    End Sub 

End Class 

 

Class B 

    Inherits A 

 

    Shared Sub New() 

        Console.WriteLine("Init B") 

    End Sub 

 

    Public Shared Sub G() 

        Console.WriteLine("B.G") 

    End Sub 

End Class 

The output is:  

Init B 

B.G 

It is also possible to construct circular dependencies that allow Shared variables with variable initializers to be 
observed in their default value state, as in the following example: 

Class A 

    Public Shared X As Integer = B.Y + 1 

End Class 

 

Class B 

    Public Shared Y As Integer = A.X + 1 

 

    Shared Sub Main() 

        Console.WriteLine("X = " & A.X & ", Y = " & B.Y) 

    End Sub 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 143 

End Class 

This produces the output: 

X = 1, Y = 2 

To execute the Main method, the system first loads class B. The Shared constructor of class B proceeds to 
compute the initial value of Y, which recursively causes class A to be loaded because the value of A.X is 
referenced. The Shared constructor of class A in turn proceeds to compute the initial value of X, and in doing so 
fetches the default value of Y, which is zero. A.X is thus initialized to 1. The process of loading A then 
completes, returning to the calculation of the initial value of Y, the result of which becomes 2. 

Had the Main method instead been located in class A, the example would have produced the following output: 

X = 2, Y = 1 

Avoid circular references in Shared variable initializers since it is generally impossible to determine the order 
in which classes containing such references are loaded. 

9.4 Events 
Events are used to notify code of a particular occurrence. An event declaration consists of an identifier, either a 
delegate type or a parameter list, and an optional Implements clause. If a delegate type is specified, the 
delegate type may not have a return type. If a parameter list is specified, it may not contain Optional or 
ParamArray parameters. The accessibility domain of the parameter types and/or delegate type must be the 
same as, or a superset of, the accessibility domain of the event itself. Events may be shared by specifying the 
Shared modifier. 

In addition to the member name added to the type's declaration space, an event declaration implicitly declares 
several other members. Given an event named X, the following members are added to the declaration space: 

• If the form of the declaration is a method declaration, a nested delegate class named XEventHandler is 
introduced. The nested delegate class matches the method declaration and has the same accessibility as the 
event. The attributes in the parameter list apply to the parameters of the delegate class. 

• A Private instance variable typed as the delegate, named XEvent. 

• A method named add_X, which takes the delegate type and has the same access type as the event. 

• A method named remove_X, which takes the delegate type and has the same access type as the event. 

If a type attempts to declare a name that matches one of the above names, a compile-time error will result, and 
the implicit add_X and remove_X declarations are ignored for the purposes of name binding. It is not possible 
to override or overload any of the introduced members, although it is possible to shadow them in derived types. 
For example, the class declaration 

Class Raiser 

    Public Event Constructed(ByVal i As Integer) 

End Class 

is equivalent to the following declaration 

Class Raiser 

    Public Delegate Sub ConstructedEventHandler(ByVal i As Integer) 

 

    Protected ConstructedEvent As ConstructedEventHandler 

 

    Public Sub add_Constructed(ByVal d As ConstructedEventHandler) 



Visual Basic Language Specification 

144 Copyright © Microsoft Corporation 2005. All rights reserved. 

        ConstructedEvent = _ 

            CType( _ 

                [Delegate].Combine(ConstructedEvent, d), _ 

                    Raiser.ConstructedEventHandler) 

    End Sub 

 

    Public Sub remove_Constructed(ByVal d As ConstructedEventHandler) 

        ConstructedEvent = _ 

            CType( _ 

                [Delegate].Remove(ConstructedEvent, d), _ 

                    Raiser.ConstructedEventHandler) 

    End Sub 

End Class 

Declaring an event without specifying a delegate type is the simplest and most compact syntax, but has the 
disadvantage of declaring a new delegate type for each event. For example, in the following example, three 
hidden delegate types are created, even though all three events have the same parameter list: 

Public Class Button 

    Public Event Click(sender As Object, e As System.EventArgs) 

    Public Event DoubleClick(sender As Object, e As System.EventArgs) 

    Public Event RightClick(sender As Object, e As System.EventArgs) 

End Class 

In the following example, the events simply use the same delegate, EventHandler: 

Delegate Sub EventHandler(sender As Object, e As System.EventArgs) 

Public Class Button 

    Public Event Click As EventHandler 

    Public Event DoubleClick As EventHandler 

    Public Event RightClick As EventHandler 

End Class 

Events can be handled in one of two ways: statically or dynamically. Statically handling events is simpler and 
only requires a WithEvents variable and a Handles clause. In the following example, class Form1 statically 
handles the event Click of object Button: 

Public Class Form1 

    Public WithEvents Button1 As Button = New Button() 

    Public Sub Button1_Click(sender As Object, e As System.EventArgs) _ 

           Handles Button1.Click 

        Console.WriteLine("Button1 was clicked!") 

    End Sub 

End Class 

Dynamically handling events is more complex because the event must be explicitly connected and disconnected 
to in code. The statement AddHandler adds a handler for an event, and the statement RemoveHandler 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 145 

removes a handler for an event. The next example shows a class Form1 that adds Button1_Click as an event 
handler for Button1's Click event: 

Public Class Form1 

    Public Sub New() 

        ' Add Button1_Click as an event handler for Button1's Click event. 

        AddHandler Button1.Click, AddressOf Button1_Click 

    End Sub  

 

    Private Button1 As Button = New Button() 

 

    Sub Button1_Click(sender As Object, e As EventArgs) 

        Console.WriteLine("Button1 was clicked!") 

    End Sub 

 

    Public Sub Disconnect() 

        RemoveHandler Button1.Click, AddressOf Button1_Click 

    End Sub  

End Class  

In method Disconnect, the event handler is removed. 

EventMemberDeclaration  ::= 
 RegularEventMemberDeclaration  | 
 CustomEventMemberDeclaration 

RegularEventMemberDeclaration  ::= 
 [  Attributes  ]  [  EventModifiers+  ]  Event  Identifier  ParametersOrType  [  ImplementsClause  ] 
  StatementTerminator 

InterfaceEventMemberDeclaration  ::= 
 [  Attributes  ]  [  InterfaceEventModifiers+  ]  Event  Identifier  ParametersOrType  StatementTerminator 

ParametersOrType  ::= 
 [  (  [  ParameterList  ]  )  ]  | 
 As  NonArrayTypeName 

EventModifiers  ::=  AccessModifier  |  Shadows  |  Shared 

InterfaceEventModifiers  ::=  Shadows 

9.4.1 Custom Events 

As discussed in the previous section, event declarations implicitly define a field, an add_ method, and a 
remove_ method that are used to keep track of event handlers. In some situations, however, it may be desirable 
to provide custom code for tracking event handlers. For example, if a class defines forty events of which only a 
few will ever be handled, using a hash table instead of forty fields to track the handlers for each event may be 
more efficient. Custom events allow the add_X and remove_X methods to be defined explicitly, which enables 
custom storage for event handlers. 

Custom events are declared in the same way that events that specify a delegate type are declared, with the 
exception that the keyword Custom must precede the Event keyword. A custom event declaration contains 



Visual Basic Language Specification 

146 Copyright © Microsoft Corporation 2005. All rights reserved. 

three declarations: an AddHandler declaration, a RemoveHandler declaration and a RaiseEvent declaration. 
None of the declarations can have any modifiers, although they can have attributes. For example: 

Class Test 
    Private Handlers As EventHandler 
 
    Public Custom Event TestEvent() As EventHandler 
        AddHandler(ByVal value As EventHandler) 
            Handlers = CType([Delegate].Combine(Handlers, value), _ 
                EventHandler) 
        End AddHandler 
 
        RemoveHandler(ByVal value as EventHandler) 
            Handlers = CType([Delegate].Remove(Handlers, value), _ 
                EventHandler) 
        End RemoveHandler 
 
        RaiseEvent(ByVal sender As Object, ByVal e As EventArgs) 
            Dim TempHandlers As EventHandler = Handlers 
 
            If TempHandlers IsNot Nothing Then 
                TempHandlers(sender, e) 
            End If 
        End RaiseEvent 
    End Event 
End Class 

The AddHandler and RemoveHandler declaration take one ByVal parameter, which must be of the delegate 
type of the event. When an AddHandler or RemoveHandler statement is executed (or a Handles clause 
automatically handles an event), the corresponding declaration will be called. The RaiseEvent declaration 
takes the same parameters as the event delegate and will be called when a RaiseEvent statement is executed. 
All of the declarations must be provided and are considered to be subroutines. 

Note   AddHandler, RemoveHandler and RaiseEvent declarations have the same restriction on line 
placement that subroutines have. The beginning statement, end statement and block must all appear at the 
beginning of a logical line. 

In addition to the member name added to the type's declaration space, a custom event declaration implicitly 
declares several other members. Given an event named X, the following members are added to the declaration 
space: 

• A method named add_X, corresponding to the AddHandler declaration. 

• A method named remove_X, corresponding to the RemoveHandler declaration. 

• A method named fire_X, corresponding to the RaiseEvent declaration. 

If a type attempts to declare a name that matches one of the above names, a compile-time error will result, and 
the implicit declarations are all ignored for the purposes of name binding. It is not possible to override or 
overload any of the introduced members, although it is possible to shadow them in derived types. 

Note Custom is not a reserved word. 

CustomEventMemberDeclaration  ::= 
 [  Attributes  ]  [  EventModifiers+  ]  Custom  Event  Identifier  As  TypeName  [  ImplementsClause  ] 
  StatementTerminator 
  EventAccessorDeclaration+ 
 End  Event  StatementTerminator 

EventAccessorDeclaration  ::= 
 AddHandlerDeclaration  | 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 147 

 RemoveHandlerDeclaration  | 
 RaiseEventDeclaration 

AddHandlerDeclaration  ::= 
 [  Attributes  ]  AddHandler  (  ParameterList  )  LineTerminator 
 [  Block  ] 
 End  AddHandler  StatementTerminator 

RemoveHandlerDeclaration  ::= 
 [  Attributes  ]  RemoveHandler  (  ParameterList  )  LineTerminator 
 [  Block  ] 
 End  RemoveHandler  StatementTerminator 

RaiseEventDeclaration  ::= 
 [  Attributes  ]  RaiseEvent  (  ParameterList  )  LineTerminator 
 [  Block  ] 
 End  RaiseEvent  StatementTerminator 

9.5 Constants 
A constant is a constant value that is a member of a type. Constants are implicitly shared. If the declaration 
contains an As clause, the clause specifies the type of the member introduced by the declaration. If the type is 
omitted and strict semantics are being used, a compile-time error occurs; otherwise the type of the constant is 
implicitly Object. The type of a constant may only be a primitive type or Object. If a constant is typed as 
Object and there is no type character, the real type of the constant will be the type of the constant expression. 
Otherwise, the type of the constant is the type of the constant's type character. 

The following example shows a class named Constants that has two public constants: 

Class Constants 

    Public A As Integer = 1 

    Public B As Integer = A + 1 

End Class  

Constants can be accessed through the class, as in the following example, which prints out the values of 
Constants.A and Constants.B. 

Module Test 

    Sub Main() 

        Console.WriteLine(Constants.A & ", " & Constants.B) 

    End Sub  

End Module 

A constant declaration that declares multiple constants is equivalent to multiple declarations of single constants. 
The following example declares three constants in one declaration statement. 

Class A 

    Protected Const x As Integer = 1, y As Long = 2, z As Short = 3 

End Class 

This declaration is equivalent to the following: 

Class A 

    Protected Const x As Integer = 1 

    Protected Const y As Long = 2 



Visual Basic Language Specification 

148 Copyright © Microsoft Corporation 2005. All rights reserved. 

    Protected Const z As Short = 3 

End Class 

The accessibility domain of the type of the constant must be the same as or a superset of the accessibility 
domain of the constant itself. The constant expression must yield a value of the constant's type or of a type that 
is implicitly convertible to the constant's type. The constant expression may not be circular; that is, a constant 
may not be defined in terms of itself.  

The compiler automatically evaluates the constant declarations in the appropriate order. In the following 
example, the compiler first evaluates Y, then Z, and finally X, producing the values 10, 11, and 12, respectively. 

Class A 

    Public Const X As Integer = B.Z + 1 

    Public Const Y As Integer = 10 

End Class 

 

Class B 

    Public Const Z As Integer = A.Y + 1 

End Class 

When a symbolic name for a constant value is desired, but the type of the value is not permitted in a constant 
declaration or when the value cannot be computed at compile time by a constant expression, a read-only variable 
may be used instead. 

ConstantMemberDeclaration  ::= 
 [  Attributes  ]  [  ConstantModifier+  ]  Const  ConstantDeclarators  StatementTerminator 

ConstantModifier  ::=  AccessModifier  |  Shadows 

ConstantDeclarators  ::= 
 ConstantDeclarator  | 
 ConstantDeclarators  ,  ConstantDeclarator 

ConstantDeclarator  ::=  Identifier  [  As  TypeName  ]  =  ConstantExpression  StatementTerminator 

9.6 Instance and Shared Variables 
An instance or shared variable is a member of a type that can store information. The Dim modifier must be 
specified if no modifiers are specified, but may be omitted otherwise. A single variable declaration may include 
multiple variable declarators; each variable declarator introduces a new instance or shared member. 

If an initializer is specified, only one instance or shared variable may be declared by the variable declarator: 

Class Test 

    Dim a, b, c, d As Integer = 10  ' Invalid: multiple initialization 

End Class 

This restriction does not apply to object initializers: 

Class Test 

    Dim a, b, c, d As New Collection() ' OK 

End Class 

A variable declared with the Shared modifier is a shared variable. A shared variable identifies exactly one 
storage location regardless of the number of instances of the type that are created. A shared variable comes into 
existence when a program begins executing, and ceases to exist when the program terminates. 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 149 

A shared variable is shared only among instances of a particular closed generic type. For example: 

Class C(Of V)  

    Shared InstanceCount As Integer = 0 

 

    Public Sub New()   

        InstanceCount += 1  

    End Sub 

   

    Public Shared ReadOnly Property Count() As Integer  

        Get 

            Return InstanceCount 

        End Get 

    End Property 

End Class 

 

Class Application  

    Shared Sub Main()  

        Dim x1 As New C(Of Integer)() 

        Console.WriteLine(C(Of Integer).Count)    ' Prints 1 

 

        Dim x2 As New C(Of Double)()  

        Console.WriteLine(C(Of Integer).Count)    ' Prints 1 

 

        Dim x3 As New C(Of Integer)()  

        Console.WriteLine(C(Of Integer).Count)    ' Prints 2 

    End Sub 

End Class 

A variable declared without the Shared modifier is called an instance variable. Every instance of a class 
contains a separate copy of all instance variables of the class. An instance variable of a reference type comes 
into existence when a new instance of that type is created, and ceases to exist when there are no references to 
that instance and the Finalize method has executed. An instance variable of a value type has exactly the same 
lifetime as the variable to which it belongs. In other words, when a variable of a value type comes into existence 
or ceases to exist, so does the instance variable of the value type. 

If the declarator contains an As clause, the clause specifies the type of the members introduced by the 
declaration. If the type is omitted and strict semantics are being used, a compile-time error occurs. Otherwise the 
type of the members is implicitly Object or the type of the members' type character.  

Note   There is no ambiguity in the syntax: if a declarator omits a type, it will always use the type of a 
following declarator. 

The accessibility domain of an instance or shared variable's type or array element type must be the same as or a 
superset of the accessibility domain of the instance or shared variable itself. 



Visual Basic Language Specification 

150 Copyright © Microsoft Corporation 2005. All rights reserved. 

The following example shows a Color class that has internal instance variables named redPart, greenPart, 
and bluePart: 

Class Color 

    Friend redPart As Short 

    Friend bluePart As Short 

    Friend greenPart As Short 

 

    Public Sub New(red As Short, blue As Short, green As Short) 

        redPart = red 

        bluePart = blue 

        greenPart = green 

    End Sub 

End Class 

VariableMemberDeclaration  ::= 
 [  Attributes  ]  VariableModifier+  VariableDeclarators  StatementTerminator 

VariableModifier  ::= 
 AccessModifier  | 
 Shadows  | 
 Shared  | 
 ReadOnly  | 
 WithEvents  | 
 Dim 

VariableDeclarators  ::= 
 VariableDeclarator  | 
 VariableDeclarators  ,  VariableDeclarator 

VariableDeclarator  ::= 
 VariableIdentifiers  [  As  [  New  ]  TypeName  [  (  ArgumentList  )  ]  ]  | 
 VariableIdentifier  [  As  TypeName  ]  [  =  VariableInitializer  ] 

VariableIdentifiers  ::= 
 VariableIdentifier  | 
 VariableIdentifiers  ,  VariableIdentifier 

VariableIdentifier  ::=  Identifier  [  ArrayNameModifier  ] 

9.6.1 Read-Only Variables 

When an instance or shared variable declaration includes a ReadOnly modifier, assignments to the variables 
introduced by the declaration may only occur as part of the declaration or in a constructor in the same class. 
Specifically, assignments to a read-only instance or shared variable are permitted only in the following 
situations: 

• In the variable declaration that introduces the instance or shared variable (by including a variable initializer 
in the declaration). 

• For an instance variable, in the instance constructors of the class that contains the variable declaration. The 
instance variable can only be accessed in an unqualified manner or through Me or MyClass. 

• For a shared variable, in the shared constructor of the class that contains the shared variable declaration. 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 151 

A shared read-only variable is useful when a symbolic name for a constant value is desired, but when the type of 
the value is not permitted in a constant declaration, or when the value cannot be computed at compile time by a 
constant expression. 

An example of the first such application follows, in which color shared variables are declared ReadOnly to 
prevent them from being changed by other programs: 

Class Color 

    Friend redPart As Short 

    Friend bluePart As Short 

    Friend greenPart As Short 

 

    Public Sub New(red As Short, blue As Short, green As Short) 

        redPart = red 

        bluePart = blue 

        greenPart = green 

    End Sub  

 

    Public Shared ReadOnly Red As Color = New Color(&HFF, 0, 0) 

    Public Shared ReadOnly Blue As Color = New Color(0, &HFF, 0) 

    Public Shared ReadOnly Green As Color = New Color(0, 0, &HFF) 

    Public Shared ReadOnly White As Color = New Color(&HFF, &HFF, &HFF) 

End Class  

Constants and read-only shared variables have different semantics. When an expression references a constant, 
the value of the constant is obtained at compile time, but when an expression references a read-only shared 
variable, the value of the shared variable is not obtained until run time. Consider the following application, 
which consists of two separate programs. 

file1.vb: 

Namespace Program1 

    Public Class Utils 

        Public Shared ReadOnly X As Integer = 1 

    End Class 

End Namespace  

 

file2.vb: 

Namespace Program2 

    Module Test 

        Sub Main() 

            Console.WriteLine(Program1.Utils.X) 

        End Sub 

    End Module 

End Namespace  



Visual Basic Language Specification 

152 Copyright © Microsoft Corporation 2005. All rights reserved. 

The namespaces Program1 and Program2 denote two programs that are compiled separately. Because variable 
Program1.Utils.X is declared as Shared ReadOnly, the value output by the Console.WriteLine 
statement is not known at compile time, but rather is obtained at run time. Thus, if the value of X is changed and 
Program1 is recompiled, the Console.WriteLine statement will output the new value even if Program2 is 
not recompiled. However, if X had been a constant, the value of X would have been obtained at the time 
Program2 was compiled, and would have remained unaffected by changes in Program1 until Program2 was 
recompiled. 

9.6.2 WithEvents Variables 

A type can declare that it handles some set of events raised by one of its instance or shared variables by 
declaring the instance or shared variable that raises the events with the WithEvents modifier. For example: 

Class Raiser 

    Public Event Constructed() 

 

    Public Sub New() 

        RaiseEvent Constructed 

    End Sub 

End Class 

 

Module Test 

    Private WithEvents x As Raiser 

 

    Private Sub HandleConstructed() Handles x.Constructed 

        Console.WriteLine("Constructed") 

    End Sub 

 

    Public Sub Main() 

        x = New Raiser() 

    End Sub 

End Module 

In this example, the method HandleConstructed handles the event Constructed that is raised by the 
instance of the type Raiser stored in the instance variable x. 

The WithEvents modifier causes the variable to be renamed with a leading underscore and replaced with a 
property of the same name that does the event hookup. For example, if the variable's name is F, it is renamed to 
_F and a property F is implicitly declared. If there is a collision between the variable's new name and another 
declaration, a compile-time error will be reported. Any attributes applied to the variable are carried over to the 
renamed variable. 

The implicit property created by a WithEvents declaration takes care of hooking and unhooking the relevant 
event handlers. When a value is assigned to the variable, the property first calls the remove method for the 
event on the instance currently in the variable (unhooking the existing event handler, if any). Next the 
assignment is made, and the property calls the add method for the event on the new instance in the variable 
(hooking up the new event handler). The following code is equivalent to the code above for the standard module 
Test: 

Module Test 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 153 

    Private _x As Raiser 

 

    Public Property x() As Raiser 

        Get 

            Return _x 

        End Get 

 

        Set (ByVal Value As Raiser) 

            ' Unhook any existing handlers. 

            If _x IsNot Nothing Then 

                RemoveHandler _x.Constructed, AddressOf HandleConstructed 

            End If 

 

            ' Change value. 

            _x = Value 

 

            ' Hook-up new handlers. 

            If _x IsNot Nothing Then 

                AddHandler _x.Constructed, AddressOf HandleConstructed 

            End If 

        End Set 

    End Property 

 

    Sub HandleConstructed() 

        Console.WriteLine("Constructed") 

    End Sub 

 

    Sub Main() 

        x = New Raiser() 

    End Sub 

End Module 

It is not valid to declare an instance or shared variable as WithEvents if it does not raise any events or if the 
variable is typed as a structure. In addition, WithEvents may not be specified in a structure, and WithEvents 
and ReadOnly cannot be combined. 

9.6.3 Variable Initializers 

Instance and shared variable declarations in classes and instance variable declarations (but not shared variable 
declarations) in structures may include variable initializers. For Shared variables, variable initializers 
correspond to assignment statements that are executed after the program begins, but before the Shared variable 
is first referenced. For instance variables, variable initializers correspond to assignment statements that are 
executed when an instance of the class is created. Structures cannot have instance variable initializers because 
their parameterless constructors cannot be modified. 



Visual Basic Language Specification 

154 Copyright © Microsoft Corporation 2005. All rights reserved. 

Consider the following example: 

Class Test 

    Public Shared x As Double = Math.Sqrt(2.0) 

    Public i As Integer = 100 

    Public s As String = "Hello" 

End Class 

 

Module TestModule 

    Sub Main() 

        Dim a As Test = New Test() 

 

        Console.WriteLine("x = " & x & ", i = " & a.i & ", s = " & a.s) 

    End Sub 

End Module 

The example produces the following output: 

x = 1.414213562373095, i = 100, s = Hello 

An assignment to x occurs when the class is loaded, and assignments to i and s occur when a new instance of 
the class is created. 

It is useful to think of variable initializers as assignment statements that are automatically inserted in the block 
of the type's constructor. The following example contains several instance variable initializers. 

Class A 

    Private x As Integer = 1 

    Private y As Integer = -1 

    Private count As Integer 

 

    Public Sub New() 

        count = 0 

    End Sub 

 

    Public Sub New(n As Integer) 

        count = n 

    End Sub 

End Class 

 

Class B 

    Inherits A 

 

    Private sqrt2 As Double = Math.Sqrt(2.0) 

    Private items As ArrayList = New ArrayList(100) 

    Private max As Integer 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 155 

 

    Public Sub New() 

        Me.New(100) 

        items.Add("default") 

    End Sub 

 

    Public Sub New(n As Integer) 

        MyBase.New(n – 1) 

        max = n 

    End Sub 

End Class 

The example corresponds to the code shown below, where each comment indicates an automatically inserted 
statement. 

Class A 

    Private x, y, count As Integer 

 

    Public Sub New() 

        MyBase.New ' Invoke object() constructor. 

        x = 1 ' This is a variable initializer. 

        y = -1 ' This is a variable initializer. 

        count = 0 

    End Sub 

 

    Public Sub New(n As Integer) 

        MyBase.New ' Invoke object() constructor.  

        x = 1 ' This is a variable initializer. 

        y = - 1 ' This is a variable initializer. 

        count = n 

    End Sub 

End Class 

 

Class B 

    Inherits A 

 

    Private sqrt2 As Double 

    Private items As ArrayList 

    Private max As Integer 

 

    Public Sub New() 

        Me.New(100)  



Visual Basic Language Specification 

156 Copyright © Microsoft Corporation 2005. All rights reserved. 

        items.Add("default") 

    End Sub 

 

    Public Sub New(n As Integer) 

        MyBase.New(n - 1)  

        sqrt2 = Math.Sqrt(2.0) ' This is a variable initializer. 

        items = New ArrayList(100) ' This is a variable initializer. 

        max = n 

    End Sub 

End Class 

All variables are initialized to the default value of their type before any variable initializers are executed. For 
example: 

Class Test 

    Public Shared b As Boolean 

    Public i As Integer 

End Class 

 

Module TestModule 

    Sub Main() 

        Dim t As Test = New Test() 

        Console.WriteLine("b = " & b & ", i = " & t.i) 

    End Sub 

End Module 

Because b is automatically initialized to its default value when the class is loaded and i is automatically 
initialized to its default value when an instance of the class is created, the preceding code produces the following 
output: 

b = False, i = 0 

Each variable initializer must yield a value of the variable's type or of a type that is implicitly convertible to the 
variable's type. A variable initializer may be circular or refer to a variable that will be initialized after it, in 
which case the value of the referenced variable is its default value for the purposes of the initializer. Such an 
initializer is of dubious value. 

There are four forms of variable initializers: regular initializers, array-element initializers, array-size initializers, 
and object initializers. The first two forms appear after an equal sign that follows the type name, the latter two 
are part of the declaration itself. Only one form of initializer may be used on any particular declaration. 

VariableInitializer  ::=  RegularInitializer  |  ArrayElementInitializer 

9.6.3.1 Regular Initializers 

A regular initializer is an expression that is implicitly convertible to the type of the variable. It appears after an 
equal sign that follows the type name and must be classified as a value. For example: 

Module Test 

    Dim x As Integer = 10 

    Dim y As Integer = 20 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 157 

 

    Sub Main() 

        Console.WriteLine("x = " & x & ", y = " & y) 

    End Sub 

End Module 

This program produces the output: 

x = 10, y = 20 

RegularInitializer  ::=  Expression 

9.6.3.2 Object Initializers 

An object initializer is specified using the New keyword before the type name and an optional parameter list 
after the type name. An object initializer is equivalent to a regular initializer of the form = New T(A), where T 
is the type name and A is the supplied formal parameter list, if any. So 

Module TestModule 

    Sub Main() 

        Dim x As New Test(10) 

    End Sub 

End Module 

is equivalent to 

Module TestModule 

    Sub Main() 

        Dim x As Test = New Test(10) 

    End Sub 

End Module 

The parenthesis in an object initializer is always interpreted as the parameters to the constructor and never as 
array type modifiers. 

9.6.3.3 Array-Size Initializers 

An array-size initializer is a modifier on the name of the variable that gives a set of dimension upper bounds 
denoted by expressions. The upper bound expressions must be classified as values and must be implicitly 
convertible to Integer. The set of upper bounds is equivalent to a variable initializer of an array-creation 
expression with the given upper bounds. The number of dimensions of the array type is inferred from the array 
size initializer. So 

Module Test 

    Sub Main() 

        Dim x(5, 10) As Integer 

    End Sub 

End Module 

is equivalent to  

Module Test 

    Sub Main() 

        Dim x As T(,) = new Integer(5, 10) {} 



Visual Basic Language Specification 

158 Copyright © Microsoft Corporation 2005. All rights reserved. 

    End Sub 

End Module 

All upper bounds must be equal to or greater than -1, and all dimensions must have an upper bound specified. If 
the element type of the array being initialized is itself an array type, the array-type modifiers go to the right of 
the array-size initializer. For example 

Module Test 

    Sub Main() 

        Dim x(5,10)(,,) As Integer 

    End Sub 

End Module 

declares a local variable x whose type is a two-dimensional array of three-dimensional arrays of Integer, 
initialized to an array with bounds of 0..5 in the first dimension and 0..10 in the second dimension. It is not 
possible to use an array size initializer to initialize the elements of a variable whose type is an array of arrays. 

A variable declaration may not include both an array-size initializer and an array type modifier on its type or an 
array-element initializer. 

ArraySizeInitializationModifier  ::= 
 (  BoundList  )  [  ArrayTypeModifiers  ] 

BoundList::= 
 Expression  | 
 0  To  Expression  | 
 UpperBoundList  ,  Expression 

9.6.3.4 Array-Element Initializers 

An array-element initializer consists of a sequence of variable initializers, enclosed by curly braces ({}) and 
separated by commas. Each variable initializer is an expression or, in the case of a multidimensional array, a 
nested array-element initializer. Each expression must be classified as a value. Array-element initializers may 
also be used in array-creation expressions. 

The type of expression or statement in which an array-element initializer is used determines the type of the array 
being initialized. In an array-creation expression, the array type immediately precedes the initializer. In a 
variable declaration, the array type is the type of the variable being declared. When an array-element initializer 
is used in a variable declaration, such as: 

Private a As Integer() = { 0, 2, 4, 6, 8 } 

it is simply shorthand for an equivalent array-creation expression: 

Private a As Integer() = New Integer() { 0, 2, 4, 6, 8 } 

In an array-element initializer, the outermost nesting level corresponds to the leftmost dimension, and the 
innermost nesting level corresponds to the rightmost dimension. The initializer must have the same number 
levels of nesting as there are dimensions in the array. All of the elements in the innermost nesting level must be 
implicitly convertible to the element type of the array. The number of elements in each nested array-element 
initializer must always be consistent with the size of the other array-element initializers at the same level.  

The following example creates a two-dimensional array with a length of five for the leftmost dimension and a 
length of two for the rightmost dimension: 

Module Test 

    Sub Main() 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 159 

        Dim b As Integer(,) = _ 

            { { 0, 1 }, { 2, 3 }, { 4, 5 }, { 6, 7 }, { 8, 9 } } 

    End Sub 

End Module 

The example is equivalent to the following: 

Module Test 

    Sub Main() 

        Private b(4, 1) As Integer 

 

        b(0, 0) = 0: b(0, 1) = 1 

        b(1, 0) = 2: b(1, 1) = 3 

        b(2, 0) = 4: b(2, 1) = 5 

        b(3, 0) = 6: b(3, 1) = 7 

        b(4, 0) = 8: b(4, 1) = 9 

    End Sub 

End Module 

If the array-creation expression specifies the bounds of the dimensions, the bounds must be specified using 
constant expressions and the number of elements at any particular level must be the same as the size of the 
corresponding dimension. If the bounds are unspecified, the length of each dimension is the number of elements 
in the corresponding level of nesting.  

Some valid and invalid examples follow: 

' OK. 

Private x() As Integer = New Integer(2) {0, 1, 2} 

' Error, length/initializer mismatch. 

Private y() As Integer = New Integer(2) {0, 1, 2, 3}  

Here, the initializer for y is in error because the length and the number of elements in the initializer do not agree. 

An empty array-element initializer (that is, one that contains curly braces but no initializer list) is always valid 
regardless of the number of dimensions of the array. If the size of the dimensions of the array being initialized is 
known in an array-creation expression, the empty array-element initializer represents an array instance of the 
specified size where all the elements have been initialized to the element type's default value. If the dimensions 
of the array being initialized are not known, the empty array-element initializer represents an array instance in 
which all dimensions are size zero. 

Because context is required to determine the type of an array initializer, it is not possible to use an array 
initializer in an expression context. Therefore, the following code is not valid: 

Module Test 

    Sub F(ByVal a() As Integer) 

    End Sub 

 

    Sub Main() 

        ' Error, can't use without array creation expression. 

        F({1, 2, 3}) 



Visual Basic Language Specification 

160 Copyright © Microsoft Corporation 2005. All rights reserved. 

 

        ' OK. 

        F(New Integer() {1, 2, 3}) 

    End Sub 

End Module 

At run time, the expressions in an array-element initializer are evaluated in textual order from left to right. 

ArrayElementInitializer  ::=  {  [  VariableInitializerList  ]  } 

VariableInitializerList  ::= 
 VariableInitializer  | 
 VariableInitializerList  ,  VariableInitializer 

VariableInitializer  ::=  Expression  |  ArrayElementInitializer 

9.6.4 System.MarshalByRefObject Classes 

Classes that derive from the class System.MarshalByRefObject are marshaled across context boundaries 
using proxies (that is, by reference) rather than through copying (that is, by value). This means that an instance 
of such a class may not be a true instance but instead may just be a stub that marshals variable accesses and 
method calls across a context boundary. 

As a result, it is not possible to create a reference to the storage location of variables defined on such classes. 
This means that variables typed as classes derived from System.MarshalByRefObject cannot be passed to 
reference parameters, and methods and variables of variables typed as value types may not be accessed. Instead, 
Visual Basic treats variables defined on such classes as if they were properties (since the restrictions are the 
same on properties). 

There is one exception to this rule: a member implicitly or explicitly qualified with Me is exempt from the above 
restrictions, because Me is always guaranteed to be an actual object, not a proxy. 

9.7 Properties 
Properties are a natural extension of variables; both are named members with associated types, and the syntax 
for accessing variables and properties is the same. Unlike variables, however, properties do not denote storage 
locations. Instead, properties have accessors, which specify the statements to execute in order to read or write 
their values. 

Properties are defined with property declarations. The first part of a property declaration resembles a field 
declaration. The second part includes a Get accessor and/or a Set accessor. In the example below, the Button 
class defines a Caption property.  

Public Class Button 

    Private captionValue As String 

 

    Public Property Caption() As String 

        Get 

            Return captionValue 

        End Get 

 

        Set (ByVal Value As String) 

            captionValue = value 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 161 

            Repaint() 

        End Set 

    End Property 

End Class 

Based on the Button class above, the following is an example of use of the Caption property: 

Dim okButton As Button = New Button() 

 

okButton.Caption = "OK" ' Invokes Set accessor. 

Dim s As String = okButton.Caption ' Invokes Get accessor. 

Here, the Set accessor is invoked by assigning a value to the property, and the Get accessor is invoked by 
referencing the property in an expression. 

If no type is specified for a property and strict semantics are being used, a compile-time error occurs; otherwise 
the type of the property is implicitly Object or the type of the property's type character. A property declaration 
may contain either a Get accessor, which retrieves the value of the property, a Set accessor, which stores the 
value of the property, or both. Because a property implicitly declares methods, a property may be declared with 
the same modifiers as a method. If the property is defined in an interface or defined with the MustOverride 
modifier, the property body and the End construct must be omitted; otherwise, a compile-time error occurs. 

The index parameter list makes up the signature of the property, so properties may be overloaded on index 
parameters but not on the type of the property. The index parameter list is the same as for a regular method. 
However, none of the parameters may be modified with the ByRef modifier and none of them may be named 
Value (which is reserved for the implicit value parameter in the Set accessor). 

A property may be declared as follows: 

• If the property specifies no property type modifier, the property must have both a Get accessor and a Set 
accessor. The property is said to be a read-write property. 

• If the property specifies the ReadOnly modifier, the property must have a Get accessor and may not have a 
Set accessor. The property is said to be read-only property. It is a compile-time error for a read-only 
property to be the target of an assignment. 

• If the property specifies the WriteOnly modifier, the property must have a Set accessor and may not have 
a Get accessor. The property is said to be write-only property. It is a compile-time error to reference a 
write-only property in an expression except as the target of an assignment or as an argument to a method. 

The Get and Set accessors of a property are not distinct members, and it is not possible to declare the accessors 
of a property separately. The following example does not declare a single read-write property. Rather, it declares 
two properties with the same name, one read-only and one write-only: 

Class A 

    Private nameValue As String 

 

    ' Error, contains a duplicate member name. 

    Public ReadOnly Property Name() As String  

        Get 

            Return nameValue 

        End Get 

    End Property 



Visual Basic Language Specification 

162 Copyright © Microsoft Corporation 2005. All rights reserved. 

 

    ' Error, contains a duplicate member name. 

    Public WriteOnly Property Name() As String  

        Set (ByVal Value As String) 

            nameValue = value 

        End Set 

    End Property 

End Class 

Since two members declared in the same class cannot have the same name, the example causes a compile-time 
error. 

By default, the accessibility of a property’s Get and Set accessors is the same as the accessibility of the 
property itself. However, the Get and Set accessors can also specify accessibility separately from the property. 
In that case, the accessibility of an accessor must be the same or more restrictive than the accessibility of the 
property. At least one of the accessors must have the same accessibility as the property. Access types are 
considered more or less restrictive as follows: 

• Private is more restrictive than Public, Protected Friend, Protected, or Friend. 

• Friend is more restrictive than Protected Friend or Public. 

• Protected is more restrictive than Protected Friend or Public. 

• Protected Friend is more restrictive than Public. 

When one of a property’s accessors is accessible but the other one is not, the property is treated as if it was read-
only or write-only. For example: 

Class A 
    Public Property P() As Integer 
        Get 
            ... 
        End Get 
 
        Private Set (ByVal Value As Integer) 
            ... 
        End Set 
    End Property 
End Class 
 
Module Test 
    Sub Main() 
        Dim a As A = New A() 
 
        ' Error: A.P is read-only in this context. 
        a.P = 10 
    End Sub 
End Module 

When a derived type shadows a property, the derived property hides the shadowed property with respect to both 
reading and writing. In the following example, the P property in B hides the P property in A with respect to both 
reading and writing: 

Class A 

    Public WriteOnly Property P() As Integer 

        Set (ByVal Value As Integer) 

        End Set 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 163 

    End Property 

End Class 

 

Class B 

    Inherits A 

 

    Public Shadows ReadOnly Property P() As Integer 

       Get 

       End Get 

    End Property 

End Class 

 

Module Test 

    Sub Main() 

        Dim x As B = New B 

 

        B.P = 10     ' Error, B.P is read-only. 

    End Sub 

End Module 

The accessibility domain of the return type or parameter types must be the same as or a superset of the 
accessibility domain of the property itself. A property may only have one Set accessor and one Get accessor. 

Except for differences in declaration and invocation syntax, Overridable, NotOverridable, Overrides, 
MustOverride, and MustInherit properties behave exactly like Overridable, NotOverridable, 
Overrides, MustOverride, and MustInherit methods. When a property is overridden, the overriding 
property must be of the same type (read-write, read-only, write-only). An Overridable property cannot 
contain a Private accessor. 

In the following example X is an Overridable read-only property, Y is an Overridable read-write property, 
and Z is a MustOverride read-write property. 

MustInherit Class A 

    Private y As Integer 

 

    Public Overridable ReadOnly Property X() As Integer 

        Get 

            Return 0 

        End Get 

    End Property 

 

    Public Overridable Property Y() As Integer 

        Get 

            Return y 

         End Get 



Visual Basic Language Specification 

164 Copyright © Microsoft Corporation 2005. All rights reserved. 

        Set (ByVal Value As Integer) 

            y = value 

        End Set 

    End Property 

 

    Public MustOverride Property Z() As Integer 

End Class 

Because Z is MustOverride, the containing class A must be declared MustInherit. 

By contrast, a class that derives from class A is shown below: 

Class B 

    Inherits A 

 

    Private zValue As Integer 

 

    Public Overrides ReadOnly Property X() As Integer 

        Get 

            Return MyBase.X + 1 

        End Get 

    End Property 

 

    Public Overrides Property Y() As Integer 

        Get 

            Return MyBase.Y 

        End Get 

        Set (ByVal Value As Integer) 

            If value < 0 Then 

                MyBase.Y = 0 

            Else 

                MyBase.Y = Value 

            End If 

        End Set 

    End Property 

 

    Public Overrides Property Z() As Integer 

        Get 

            Return zValue 

        End Get 

        Set (ByVal Value As Integer) 

            zValue = Value 

        End Set 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 165 

    End Property 

End Class  

Here, the declarations of properties X, Y, and Z override the base properties. Each property declaration exactly 
matches the accessibility modifiers, type, and name of the corresponding inherited property. The Get accessor 
of property X and the Set accessor of property Y use the MyBase keyword to access the inherited properties. 
The declaration of property Z overrides the MustOverride property — thus, there are no outstanding 
MustOverride members in class B, and B is permitted to be a regular class.  

Properties can be used to delay initialization of a resource until the moment it is first referenced. For example: 

Imports System.IO 

 

Public Class ConsoleStreams 

    Private Shared reader As TextReader 

    Private Shared writer As TextWriter 

    Private Shared errors As TextWriter 

 

    Public Shared ReadOnly Property [In]() As TextReader 

        Get 

            If reader Is Nothing Then 

                reader = New StreamReader(File.OpenStandardInput()) 

            End If 

            Return reader 

        End Get 

    End Property 

 

    Public Shared ReadOnly Property Out() As TextWriter 

        Get 

            If writer Is Nothing Then 

                writer = New StreamWriter(File.OpenStandardOutput()) 

            End If 

            Return writer 

        End Get 

    End Property 

 

    Public Shared ReadOnly Property [Error]() As TextWriter 

        Get 

            If errors Is Nothing Then 

                errors = New StreamWriter(File.OpenStandardError()) 

            End If 

            Return errors 

        End Get 

    End Property 



Visual Basic Language Specification 

166 Copyright © Microsoft Corporation 2005. All rights reserved. 

End Class 

The ConsoleStreams class contains three properties, In, Out, and Error, that represent the standard input, 
output, and error devices, respectively. By exposing these members as properties, the ConsoleStreams class 
can delay their initialization until they are actually used. For example, upon first referencing the Out property, 
as in ConsoleStreams.Out.WriteLine("hello, world"), the underlying TextWriter for the output 
device is created. But if the application makes no reference to the In and Error properties, then no objects are 
created for those devices. 

PropertyMemberDeclaration  ::= 
 RegularPropertyMemberDeclaration  | 
 MustOverridePropertyMemberDeclaration 

RegularPropertyMemberDeclaration  ::= 
 [  Attributes  ]  [  PropertyModifier+  ]  Property  FunctionSignature  [  ImplementsClause  ] 
  LineTerminator 
 PropertyAccessorDeclaration+ 
 End  Property  StatementTerminator 

MustOverridePropertyMemberDeclaration  ::= 
 [  Attributes  ]  [  MustOverridePropertyModifier+  ]  Property  FunctionSignature  [  ImplementsClause  ] 
  StatementTerminator 

InterfacePropertyMemberDeclaration  ::= 
 [  Attributes  ]  [  InterfacePropertyModifier+  ]  Property  FunctionSignature  StatementTerminator 

PropertyModifier  ::=  ProcedureModifier  |  Default  |  ReadOnly  |  WriteOnly 

MustOverridePropertyModifier  ::=  PropertyModifier  |  MustOverride 

InterfacePropertyModifier  ::= 
 Shadows  | 
 Overloads  | 
 Default  | 
 ReadOnly  | 
 WriteOnly 

PropertyAccessorDeclaration  ::=  PropertyGetDeclaration  |  PropertySetDeclaration 

9.7.1 Get Accessor Declarations 

A Get accessor (getter) is declared by using a property Get declaration. A property Get declaration consists of 
the keyword Get followed by a statement block. Given a property named P, a Get accessor declaration 
implicitly declares a method with the name get_P with the same modifiers, type, and parameter list as the 
property. If the type contains a declaration with that name, a compile-time error results, but the implicit 
declaration is ignored for the purposes of name binding. 

A special local variable, which is implicitly declared in the Get accessor body's declaration space with the same 
name as the property, represents the return value of the property. The local variable has special name resolution 
semantics when used in expressions. If the local variable is used in a context that expects an expression that is 
classified as a method group, such as an invocation expression, then the name resolves to the function rather 
than to the local variable. For example: 

ReadOnly Property F(ByVal i As Integer) As Integer 

    Get 

        If i = 0 Then 

            F = 1    ' Sets the return value. 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 167 

        Else 

            F = F(i – 1) ' Recursive call. 

        End If 

    End Get 

End Property 

The use of parentheses can cause ambiguous situations (such as F(1) where F is a property whose type is a one-
dimensional array). In all ambiguous situations, the name resolves to the property rather than the local variable. 
For example: 

ReadOnly Property F(ByVal i As Integer) As Integer() 

    Get 

        If i = 0 Then 

            F = new Integer(3) { 1, 2, 3 } 

        Else 

            F = F(i – 1) ' Recursive call, not index. 

        End If 

    End Get 

End Property 

When control flow leaves the Get accessor body, the value of the local variable is passed back to the invocation 
expression. Because invoking a Get accessor is conceptually equivalent to reading the value of a variable, it is 
considered bad programming style for Get accessors to have observable side effects, as illustrated in the 
following example: 

Class Counter 

    Private Value As Integer 

 

    Public ReadOnly Property NextValue() As Integer 

        Get 

            Value += 1 

            Return Value 

        End Get 

    End Property 

End Class 

The value of the NextValue property depends on the number of times the property has previously been 
accessed. Thus, accessing the property produces an observable side effect, and the property should instead be 
implemented as a method. 

The "no side effects" convention for Get accessors does not mean that Get accessors should always be written 
to simply return values stored in variables. Indeed, Get accessors often compute the value of a property by 
accessing multiple variables or invoking methods. However, a properly designed Get accessor performs no 
actions that cause observable changes in the state of the object. 

Note   Get accessors have the same restriction on line placement that subroutines have. The beginning 
statement, end statement and block must all appear at the beginning of a logical line. 

PropertyGetDeclaration  ::= 
 [  Attributes  ]  [  AccessModifier  ]  Get  LineTerminator 



Visual Basic Language Specification 

168 Copyright © Microsoft Corporation 2005. All rights reserved. 

 [  Block  ] 
 End  Get  StatementTerminator 

9.7.2 Set Accessor Declarations 

A Set accessor (setter) is declared by using a property set declaration. A property set declaration consists of the 
keyword Set, an optional parameter list, and a statement block. Given a property named P, a setter declaration 
implicitly declares a method with the name set_P with the same modifiers and parameter list as the property. If 
the type contains a declaration with that name, a compile-time error results, but the implicit declaration is 
ignored for the purposes of name binding. 

If a parameter list is specified, it must have one member, that member must have no modifiers except ByVal, 
and its type must be the same as the type of the property. The parameter represents the property value being set. 
If the parameter is omitted, a parameter named Value is implicitly declared. 

Note   Set accessors have the same restriction on line placement that subroutines have. The beginning 
statement, end statement and block must all appear at the beginning of a logical line. 

PropertySetDeclaration  ::= 
 [  Attributes  ]  [  AccessModifier  ]  Set  [  (  ParameterList  )  ]  LineTerminator 
 [  Block  ] 
 End  Set  StatementTerminator 

9.7.3 Default Properties 

A property that specifies the modifier Default is called a default property. Any type that allows properties may 
have a default property, including interfaces. The default property may be referenced without having to qualify 
the instance with the name of the property. Thus, given a class 

Class Test 

    Public Default ReadOnly Property Item(ByVal i As Integer) As Integer 

        Get 

            Return i 

        End Get 

    End Property 

End Class 

the code 

Module TestModule 

    Sub Main() 

        Dim x As Test = New Test() 

        Dim y As Integer 

 

        y = x(10) 

    End Sub 

End Module 

is equivalent to 

Module TestModule 

    Sub Main() 

        Dim x As Test = New Test() 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 169 

        Dim y As Integer 

 

        y = x.Item(10) 

    End Sub 

End Module 

Once a property is declared Default, all of the properties overloaded on that name in the inheritance hierarchy 
become the default property, whether they have been declared Default or not. Declaring a property Default 
in a derived class when the base class declared a default property by another name does not require any other 
modifiers such as Shadows or Overrides. This is because the default property has no identity or signature and 
so cannot be shadowed or overloaded. For example: 

Class Base 

    Public ReadOnly Default Property Item(ByVal i As Integer) As Integer 

        Get 

            Console.WriteLine("Base = " & i) 

        End Get 

    End Property 

End Class 

 

Class Derived 

    Inherits Base 

 

    ' This hides Item, but does not change the default property. 

    Public Shadows ReadOnly Property Item(ByVal i As Integer) As Integer 

        Get 

            Console.WriteLine("Derived = " & i) 

        End Get 

    End Property 

End Class 

 

Class MoreDerived 

    Inherits Derived 

 

    ' This declares a new default property, but not Item. 

    ' This does not need to be declared Shadows 

    Public ReadOnly Default Property Value(ByVal i As Integer) As Integer 

        Get 

            Console.WriteLine("MoreDerived = " & i) 

        End Get 

    End Property 

End Class 

 



Visual Basic Language Specification 

170 Copyright © Microsoft Corporation 2005. All rights reserved. 

Module Test 

    Sub Main() 

        Dim x As MoreDerived = New MoreDerived() 

        Dim y As Integer 

        Dim z As Derived = x 

 

        y = x(10)        ' Calls MoreDerived.Value. 

        y = x.Item(10)   ' Calls Derived.Item 

        y = z(10)        ' Calls Base.Item 

    End Sub 

End Module 

This program will produce the output: 

MoreDerived = 10 

Derived = 10 

Base = 10 

All default properties declared within a type must have the same name and, for clarity, must specify the 
Default modifier. Because a default property with no index parameters would cause an ambiguous situation 
when assigning instances of the containing class, default properties must have index parameters. Furthermore, if 
one property overloaded on a particular name includes the Default modifier, all properties overloaded on that 
name must specify it. Default properties may not be Shared, and at least one accessor of the property must not 
be Private. 

9.8 Operators 
Operators are methods that define the meaning of an existing Visual Basic operator for the containing class. 
When the operator is applied to the class in an expression, the operator is compiled into a call to the operator 
method defined in the class. Defining an operator for a class is also known as overloading the operator. It is not 
possible to overload an operator that already exists; in practice, this primarily applies to conversion operators. 
For example, it is not possible to overload the conversion from a derived class to a base class: 

Class Base 

End Class 

 

Class Derived 

    ' Error: Cannot redefine conversion from Derived to Base 

    Public Shared Widening Operator CType(ByVal s As Derived) As Base 

        ... 

    End Operator 

End Class 

Operators can also be overloaded in the common sense of the word: 

Class Base 

    Public Shared Widening Operator CType(ByVal b As Base) As Integer 

        ... 

    End Operator 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 171 

 

    Public Shared Narrowing Operator CType(ByVal i As Integer) As Base 

        ... 

    End Operator 

End Class 

Operator declarations do not explicitly add names to the containing type’s declaration space, however they do 
implicitly declare a corresponding method starting with the characters “op_”. The following sections list the 
corresponding method names with each operator. 

There are three classes of operators that can be defined: unary operators, binary operators and conversion 
operators. All operator declarations share certain restrictions: 

• Operator declarations must always be Public and Shared. The Public modifier can be omitted in 
contexts where the modifier will be assumed. 

• The parameters of an operator cannot be declared ByRef, Optional or ParamArray. 

• The type of at least one of the operands or the return value must be the type that contains the operator. 

• There is no function return variable defined for operators. Therefore, the Return statement must be used to 
return values from an operator body. 

The precedence and associativity of an operator cannot be modified by an operator declaration. 

Note   Operators have the same restriction on line placement that subroutines have. The beginning 
statement, end statement and block must all appear at the beginning of a logical line. 

OperatorDeclaration  ::= 
 UnaryOperatorDeclaration    | 
 BinaryOperatorDeclaration  | 
 ConversionOperatorDeclaration 

OperatorModifier  ::=  Public  |  Shared  |  Overloads  |  Shadows 

Operand  ::=  [  ByVal  ]  Identifier  [  As  TypeName  ] 

9.8.1 Unary Operators 

The following unary operators can be overloaded: 

• The unary plus operator + (corresponding method: op_UnaryPlus) 

• The unary minus operator - (corresponding method: op_UnaryNegation) 

• The logical Not operator (corresponding method: op_OnesComplement) 

Note The .NET Framework distinguishes between overloading bitwise and logical operators, while 
Visual Basic does not. Overloading the Not operator will overload only the bitwise operator from the 
perspective of other languages that make this distinction. 

• The IsTrue and IsFalse operators (corresponding methods: op_True, op_False) 

All overloaded unary operators must take a single parameter of the containing type and may return any type, 
except for IsTrue and IsFalse, which must return Boolean. If the containing type is a generic type, the type 
parameters must match the containing type’s type parameters. For example, 

Structure Complex 

    Public Shared Operator +(ByVal v As Complex) As Complex 



Visual Basic Language Specification 

172 Copyright © Microsoft Corporation 2005. All rights reserved. 

        Return v 

    End Operator 

End Structure 

If a type overloads one of IsTrue or IsFalse, then it must overload the other as well. If only one is 
overloaded, a compile-time error results. 

Note   IsTrue and IsFalse are not reserved words. 

UnaryOperatorDeclaration  ::= 
 [  Attributes  ]  [  OperatorModifier+  ]  Operator  OverloadableUnaryOperator  (  Operand  ) 
  [  As  [  Attributes  ]  TypeName  ]  LineTerminator 
 [  Block  ] 
 End  Operator  StatementTerminator 

OverloadableUnaryOperator  ::=  +  |  -  |  Not  |  IsTrue  |  IsFalse 

9.8.2 Binary Operators 

The following binary operators can be overloaded: 

• The addition +, subtraction -, multiplication *, division /, integral division \, modulo Mod and 
exponentiation ̂ operators (corresponding method: op_Addition, op_Subtraction, op_Multiply, 
op_Division, op_IntegerDivision, op_Modulus, op_Exponent) 

• The relational operators =, <>, <, >, <=, >= (corresponding methods: op_Equality, op_Inequality, 
op_LessThan, op_GreaterThan, op_LessThanOrEqual, op_GreaterThanOrEqual) 

Note While the equality operator can be overloaded, the assignment operator (used only in assignment 
statements) cannot be overloaded. 

• The Like operator (corresponding method: op_Like) 

• The concatenation operator & (corresponding method: op_Concatenate) 

• The logical And, Or and Xor operators (corresponding methods: op_BitwiseAnd, op_BitwiseOr, 
op_ExclusiveOr) 

Note The .NET Framework distinguishes between overloading bitwise and logical operators, while 
Visual Basic does not. Overloading the And, Or and Xor operators will overload only the bitwise 
operators from the perspective of other languages that make this distinction. 

• The shift operators << and >> (corresponding methods: op_LeftShift, op_RightShift) 

Note The .NET Framework distinguishes between overloading signed and unsigned shift operators, 
while Visual Basic does not. Overloading the << and >> operators will overload only the signed 
operators from the perspective of other languages that make this distinction. 

All overloaded binary operators must take the containing type as one of the parameters. If the containing type is 
a generic type, the type parameters must match the containing type’s type parameters. The shift operators further 
restrict this rule to require the first parameter to be of the containing type; the second parameter must always be 
of type Integer. 

The following binary operators must be declared in pairs: 

• Operator = and operator <> 

• Operator > and operator < 

• Operator >= and operator <= 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 173 

If one of the pair is declared, then the other must also be declared with matching parameter and return types, or a 
compile-time error will result. 

Annotation 

The purpose of requiring paired declarations of relational operators is to try and ensure at least a minimum level 
of logical consistency in overloaded operators. 

In contrast to the relational operators, overloading both the division and integral division operators is strongly 
discouraged, although not an error. Because other languages may not distinguish between division and integral 
division as separate operators, defining an integral division overload will automatically define a regular division 
operator (usable only from other languages) that will call the integral division operator. 

Annotation 

In general, the two types of division should be entirely distinct: a type that supports division is either integral (in 
which case it should support \) or not (in which case it should support /). We considered making it an error to 
define both operators, but because their languages do not generally distinguish between two types of division the 
way Visual Basic does, we felt it was safest to allow the practice but strongly discourage it. 

Compound assignment operators cannot be overloaded directly. Instead, when the corresponding binary operator 
is overloaded, the compound assignment operator will use the overloaded operator. For example: 

Structure Complex 

    Public Shared Operator +(ByVal x As Complex, ByVal y As Complex) _ 

        As Complex 

        ... 

    End Operator 

End Structure 

 

Module Test 

    Sub Main() 

        Dim c1, c2 As Complex 

        ' Calls the overloaded + operator 

        c1 += c2 

    End Sub 

End Module 

 

BinaryOperatorDeclaration  ::= 
 [  Attributes  ]  [  OperatorModifier+  ]  Operator  OverloadableBinaryOperator 
  (  Operand  ,  Operand  )  [  As  [  Attributes  ]  TypeName  ]  LineTerminator 
 [  Block  ] 
 End  Operator  StatementTerminator 

OverloadableBinaryOperator  ::= 
 +  |  -  |  *  |  /  |  \  |  &  |  Like  |  Mod  |  And  |  Or  |  Xor  | 
 ^  |  <<  |  >>  |  =  |  <>  |  >  |  <  |  >=  |  <= 



Visual Basic Language Specification 

174 Copyright © Microsoft Corporation 2005. All rights reserved. 

9.8.3 Conversion Operators 

Conversion operators define new conversions between types. These new conversions are called user-defined 
conversions. A conversion operator converts from a source type, indicated by the parameter type of the 
conversion operator, to a target type, indicated by the return type of the conversion operator. Conversions must 
be classified as either widening or narrowing. A conversion operator declaration that includes the Widening 
keyword introduces a user-defined widening conversion (corresponding method: op_Implicit). A conversion 
operator declaration that includes the Narrowing keyword introduces a user-defined narrowing conversion 
(corresponding method: op_Explicit).  

In general, user-defined widening conversions should be designed to never throw exceptions and never lose 
information. If a user-defined conversion can cause exceptions (for example, because the source argument is out 
of range) or loss of information (such as discarding high-order bits), then that conversion should be defined as a 
narrowing conversion. In the example: 

Structure Digit 

 Dim value As Byte 

 

 Public Sub New Digit(ByVal value As Byte) 

  if value < 0 OrElse value > 9 Then Throw New ArgumentException() 

  Me.value = value 

 End Sub 

 

 Public Shared Widening Operator CType(ByVal d As Digit) As Byte 

  Return d.value 

 End Operator 

 

 Public Shared Narrowing Operator CType(b As Byte) As Digit 

  Return New Digit(b) 

 End Operator 

End Structure 

the conversion from Digit to Byte is a widening conversion because it never throws exceptions or loses 
information, but the conversion from Byte to Digit is a narrowing conversion since Digit can only represent 
a subset of the possible values of a Byte. 

Unlike all other type members that can be overloaded, the signature of a conversion operator includes the target 
type of the conversion. This is the only type member for which the return type participates in the signature. The 
widening or narrowing classification of a conversion operator, however, is not part of the operator’s signature. 
Thus, a class or structure cannot declare both a widening conversion operator and a narrowing conversion 
operator with the same source and target types. 

A user-defined conversion operator must convert either to or from the containing type – for example, it is 
possible for a class C to define a conversion from C to Integer and from Integer to C, but not from Integer 
to Boolean. If the containing type is a generic type, the type parameters must match the containing type’s type 
parameters. Also, it is not possible to redefine an intrinsic (i.e. non-user-defined) conversion. As a result, a type 
cannot declare a conversion where: 

• The source type and the destination type are the same. 

• Both the source type and the destination type are not the type that defines the conversion operator. 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 175 

• The source type or the destination type is an interface type. 

• The source type and destination types are related by inheritance (including Object). 

ConversionOperatorDeclaration    ::= 
 [  Attributes  ]  [  ConversionOperatorModifier+  ]  Operator  CType  (  Operand  ) 
  [  As  [  Attributes  ]  TypeName  ]  LineTerminator 
 [  Block  ] 
 End  Operator  StatementTerminator 

ConversionOperatorModifier  ::=  Widening  |  Narrowing  |  ConversionModifier 





 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 177 

10. Statements 

Statements represent executable code. 

A method is executed by first initializing all of its parameters to their correct values and initializing all of its 
local variables to the default value of their types. After parameter and local variable initialization, the method 
body block is executed. After the method block has been executed, execution returns to the caller of the method. 

Statement  ::= 
 LabelDeclarationStatement  | 
 LocalDeclarationStatement  | 
 WithStatement  | 
 SyncLockStatement  | 
 EventStatement  | 
 AssignmentStatement  | 
 InvocationStatement  | 
 ConditionalStatement  | 
 LoopStatement  | 
 ErrorHandlingStatement  | 
 BranchStatement  | 
 ArrayHandlingStatement  | 
 UsingStatement 

10.1 Blocks and Labels 
A group of executable statements is called a statement block. Execution of a statement block begins with the 
first statement in the block. Once a statement has been executed, the next statement in lexical order is executed, 
unless a statement transfers execution elsewhere or an exception occurs. 

Within a statement block, the division of statements on logical lines is not significant with the exception of label 
declaration statements. A label is an identifier that identifies a particular position within the statement block that 
can be used as the target of a branch statement such as GoTo. 

Label declaration statements must appear at the beginning of a logical line and labels may be either an identifier 
or an integer literal. Because both label declaration statements and invocation statements can consist of a single 
identifier, a single identifier at the beginning of a local line is always considered a label declaration statement. 
Label declaration statements must always be followed by a colon, even if no statements follow on the same 
logical line. 

Labels have their own declaration space and do not interfere with other identifiers. The following example is 
valid and uses the name variable x both as a parameter and as a label. 

Function F(ByVal x As Integer) As Integer 

    If x >= 0 Then 

        GoTo x 

    End If 

    x = -x 

x:  

    Return x 



Visual Basic Language Specification 

178 Copyright © Microsoft Corporation 2005. All rights reserved. 

End Function  

The scope of a label is the body of the method containing it. 

For the sake of readability, statement productions that involve multiple substatements are treated as a single 
production in this specification, even though the substatements may each be by themselves on a labeled line. 

Block  ::=  [  Statements+  ] 

LabelDeclarationStatement  ::=  LabelName  : 

LabelName  ::=  Identifier  |  IntLiteral 

Statements  ::= 
 [  Statement  ]  | 
 Statements  :  [  Statement  ] 

10.1.1 Local Variables and Parameters 

A method invocation creates a copy, specific to that invocation, of the local variables and parameters of the 
method. A local variable or parameter comes into existence when control enters the method body that contains 
the local variable declaration or parameter declaration and ceases to exist when control leaves the method. All 
locals are initialized to their type's default value. Local variables and parameters are always publicly accessible. 
It is an error to refer to a local variable in a textual position that precedes its declaration, as the following 
example illustrates:  

Class A 

    Private i As Integer = 0 

 

    Sub F() 

        i = 1 

        Dim i As Integer       ' Error, use precedes declaration. 

        i = 2 

    End Sub 

 

    Sub G() 

        Dim a As Integer = 1 

        Dim b As Integer = a   ' This is valid. 

    End Sub 

End Class 

In the F method above, the first assignment to i specifically does not refer to the field declared in the outer 
scope. Rather, it refers to the local variable, and it is in error because it textually precedes the declaration of the 
variable. In the G method, a subsequent variable declaration refers to a local variable declared in an earlier 
variable declaration within the same local variable declaration. 

Each block in a method creates a declaration space for local variables. Names are introduced into this 
declaration space through local variable declarations in the method body and through the parameter list of the 
method, which introduces names into the outermost block's declaration space. Blocks do not allow shadowing of 
names through nesting: once a name has been declared in a block, the name may not be redeclared in any nested 
blocks. 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 179 

Thus, in the following example, the F and G methods are in error because the name i is declared in the outer 
block and cannot be redeclared in the inner block. However, the H and I methods are valid because the two i's 
are declared in separate non-nested blocks. 

Class A 

    Sub F() 

        Dim i As Integer = 0 

        If True Then 

               Dim i As Integer = 1 

        End If 

    End Sub 

 

    Sub G() 

        If True Then 

            Dim i As Integer = 0 

        End If 

        Dim i As Integer = 1 

    End Sub  

 

    Sub H() 

        If True Then 

            Dim i As Integer = 0 

        End If 

        If True Then 

            Dim i As Integer = 1 

        End If 

    End Sub 

 

    Sub I() 

        Dim i As Integer 

        For i = 0 To 9 

            H() 

        Next I 

 

        Dim i As Integer 

        For i = 0 To 9 

            H() 

        Next I 

    End Sub  

End Class  

When the method is a function, a special local variable is implicitly declared in the method body's declaration 
space with the same name as the method representing the return value of the function. The local variable has 



Visual Basic Language Specification 

180 Copyright © Microsoft Corporation 2005. All rights reserved. 

special name resolution semantics when used in expressions. If the local variable is used in a context that 
expects an expression classified as a method group, such as an invocation expression, then the name resolves to 
the function rather than to the local variable. For example: 

Function F(ByVal i As Integer) As Integer 

    If i = 0 Then 

        F = 1        ' Sets the return value. 

    Else 

        F = F(i – 1) ' Recursive call. 

    End If 

End Function 

The use of parentheses can cause ambiguous situations (such as F(1), where F is a function whose return type 
is a one-dimensional array); in all ambiguous situations, the name resolves to the function rather than the local 
variable. For example: 

Function F(ByVal i As Integer) As Integer() 

    If i = 0 Then 

        F = new Integer(3) { 1, 2, 3 } 

    Else 

        F = F(i – 1) ' Recursive call, not an index. 

    End If 

End Function 

When control flow leaves the method body, the value of the local variable is passed back to the invocation 
expression. If the method is a subroutine, there is no such implicit local variable, and control simply returns to 
the invocation expression.  

10.2 Local Declaration Statements 
A local declaration statement declares a new local variable, local constant, or static variable. Local variables and 
local constants are equivalent to instance variables and constants scoped to the method and are declared in the 
same way. Static variables are similar to Shared variables and are declared using the Static modifier. 

Static variables are locals that retain their value across invocations of the method. Static variables declared 
within non-shared methods are per instance: each instance of the type that contains the method has its own copy 
of the static variable. Static variables declared within Shared methods are per type; there is only one copy of 
the static variable for all instances. While local variables are initialized to their type's default value upon each 
entry into the method, static variables are only initialized to their type's default value when the type or type 
instance is initialized. Static variables may not be declared in structures or generic methods. 

Local variables, local constants, and static variables always have public accessibility and may not specify 
accessibility modifiers. If no type is specified on a local declaration statement and strict semantics are being 
used, a compile-time error occurs. Otherwise the type of the property is implicitly Object or the type of the 
property's type character. 

Variable initializers on local declaration statements are equivalent to assignment statements placed at the textual 
location of the declaration. Thus, if execution branches over the local declaration statement, the variable 
initializer is not executed. If the local declaration statement is executed more than once, the variable initializer is 
executed an equal number of times. Static variables only execute their initializer the first time. If an exception 
occurs while initializing a static variable, the static variable is considered initialized with the default value of the 
static variable's type.  



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 181 

The following example shows the use of initializers: 

Module Test 

    Sub F() 

        Static x As Integer = 5 

 

        Console.WriteLine("Static variable x = " & x) 

        x += 1 

    End Sub 

 

    Sub Main() 

        Dim i As Integer 

 

        For i = 1 to 3 

            F() 

        Next i 

 

        i = 3 

label: 

        Dim y As Integer = 8 

 

        If i > 0 Then 

            Console.WriteLine("Local variable y = " & y) 

            y -= 1 

            i -= 1 

            Goto label 

        End If 

    End Sub 

End Module 

This program prints: 

Static variable x = 5 

Static variable x = 6 

Static variable x = 7 

Local variable y = 8 

Local variable y = 8 

Local variable y = 8 

Initializers on static locals are thread-safe and protected against exceptions during initialization. If an exception 
occurs during a static local initializer, the static local will have its default value and not be initialized. A static 
local initializer 

Module Test 

    Sub F() 



Visual Basic Language Specification 

182 Copyright © Microsoft Corporation 2005. All rights reserved. 

        Static x As Integer = 5 

    End Sub 

End Module 

is equivalent to 

Module Test 

    Class InitFlag 

        Public State As Short 

    End Class 

 

    Private xInitFlag As InitFlag = New InitFlag() 

 

    Sub F() 

        Dim x As Integer 

 

        If xInitFlag.State <> 1 Then 

            Monitor.Enter(xInitFlag) 

            Try 

                If xInitFlag.State = 0 Then 

                    xInitFlag.State = 2 

                    x = 5 

                Else If xInitFlag.State = 2 Then 

                    Throw New IncompleteInitializationException() 

                End If 

            Finally 

                xInitFlag = 1 

                Monitor.Leave(xInitFlag) 

            End Try 

        End If 

    End Sub 

End Module 

Local variables, local constants, and static variables are scoped to the statement block in which they are 
declared. Static variables are special in that their names may only be used once throughout the entire method. 
For example, it is not valid to specify two static variable declarations with the same name even if they are in 
different blocks. 

LocalDeclarationStatement  ::=  LocalModifier  VariableDeclarators  StatementTerminator 

LocalModifier  ::=  Static  |  Dim  |  Const 

10.2.1 Implicit Local Declarations 

In addition to local declaration statements, local variables can also be declared implicitly through use. A simple 
name expression that uses a name that has not been declared in the current method declares a local variable by 
that name. For example: 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 183 

Option Explicit Off 

Module Test 

    Sub Main() 

        x = 10 

        y = 20 

        Console.WriteLine(x + y) 

    End Sub 

End Module 

Implicit local declaration only occurs in expression contexts that can accept an expression classified as a 
variable. The exception to this rule is that a local variable may not be implicitly declared when it is the target of 
a function invocation expression, indexing expression, or a member access expression. 

Implicit locals are treated as if they are declared at the beginning of the containing method. Thus, they are 
always scoped to the entire method body. Implicit locals are typed as Object if no type character was attached 
to the variable name; otherwise the type of the variable is the type of the type character. 

If explicit local declaration is specified by the compilation environment or by Option Explicit, all local 
variables must be explicitly declared and implicit variable declaration is disallowed. 

10.3 With Statement 
A With statement allows multiple references to an expression's members without specifying the expression 
multiple times. The expression must be classified as a value and is evaluated once, upon entry into the block. 
Within the With statement block, a member access expression or dictionary access expression starting with a 
period or an exclamation point is evaluated as if the With expression preceded it. For example: 

Structure Test 

    Public x As Integer 

 

    Function F() As Integer 

        Return 10 

    End Sub 

End Structure 

 

Module TestModule 

    Sub Main() 

        Dim y As Test 

 

        With y 

            .x = 10 

            Console.WriteLine(.x) 

            .x = .F() 

        End With 

    End Sub 

End Module 

It is invalid to branch into a With statement block from outside of the block. 



Visual Basic Language Specification 

184 Copyright © Microsoft Corporation 2005. All rights reserved. 

WithStatement  ::= 
 With  Expression  StatementTerminator 
 [  Block  ] 
 End  With  StatementTerminator 

10.4 SyncLock Statement 
A SyncLock statement allows statements to be synchronized on an expression, which ensures that multiple 
threads of execution do not execute the same statements at the same time. The expression must be classified as a 
value and is evaluated once, upon entry to the block. When entering the SyncLock block, the Shared method 
System.Threading.Monitor.Enter is called on the specified expression, which blocks until the thread of 
execution has an exclusive lock on the object returned by the expression. The type of the expression in a 
SyncLock statement must be a reference type. For example: 

Class Test 

    Private count As Integer = 0 

 

    Public Function Add() As Integer 

        SyncLock Me 

            count += 1 

            Add = count 

        End SyncLock 

    End Function 

 

    Public Function Subtract() As Integer 

        SyncLock Me 

            count -= 1 

            Subtract = count 

        End SyncLock 

    End Function 

End Class 

The example above synchronizes on the specific instance of the class Test to ensure that no more than one 
thread of execution can add or subtract from the count variable at a time for a particular instance. 

The SyncLock block is implicitly contained by a Try statement whose Finally block calls the Shared 
method System.Threading.Monitor.Exit on the expression. This ensures the lock is freed even when an 
exception is thrown. As a result, it is invalid to branch into a SyncLock block from outside of the block, and a 
SyncLock block is treated as a single statement for the purposes of Resume and Resume Next. The above 
example is equivalent to the following code: 

Class Test 

    Private count As Integer = 0 

 

    Public Function Add() As Integer 

        Try 

            System.Threading.Monitor.Enter(Me) 

 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 185 

            count += 1 

            Add = count 

        Finally 

            System.Threading.Monitor.Exit(Me) 

        End Try 

    End Function 

 

    Public Function Subtract() As Integer 

        Try 

            System.Threading.Monitor.Enter(Me) 

 

            count -= 1 

            Subtract = count 

        Finally 

            System.Threading.Monitor.Exit(Me) 

        End Try 

    End Function 

End Class 

SyncLockStatement  ::= 
 SyncLock  Expression  StatementTerminator 
 [  Block  ] 
 End  SyncLock  StatementTerminator 

10.5 Event Statements 
The RaiseEvent, AddHandler, and RemoveHandler statements raise events and handle events dynamically.  

EventStatement  ::= 
 RaiseEventStatement  | 
 AddHandlerStatement  | 
 RemoveHandlerStatement 

10.5.1 RaiseEvent Statement 

A RaiseEvent statement notifies event handlers that a particular event has occurred. The simple name 
expression in a RaiseEvent statement is interpreted as a member lookup on Me. Thus, RaiseEvent x is 
interpreted as if it were RaiseEvent Me.x. The result of the expression must be classified as an event access 
for an event defined in the class itself; events defined on base types cannot be used in a RaiseEvent statement. 

The RaiseEvent statement is processed as a call to the Invoke method of the event's delegate, using the 
supplied parameters, if any. If the delegate’s value is Nothing, no exception is thrown. If there are no 
arguments, the parentheses may be omitted. For example: 

Class Raiser 

    Public Event Constructed(ByVal Count As Integer) 

 

    Public Sub New() 

        Static CreationCount As Integer = 0 



Visual Basic Language Specification 

186 Copyright © Microsoft Corporation 2005. All rights reserved. 

 

        CreationCount += 1 

        RaiseEvent Constructed(CreationCount) 

    End Sub 

End Class 

 

Module Test 

    Private WithEvents x As Raiser 

 

    Private Sub Constructed(ByVal Count As Integer) Handles x.Constructed 

        Console.WriteLine("Constructed instance #" & Count) 

    End Sub 

 

    Public Sub Main() 

        x = New Raiser   ' Causes "Constructed instance #1" to be printed. 

        x = New Raiser   ' Causes "Constructed instance #2" to be printed. 

        x = New Raiser   ' Causes "Constructed instance #3" to be printed. 

    End Sub 

End Module 

The class Raiser above is equivalent to: 

Class Raiser 

    Public Event Constructed(ByVal Count As Integer) 

 

    Public Sub New() 

        Static CreationCount As Integer = 0 

        Dim TemporaryDelegate As ConstructedEventHandler 

 

        CreationCount += 1 

 

        ' Use a temporary to avoid a race condition. 

        TemporaryDelegate = ConstructedEvent 

        If Not TemporaryDelegate Is Nothing Then 

            TemporaryDelegate.Invoke(CreationCount) 

        End If 

    End Sub 

End Class 

RaiseEventStatement  ::=  RaiseEvent  IdentifierOrKeyword  [  (  [  ArgumentList  ]  )  ] 
 StatementTerminator 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 187 

10.5.2 AddHandler and RemoveHandler Statements 

Although most event handlers are automatically hooked up through WithEvents variables, it may be necessary 
to dynamically add and remove event handlers at run time. AddHandler and RemoveHandler statements do 
this. 

Each statement takes two arguments: the first argument must be an expression that is classified as an event 
access and the second argument must be an expression that is classified as a value. The second argument's type 
must be the delegate type associated with the event access. For example: 

Public Class Form1 

    Public Sub New() 

        ' Add Button1_Click as an event handler for Button1's Click event. 

        AddHandler Button1.Click, AddressOf Button1_Click 

    End Sub  

 

    Private Button1 As Button = New Button() 

 

    Sub Button1_Click(sender As Object, e As EventArgs) 

        Console.WriteLine("Button1 was clicked!") 

    End Sub 

 

    Public Sub Disconnect() 

        RemoveHandler Button1.Click, AddressOf Button1_Click 

    End Sub 

End Class 

Given an event E, the statement calls the relevant add_E or remove_E method on the instance to add or 
remove the delegate as a handler for the event. Thus, the above code is equivalent to: 

Public Class Form1 

    Public Sub New() 

        Button1.add_Click(AddressOf Button1_Click) 

    End Sub  

 

    Private Button1 As Button = New Button() 

 

    Sub Button1_Click(sender As Object, e As EventArgs) 

        Console.WriteLine("Button1 was clicked!") 

    End Sub 

 

    Public Sub Disconnect() 

        Button1.remove_Click(AddressOf Button1_Click) 

    End Sub 

End Class 

AddHandlerStatement  ::=  AddHandler  Expression  ,  Expression  StatementTerminator 



Visual Basic Language Specification 

188 Copyright © Microsoft Corporation 2005. All rights reserved. 

RemoveHandlerStatement  ::=  RemoveHandler  Expression  ,  Expression  StatementTerminator 

10.6 Assignment Statements 
An assignment statement assigns the value of an expression to a variable. There are several types of assignment. 

AssignmentStatement  ::= 
 RegularAssignmentStatement  | 
 CompoundAssignmentStatement  | 
 MidAssignmentStatement 

10.6.1 Regular Assignment Statements 

A simple assignment statement stores the result of an expression in a variable. The expression on the left side of 
the assignment operator must be classified as a variable or a property access, while the expression on the right 
side of the assignment operator must be classified as a value. The type of the expression must be implicitly 
convertible to the type of the variable or property access.  

If the variable being assigned into is an array element of a reference type, a run-time check will be performed to 
ensure that the expression is compatible with the array-element type. In the following example, the last 
assignment causes a System.ArrayTypeMismatchException to be thrown, because an instance of 
ArrayList cannot be stored in an element of a String array. 

Dim sa(10) As String 

Dim oa As Object() = sa 

oa(0) = Nothing ' This is allowed. 

oa(1) = "Hello" ' This is allowed. 

oa(2) = New ArrayList() ' ArrayTypeMismatchException is thrown. 

If the expression on the left side of the assignment operator is classified as a variable, then the assignment 
statement stores the value in the variable. If the expression is classified as a property access, then the assignment 
statement turns the property access into an invocation of the Set accessor of the property with the value 
substituted for the value parameter. For example: 

Module Test 

    Private PValue As Integer 

 

    Public Property P As Integer 

        Get 

            Return PValue 

        End Get 

 

        Set (ByVal Value As Integer) 

            PValue = Value 

        End Set 

    End Property 

 

    Sub Main() 

        ' The following two lines are equivalent. 

        P = 10 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 189 

        set_P(10) 

    End Sub 

End Module 

If the associated instance expression of the variable or property access is typed as a value type but not classified 
as a variable, a compile-time error occurs. For example: 

Structure S 

    Public F As Integer 

End Structure 

 

Class C 

    Private PValue As S 

 

    Public Property P As S 

        Get 

            Return PValue 

        End Get 

 

        Set (ByVal Value As S) 

            PValue = Value 

        End Set 

    End Property 

End Class 

 

Module Test 

    Sub Main() 

        Dim ct As C = New C() 

        Dim rt As Object = new C() 

 

        ' Compile-time error: ct.P not classified as variable. 

        ct.P.F = 10 

 

        ' Run-time exception. 

        rt.P.F = 10 

    End Sub 

End Module 

Note   The semantics of the assignment depend on the type of the variable or property to which it is being 
assigned. If the variable to which it is being assigned is a value type, the assignment copies the value of the 
expression into the variable. If the variable to which it is being assigned is a reference type, the assignment 
copies the reference, not the value itself, into the variable. If the type of the variable is Object, the 
assignment semantics are determined by whether the value's type is a value type or a reference type at run 
time. 



Visual Basic Language Specification 

190 Copyright © Microsoft Corporation 2005. All rights reserved. 

Annotation 

For intrinsic types such as Integer and Date, reference and value assignment semantics are the same because 
the types are immutable. As a result, the language is free to use reference assignment on boxed intrinsic types as 
an optimization. From a value perspective, the result is the same. 

Because the equals character (=) is used both for assignment and for equality, there is an ambiguity between a 
simple assignment and an invocation statement in situations such as x = y.ToString(). In all such cases, the 
assignment statement takes precedence over the equality operator. This means that the example expression is 
interpreted as x = (y.ToString()) rather than (x = y).ToString(). 

RegularAssignmentStatement  ::=  Expression  =  Expression  StatementTerminator 

10.6.2 Compound Assignment Statements 

A compound assignment statement takes the form V OP= E (where OP is a valid binary operator). The 
expression on the left side of the assignment operator must be classified as a variable or property access, while 
the expression on the right side of the assignment operator must be classified as a value. The compound 
assignment statement is equivalent to the statement V = V OP E with the difference that the variable on the left 
side of the compound assignment operator is only evaluated once. The following example demonstrates this 
difference: 

Module Test 

    Function GetIndex() As Integer 

        Console.WriteLine("Getting index") 

        Return 1 

    End Function 

 

    Sub Main() 

        Dim a(2) As Integer 

 

        Console.WriteLine("Simple assignment") 

        a(GetIndex()) = a(GetIndex()) + 1 

 

        Console.WriteLine("Compound assignment") 

        a(GetIndex()) += 1 

    End Sub 

End Module 

The expression a(GetIndex()) is evaluated twice for simple assignment but only once for compound 
assignment, so the code prints: 

Simple assignment 

Getting index 

Getting index 

Compound assignment 

Getting index 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 191 

The rule for predefined operators is simply that V OP= E is permitted if both V OP E and V = E are permitted. 
Thus, in the following example, the reason for each error is that a corresponding simple assignment would also 
have been an error. 

Option Strict On 

Module Test 

    Private b As Byte = 0 

    Private ch As Char = ControlChars.NullChar 

    Private i As Integer = 0 

    Sub Main() 

        b += 1 ' This is allowed. 

        b += 1000 ' Error; b = 1000 is not permitted. 

        b += i ' Error, b = i is not permitted. 

        b += CByte(i) ' This is allowed. 

        ch += 1 ' Error, ch = 1 is not permitted. 

        ch += ChrW(1) ' This is allowed. 

    End Sub 

End Module 

CompoundAssignmentStatement  ::=  Expression  CompoundBinaryOperator  Expression  StatementTerminator 

CompoundBinaryOperator  ::=  ̂ =  |  *=  |  /=  |  \=  |  +=  |  -=  |  &=  |  <<=  |  >>= 

10.6.3 Mid Assignment Statement 

A Mid assignment statement assigns a string into another string. The left side of the assignment has the same 
syntax as a call to the function Microsoft.VisualBasic.Strings.Mid. The first argument is the target of 
the assignment and must be classified as a variable or a property access whose type is implicitly convertible to 
and from String. The second parameter is the 1-based start position that corresponds to where the assignment 
should begin in the target string and must be classified as a value whose type must be implicitly convertible to 
Integer. The optional third parameter is the number of characters from the right-side value to assign into the 
target string and must be classified as a value whose type is implicitly convertible to Integer. The right side is 
the source string and must be classified as a value whose type is implicitly convertible to String. The right side 
is truncated to the length parameter, if specified, and replaces the characters in the left-side string, starting at the 
start position. If the right side string contained fewer characters than the third parameter, only the characters 
from the right side string will be copied. 

The following example displays ab123fg: 

Module Test 

    Sub Main() 

        Dim s1 As String = "abcdefg" 

        Dim s2 As String = "1234567" 

 

        Mid$(s1, 3, 3) = s2 

        Console.WriteLine(s1) 

    End Sub 

End Module 



Visual Basic Language Specification 

192 Copyright © Microsoft Corporation 2005. All rights reserved. 

Note   Mid is not a reserved word. 

MidAssignmentStatement  ::= 
 Mid  [  $  ]  (  Expression  ,  Expression  [  ,  Expression  ]  )  =  Expression  StatementTerminator 

10.7 Invocation Statements 
An invocation statement invokes a method preceded by the optional keyword Call. The invocation statement is 
processed in the same way as the function invocation expression. The invocation expression must be classified 
as a value or void. Any value resulting from the evaluation of the invocation expression is discarded. 

InvocationStatement  ::=  [  Call  ]  InvocationExpression  StatementTerminator 

10.8 Conditional Statements 
Conditional statements allow conditional execution of statements based on expressions evaluated at run time. 

ConditionalStatement  ::=  IfStatement  |  SelectStatement 

10.8.1 If...Then...Else Statements 

An If...Then...Else statement is the basic conditional statement. Each expression in an 
If...Then...Else statement must be classified as a value and be implicitly convertible to Boolean. If the 
expression in the If statement is True, the statements enclosed by the If block are executed. If the expression 
is False, each of the ElseIf expressions is evaluated. If one of the ElseIf expressions evaluates to True, the 
corresponding block is executed. If no expression evaluates to True and there is an Else block, the Else block 
is executed. Once a block finishes executing, execution passes to the end of the If...Then...Else statement. 

The line version of the If statement has a single set of statements to be executed if the If expression is True 
and an optional set of statements to be executed if the expression is False. For example: 

Module Test 

    Sub Main() 

        Dim a As Integer = 10 

        Dim b As Integer = 20 

 

        ' Block If statement. 

        If a < b Then 

            a = b 

        Else 

            b = a 

        End If 

 

        ' Line If statement 

        If a < b Then a = b Else b = a 

    End Sub 

End Module 

IfStatement  ::=  BlockIfStatement  |  LineIfThenStatement 

BlockIfStatement  ::= 
 If  BooleanExpression  [  Then  ]  StatementTerminator 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 193 

 [  Block  ] 
 [  ElseIfStatement+  ] 
 [  ElseStatement  ] 
 End  If  StatementTerminator 

ElseIfStatement  ::= 
 ElseIf  BooleanExpression  [  Then  ]  StatementTerminator 
 [  Block  ] 

ElseStatement  ::= 
 Else  StatementTerminator 
 [  Block  ] 

LineIfThenStatement  ::= 
 If  BooleanExpression  Then  Statements  [  Else  Statements  ]  StatementTerminator 

10.8.2 Select...Case Statements 

A Select Case statement executes statements based on the value of an expression. The expression must be 
classified as a value. When a Select Case statement is executed, the Select expression is evaluated first, and 
the Case statements are then evaluated in order of textual declaration. The first Case statement that evaluates to 
True has its block executed. If no Case statement evaluates to True and there is a Case Else statement, that 
block is executed. Once a block has finished executing, execution passes to the end of the Select statement.  

Execution of a Case block is not permitted to "fall through" to the next switch section. This prevents a common 
class of bugs that occur in other languages when a Case terminating statement is accidentally omitted. The 
following example illustrates this behavior: 

Module Test 

    Sub Main() 

        Dim x As Integer = 10 

 

        Select Case x 

            Case 5 

                Console.WriteLine("x = 5") 

            Case 10 

                Console.WriteLine("x = 10") 

            Case 20 – 10 

                Console.WriteLine("x = 20 – 10") 

            Case 30 

                Console.WriteLine("x = 30") 

        End Select 

    End Sub 

End Module 

The code prints: 

x = 10 

Although Case 10 and Case 20 – 10 select for the same value, Case 10 is executed because it precedes 
Case 20 – 10 textually. When the next Case is reached, execution continues after the Select statement. 



Visual Basic Language Specification 

194 Copyright © Microsoft Corporation 2005. All rights reserved. 

A Case clause may take two forms. One form is an optional Is keyword, a comparison operator, and an 
expression. The expression is converted to the type of the Select expression; if the expression is not implicitly 
convertible to the type of the Select expression, a compile-time error occurs. If the Select expression is E, 
the comparison operator is Op, and the Case expression is E1, the case is evaluated as E OP E1. The operator 
must be valid for the types of the two expressions; otherwise a compile-time error occurs. 

The other form is an expression optionally followed by the keyword To and a second expression. Both 
expressions are converted to the type of the Select expression; if either expression is not implicitly convertible 
to the type of the Select expression, a compile-time error occurs. If the Select expression is E, the first Case 
expression is E1, and the second Case expression is E2, the Case is evaluated either as E = E1 (if no E2 is 
specified) or (E >= E1) And (E <= E2). The operators must be valid for the types of the two expressions; 
otherwise a compile-time error occurs. 

SelectStatement  ::= 
 Select  [  Case  ]  Expression  StatementTerminator 
 [  CaseStatement+  ] 
 [  CaseElseStatement  ] 
 End  Select  StatementTerminator 

CaseStatement  ::= 
 Case  CaseClauses  StatementTerminator 
 [  Block  ] 

CaseClauses  ::= 
 CaseClause  | 
 CaseClauses  ,  CaseClause 

CaseClause  ::= 
 [  Is  ]  ComparisonOperator  Expression  | 
 Expression  [  To  Expression  ] 

ComparisonOperator  ::=  =  |  <>  |  <  |  >  |  =>  |  =< 

CaseElseStatement  ::= 
 Case  Else  StatementTerminator 
 [  Block  ] 

10.9 Loop Statements 
Loop statements allow repeated execution of statements. 

LoopStatement  ::= 
 WhileStatement  | 
 DoLoopStatement  | 
 ForStatement  | 
 ForEachStatement 

10.9.1 While...End While and Do...Loop Statements 

A While or Do loop statement loops based on a Boolean expression. A While loop statement loops as long as 
the Boolean expression evaluates to True; a Do loop statement may contain a more complex condition. In 
either case, the expressions must be classified as values and must be implicitly convertible to Boolean. 

An expression may be placed after the Do keyword or after the Loop keyword, but not after both. It is also valid 
to specify no expression at all; in that case, the loop will never exit. If the expression is placed after Do, it will be 
evaluated before the loop block is executed on each iteration. If the expression is placed after Loop, it will be 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 195 

evaluated after the loop block has executed on each iteration. Placing the expression after Loop will therefore 
generate one more loop than placement after Do. The following example demonstrates this behavior: 

Module Test 

    Sub Main() 

        Dim x As Integer 

 

        x = 3 

        Do While x = 1 

            Console.WriteLine("First loop") 

        Loop 

 

        Do 

            Console.WriteLine("Second loop") 

        Loop While x = 1 

    End Sub 

End Module 

The code produces the output: 

Second Loop 

Third Loop 

Third Loop 

In the case of the first loop, the condition is evaluated before the loop executes. In the case of the second loop, 
the condition is executed after the loop executes. The conditional expression must be prefixed with either a 
While keyword or an Until keyword. The former breaks the loop if the condition evaluates to False, the 
latter when the condition evaluates to True. 

WhileStatement  ::= 
 While  BooleanExpression  StatementTerminator 
 [  Block  ] 
 End  While  StatementTerminator 

DoLoopStatement  ::=  DoTopLoopStatement  |  DoBottomLoopStatement 

DoTopLoopStatement  ::= 
 Do  [  WhileOrUntil  BooleanExpression  ]  StatementTerminator 
 [  Block  ] 
 Loop  StatementTerminator 

DoBottomLoopStatement  ::= 
 Do  StatementTerminator 
 [  Block  ] 
 Loop  WhileOrUntil  BooleanExpression  StatementTerminator 

WhileOrUntil  ::=  While  |  Until 

10.9.2 For...Next Statements 

A For...Next statement loops based on a set of bounds. A For statement specifies a loop control variable, a 
lower bound expression, an upper bound expression, and an optional step value expression. 



Visual Basic Language Specification 

196 Copyright © Microsoft Corporation 2005. All rights reserved. 

The loop control variable is specified either through an identifier followed by an As clause or an expression. In 
the case of an identifier, the identifier defines a new local variable of the type specified in the As clause, scoped 
to the entire For loop. In the case of an expression, the expression must be classified as a variable. 

The loop control variable of a For statement must be of a primitive numeric type (Byte, SByte, UShort, 
Short, UInteger, Integer, ULong, Long, Decimal, Single, Double), Object, or a type T that has the 
following operators: 

Public Shared Operator >= (ByVal op1 As T, ByVal op2 As T) As B 

Public Shared Operator <= (ByVal op1 As T, ByVal op2 As T) As B 

Public Shared Operator – (ByVal op1 As T, ByVal op2 As T) As T 

Public Shared Operator + (ByVal op1 As T, ByVal op2 As T) As T 

Where B is a type that can be used in a Boolean expression (i.e. is convertible to Boolean or overloads IsTrue 
and IsFalse). 

The bound and step expressions must be implicitly convertible to the type of the loop control. Enumerated types 
are treated as their underlying type, which allows use of enumerated types in For loops. The bounds and step 
expressions must be classified as values. 

A loop control variable cannot be used by another enclosing For...Next statement. A For statement must be 
closed by a matching Next statement. A Next statement without a variable matches the innermost open For 
statement. A Next statement with one or more loop control variables will, from left to right, match the For 
loops that match each variable. If a variable matches a For loop that is not the most nested loop at that point, a 
compile-time error results. 

At the beginning of the loop, the three expressions are evaluated in textual order and the lower bound expression 
is assigned to the control value. If the step value is omitted, it is implicitly the literal 1. The three expressions are 
only ever evaluated at the beginning of the loop.  

If the For loop variable is of type Object, then the loop control type is determined at run time as follows: 

• If at least one of the expressions at run time is a primitive numeric type or enumerated type, then the loop 
control type is the widest numeric type among them. 

• If one or more of the types was an enumerated type, all the enumerated types are the same, and the 
underlying type of the common enumerated type is the widest numeric type, then the loop control type 
is the enumerated type. 

• Otherwise, if all three expressions are typed as String, then the loop control type is Double. 

• Otherwise, if the most encompassing type of the three expressions implements the overloaded operators 
listed above, then the most encompassing type is the loop control type. 

If at run time no loop control type can be determined or if any of the expressions cannot be converted to the loop 
control type, a System.InvalidCastException will occur. Once a loop control type has been chosen at the 
beginning of the loop, the same type will be used throughout the iteration, regardless of changes made to the 
value in the loop control variable. 

At the beginning of each loop, the control variable is compared to see if it is greater than the end point if the step 
expression is positive, or less than the end point if the step expression is negative. If it is, the For loop 
terminates; otherwise the loop block executes. If the loop control variable is not a primitive type, the comparison 
operator is determined by whether the expression step >= step – step is true or false. At the Next 
statement, the step value is added to the control variable and execution returns to the top of the loop. 

It is not valid to branch into a For loop from outside the loop. 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 197 

ForStatement  ::= 
 For  LoopControlVariable  =  Expression  To  Expression  [  Step  Expression  ]  StatementTerminator 
 [  Block  ] 
 Next  [  NextExpressionList  ]  StatementTerminator 

LoopControlVariable  ::= 
 Identifier  [  ArrayNameModifier  ]  As  TypeName  | 
 Expression 

NextExpressionList  ::= 
 Expression  | 
 NextExpressionList  ,  Expression 

10.9.3 For Each...Next Statements 

A For Each...Next statement loops based on the elements in an expression. A For Each statement specifies 
a loop control variable and an enumerator expression. 

The loop control variable is specified either through an identifier followed by an As clause or an expression. In 
the case of an identifier, the identifier defines a new local variable of the type specified in the As clause, scoped 
to the entire For Each loop. In the case of an expression, the expression must be classified as a variable. The 
enumerator expression must be classified as a value and its type must be a collection type or Object. If the type 
of the enumerator expression is Object, then all processing is deferred until run-time. Otherwise, a conversion 
must exist from the element type of the collection to the type of the loop control variable. 

The loop control variable cannot be used by another enclosing For Each statement. A For Each statement must 
be closed by a matching Next statement. A Next statement without a loop control variable matches the 
innermost open For Each. A Next statement with one or more loop control variables will, from left to right, 
match the For Each loops that have the same loop control variable. If a variable matches a For Each loop that 
is not the most nested loop at that point, a compile-time error occurs. 

A type C is said to be a collection type if: 

• All of the following are true: 

• C contains an accessible instance method with the signature GetEnumerator() that returns a type E. 

• E contains an accessible instance method with the signature MoveNext() and the return type Boolean. 

• E contains an accessible instance property named Current that has a getter. The type of this property is 
the element type of the collection type. 

• It implements the interface System.Collections.Generic.IEnumerable(Of T), in which case the 
element type of the collection is considered to be T. 

• It implements the interface System.Collections.IEnumerable, in which case the element type of the 
collection is considered to be Object. 

Following is an example of a class that can be enumerated: 

Public Class IntegerCollection 

    Private integers(10) As Integer 

 

    Public Class IntegerCollectionEnumerator 

        Private collection As IntegerCollection 

        Private index As Integer = -1 



Visual Basic Language Specification 

198 Copyright © Microsoft Corporation 2005. All rights reserved. 

 

        Friend Sub New(ByVal c As IntegerCollection) 

            collection = c 

        End Sub 

 

        Public Function MoveNext() As Boolean 

            index += 1 

 

            Return index <= 10 

        End Function 

 

        Public ReadOnly Property Current As Integer 

            Get 

                If index < 0 OrElse index > 10 Then 

                    Throw New System.InvalidOperationException() 

                End If 

 

                Return integers(index) 

            End Get 

        End Property 

    End Class 

 

    Public Sub New() 

        Dim i As Integer 

 

        For i = 0 To 10 

            integers(i) = I 

        Next i 

    End Sub 

 

    Public Function GetEnumerator() As IntegerCollectionEnumerator 

        Return New IntegerCollectionEnumerator(Me) 

    End Function 

End Class 

Before the loop begins, the enumerator expression is evaluated. If the type of the expression does not satisfy the 
design pattern, then the expression is cast to System.Collections.IEnumerable or 
System.Collections.IEnumerable(Of T). If the expression type implements both the generic and non-
generic interface, the generic interface is preferred at compile-time but the non-generic interface is preferred at 
run-time. If the expression type implements the generic interface multiple times, the statement is considered 
ambiguous and a compile-time error occurs. 

Annotation 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 199 

The non-generic interface is preferred in the late bound case, because picking the generic interface would mean 
that all the calls to the interface methods would involve type parameters. Since it is not possible to know the 
matching type arguments at run-time, all such calls would have to be made using late-bound calls. This would 
be slower than calling the non-generic interface because the non-generic interface could be called using 
compile-time calls. 

GetEnumerator is called on the resulting value and the return value of the function is stored in a temporary. 
Then at the beginning of each loop, MoveNext is called on the temporary. If it returns False, the loop 
terminates. If it returns True, the Current property is retrieved, coerced to the type of the iterator variable 
(regardless of whether the conversion is implicit or explicit), and assigned to the iterator variable; then the loop 
block executes. 

Annotation 

The current element of the iteration is converted to the type of the loop control variable even if the conversion is 
explicit because there is no convenient place to introduce a conversion operator in the statement. This became 
particularly troublesome when working with the most common collection type, 
System.Collections.ArrayList, because its element type is Object. This would have required casts in a 
great many loops, something we felt was not ideal. 

Ironically, generics enabled the creation of a strongly-typed collection, 
System.Collections.Generic.List(Of T), which might have made us rethink this design point, but for 
compatibility’s sake, this cannot be changed now. 

When the Next statement is reached, execution returns to the top of the loop. If a variable is specified after the 
Next keyword, it must be the same as the first variable after the For Each. For example, consider the following 
code: 

Module Test 

    Sub Main() 

        Dim i As Integer 

        Dim c As IntegerCollection = New IntegerCollection() 

 

        For Each i In c 

            Console.WriteLine(i) 

        Next i 

    End Sub 

End Module 

It is equivalent to the following code: 

Module Test 

    Sub Main() 

        Dim i As Integer 

        Dim c As IntegerCollection = New IntegerCollection() 

 

        Dim e As IntegerCollectionEnumerator 

 

        e = c.GetEnumerator() 

        While e.MoveNext() 

            i = e.Current 



Visual Basic Language Specification 

200 Copyright © Microsoft Corporation 2005. All rights reserved. 

 

            Console.WriteLine(i) 

        End While 

    End Sub 

End Module 

If the type E of the enumerator implements System.IDisposable, then the enumerator is disposed upon 
exiting the loop by calling the Dispose method. This ensures that resources held by the enumerator are 
released. If the method containing the For Each statement does not use unstructured error handling, then the 
For Each statement is wrapped in a Try statement with the Dispose method called in the Finally to ensure 
cleanup. 

Note   The System.Array type is a collection type, and since all array types derive from System.Array, 
any array type expression is permitted in a For Each statement. For single-dimensional arrays, the For 
Each statement enumerates the array elements in increasing index order, starting with index 0 and ending 
with index Length - 1. For multidimensional arrays, the indices of the rightmost dimension are increased 
first. 

For example, the following code prints 1 2 3 4: 

Module Test 

    Sub Main() 

        Dim x(,) As Integer = { { 1, 2 }, { 3, 4 } } 

        Dim i As Integer 

 

        For Each i In x 

            Console.Write(i & " ") 

        Next i 

    End Sub 

End Module 

It is not valid to branch into a For Each statement block from outside the block. 

ForEachStatement  ::= 
 For  Each  LoopControlVariable  In  Expression  StatementTerminator 
 [  Block  ] 
 Next  [Expression  ]  StatementTerminator 

10.10 Exception-Handling Statements 
Visual Basic supports structured exception handling and unstructured exception handling. Only one style of 
exception handling may be used in a method, but the Error statement may be used in structured exception 
handling. If a method uses both styles of exception handling, a compile-time error results. 

ErrorHandlingStatement  ::= 
 StructuredErrorStatement  | 
 UnstructuredErrorStatement 

10.10.1 Structured Exception-Handling Statements 

Structured exception handling is a method of handling errors by declaring explicit blocks within which certain 
exceptions will be handled. Structured exception handling is done through a Try statement. 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 201 

For example: 

Module Test 

    Sub ThrowException() 

        Throw New Exception() 

    End Sub 

 

    Sub Main() 

        Try 

            ThrowException() 

        Catch e As Exception 

            Console.WriteLine("Caught exception!") 

        Finally 

            Console.WriteLine("Exiting try.") 

        End Try 

    End Sub 

End Module 

A Try statement is made up of three kinds of blocks: try blocks, catch blocks, and finally blocks. A try block is 
a statement block that contains the statements to be executed. A catch block is a statement block that handles an 
exception. A finally block is a statement block that contains statements to be run when the Try statement is 
exited, regardless of whether an exception has occurred and been handled. A Try statement, which can only 
contain one try block and one finally block, must contain at least one catch block or finally block. It is invalid to 
explicitly transfer execution into a try block except from within a catch block in the same statement. 

StructuredErrorStatement  ::= 
 ThrowStatement  | 
 TryStatement 

TryStatement  ::= 
 Try  StatementTerminator 
 [  Block  ] 
 [  CatchStatement+  ] 
 [  FinallyStatement  ] 
 End  Try  StatementTerminator 

10.10.1.1 Finally Blocks 

A Finally block is always executed when execution leaves any part of the Try statement. No explicit action is 
required to execute the Finally block; when execution leaves the Try statement, the system will automatically 
execute the Finally block and then transfer execution to its intended destination. The Finally block is 
executed regardless of how execution leaves the Try statement: through the end of the Try block, through the 
end of a Catch block, through an Exit Try statement, through a GoTo statement, or by not handling a thrown 
exception. 

It is invalid to explicitly transfer execution into a Finally block; it is also invalid to transfer execution out of a 
Finally block except through an exception. 

FinallyStatement  ::= 
 Finally  StatementTerminator 
 [  Block  ] 



Visual Basic Language Specification 

202 Copyright © Microsoft Corporation 2005. All rights reserved. 

10.10.1.2 Catch Blocks 

If an exception occurs while processing the Try block, each Catch statement is examined in textual order to 
determine if it handles the exception. The identifier specified in a Catch clause represents the exception that has 
been thrown. If the identifier contains an As clause, then the identifier is considered to be declared within the 
Catch block's local declaration space. Otherwise, the identifier must be a local variable (not a static variable) 
that was defined in a containing block. 

A Catch clause with no identifier will catch all exceptions derived from System.Exception. A Catch clause 
with an identifier will only catch exceptions whose types are the same as or derived from the type of the 
identifier. The type must be Object (or System.Object), System.Exception, or a type derived from 
System.Exception. When an exception is caught that derives from System.Exception, a reference to the 
exception object is stored in the object returned by the function 
Microsoft.VisualBasic.Information.Err. 

Annotation 

Allowing exceptions derived from Object to be caught is necessary to handle the fact that some languages 
(such as C++) allow any object to be thrown. Because the more common case is that an exception will derive 
from System.Exception, that is the default case when no type is specified. 

A Catch clause with a When clause will only catch exceptions when the expression evaluates to True; the type 
of the expression must be implicitly convertible to Boolean. A When clause is only applied after checking the 
type of the exception, and the expression may refer to the identifier representing the exception, as this example 
demonstrates: 

Module Test 

    Sub Main() 

        Dim i As Integer = 5 

 

        Try 

            Throw New ArgumentException() 

        Catch e As OverflowException When i = 5 

            Console.WriteLine("First handler") 

        Catch e As ArgumentException When i = 4 

            Console.WriteLine("Second handler") 

        Catch When i = 5 

            Console.WriteLine("Third handler") 

        End Try 

 

    End Sub 

End Module 

This example prints:  

Third handler 

If a Catch clause handles the exception, execution transfers to the Catch block. At the end of the Catch block, 
execution transfers to the first statement following the Try statement. The Try statement will not handle any 
exceptions thrown in a Catch block. If no Catch clause handles the exception, execution transfers to a location 
determined by the system.  

It is invalid to explicitly transfer execution into a Catch block. 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 203 

CatchStatement  ::= 
 Catch  [  Identifier  As  NonArrayTypeName  ]  [  When  BooleanExpression  ]  StatementTerminator 
 [  Block  ] 

10.10.1.3 Throw Statement 

The Throw statement raises an exception, which is represented by an instance of a type derived from 
System.Exception. If the expression is not classified as a value or is not a type derived from 
System.Exception, then a compile-time error occurs. If the expression evaluates to a null reference at run 
time, then a System.NullReferenceException exception is raised instead. 

A Throw statement may omit the expression within a catch block of a Try statement, as long as there is no 
intervening finally block. In that case, the statement rethrows the exception currently being handled within the 
catch block. For example: 

Sub Test(ByVal x As Integer) 

    Try 

        Throw New Exception() 

    Catch 

        If x = 0 Then 

            Throw    ' OK, rethrows exception from above. 

        Else 

            Try 

                If x = 1 Then 

                    Throw   ' OK, rethrows exception from above. 

                End If 

            Finally 

                Throw    ' Invalid, inside of a Finally. 

            End Try 

        End If 

    End Try 

End Sub 

ThrowStatement  ::=  Throw  [  Expression  ]  StatementTerminator 

10.10.2 Unstructured Exception-Handling Statements 

Unstructured exception handling is a method of handling errors by indicating statements to branch to when an 
exception occurs. Unstructured exception handling is implemented using three statements: the Error statement, 
the On Error statement, and the Resume statement. For example: 

Module Test 

    Sub ThrowException() 

        Error 5 

    End Sub 

 

    Sub Main() 

        On Error Goto GotException 



Visual Basic Language Specification 

204 Copyright © Microsoft Corporation 2005. All rights reserved. 

 

        ThrowException() 

        Exit Sub 

 

GotException: 

        Console.WriteLine("Caught exception!") 

        Resume Next 

    End Sub 

End Module 

When a method uses unstructured exception handling, a single structured exception handler is established for the 
entire method that catches all exceptions. (Note that in constructors this handler does not extend over the call to 
the call to New at the beginning of the constructor.) The method then keeps track of the most recent exception-
handler location and the most recent exception that has been thrown. At entry to the method, the exception-
handler location and the exception are both set to Nothing. When an exception is thrown in a method that uses 
unstructured exception handling, a reference to the exception object is stored in the object returned by the 
function Microsoft.VisualBasic.Information.Err. 

UnstructuredErrorStatement  ::= 
 ErrorStatement  | 
 OnErrorStatement  | 
 ResumeStatement 

10.10.2.1 Error Statement 

An Error statement throws a System.Exception exception containing a Visual Basic 6 exception number. 
The expression must be classified as a value and its type must be implicitly convertible to Integer. 

ErrorStatement  ::=  Error  Expression  StatementTerminator 

10.10.2.2 On Error Statement 

An On Error statement modifies the most recent exception-handling state. It may be used in one of four ways: 

• On Error GoTo -1 resets the most recent exception to Nothing. 

• On Error GoTo 0 resets the most recent exception-handler location to Nothing. 

• On Error GoTo LabelName establishes the label as the most recent exception-handler location. 

• On Error Resume Next, establishes the Resume Next behavior as the most recent exception-handler 
location. 

OnErrorStatement  ::=  On  Error  ErrorClause  StatementTerminator 

ErrorClause  ::= 
 GoTo  -  1  | 
 GoTo  0  | 
 GotoStatement  | 
 Resume  Next 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 205 

10.10.2.3 Resume Statement 

A Resume statement returns execution to the statement that caused the most recent exception. If the Next 
modifier is specified, execution returns to the statement that would have been executed after the statement that 
caused the most recent exception. If a label name is specified, execution returns to the label. 

Because the SyncLock statement contains an implicit structured error-handling block, Resume and Resume 
Next have special behaviors for exceptions that occur in SyncLock statements. Resume returns execution to 
the beginning of the SyncLock statement, while Resume Next returns execution to the next statement 
following the SyncLock statement. For example, consider the following code: 

Class LockClass 

End Class 

 

Module Test 

    Sub Main() 

        Dim FirstTime As Boolean = False 

        Dim Lock As LockClass = New LockClass() 

 

        On Error Goto Handler 

 

        SyncLock Lock 

            Console.WriteLine("Before exception") 

            Throw New Exception() 

            Console.WriteLine("After exception") 

        End SyncLock 

 

        Console.WriteLine("After SyncLock") 

        Exit Sub 

 

Handler: 

        If FirstTime Then 

            FirstTime = False 

            Resume 

        Else 

            Resume Next 

        End If 

    End Sub 

End Module 

It prints the following result. 

Before exception 

Before exception 

After SyncLock 



Visual Basic Language Specification 

206 Copyright © Microsoft Corporation 2005. All rights reserved. 

The first time through the SyncLock statement, Resume returns execution to the beginning of the SyncLock 
statement. The second time through the SyncLock statement, Resume Next returns execution to the end of the 
SyncLock statement. Resume and Resume Next are not allowed within a SyncLock statement. 

In all cases, when a Resume statement is executed, the most recent exception is set to Nothing. If a Resume 
statement is executed with no most recent exception, the statement raises a System.Exception exception 
containing the Visual Basic error number 20 (Resume without error). 

ResumeStatement  ::=  Resume  [  ResumeClause  ]  StatementTerminator 

ResumeClause  ::=  Next  |  LabelName 

10.11 Branch Statements 
Branch statements modify the flow of execution in a method. There are six branch statements: 

• A GoTo statement causes execution to transfer to the specified label in the method.  

• An Exit statement transfers execution to the next statement after the end of the immediately containing 
block statement of the specified kind. If the block is the method block, execution is transferred back to the 
expression that invoked the method. If the Exit statement is not contained within the kind of block 
specified in the statement, a compile-time error occurs. 

• A Continue statement transfers execution to the end of the immediately containing block loop statement of 
the specified kind. If the Continue statement is not contained within the kind of block specified in the 
statement, a compile-time error occurs. 

• A Stop statement causes a debugger exception to occur. 

• An End statement terminates the program. Finalizers are run before shutdown, but the finally blocks of any 
currently executing Try statements are not executed. This statement may not be used in programs that are 
not executable (for example, DLLs).  

• A Return statement returns execution to the expression that invoked the method. If the method is a 
subroutine, the statement is equivalent to an Exit Sub statement and no expression may be supplied. If the 
method is a function, an expression must be supplied that is classified as a value and whose type is 
implicitly convertible to the return type of the function. This form is equivalent to assigning to the function 
return local and then executing an Exit Function statement. 

BranchStatement  ::= 
 GotoStatement  | 
 ExitStatement  | 
 ContinueStatement  | 
 StopStatement  | 
 EndStatement  | 
 ReturnStatement 

GotoStatement  ::=  GoTo  LabelName  StatementTerminator 

ExitStatement  ::=  Exit  ExitKind  StatementTerminator 

ExitKind  ::=  Do  |  For  |  While  |  Select  |  Sub  |  Function  |  Property  |  Try 

ContinueStatement  ::=  Continue  ContinueKind  StatementTerminator 

ContinueKind  ::=  Do  |  For  |  While 

StopStatement  ::=  Stop  StatementTerminator 

EndStatement  ::=  End  StatementTerminator 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 207 

ReturnStatement  ::=  Return  [  Expression  ] 

10.12 Array-Handling Statements 
Two statements simplify working with arrays: ReDim statements and Erase statements. 

ArrayHandlingStatement  ::= 
 RedimStatement  | 
 EraseStatement 

10.12.1 ReDim Statement 

A ReDim statement instantiates new arrays. Each clause in the statement must be classified as a variable or a 
property access whose type is an array type or Object, and be followed by a list of array bounds. The number 
of the bounds must be consistent with the type of the variable; any number of bounds is allowed for Object. At 
run time, an array is instantiated for each expression from left to right with the specified bounds and then 
assigned to the variable or property. If the variable type is Object, the number of dimensions is the number of 
dimensions specified, and the array element type is Object. If the given number of dimensions is incompatible 
with the variable or property at run time, a System.InvalidCastException will be thrown. For example: 

Module Test 

    Sub Main() 

        Dim o As Object 

        Dim b() As Byte 

        Dim i(,) As Integer 

 

        ' The next two statements are equivalent. 

        ReDim o(10,30) 

        o = New Object(10, 30) {} 

 

        ' The next two statements are equivalent. 

        ReDim b(10) 

        b = New Byte(10) {} 

 

        ' The following statement throws an InvalidCastException. 

        ReDim i(10, 30, 40) 

    End Sub 

End Module 

If the Preserve keyword is specified, then the expressions must also be classifiable as a value, and the new 
size for each dimension except for the rightmost one must be the same as the size of the existing array. The 
values in the existing array are copied into the new array: if the new array is smaller, the existing values are 
discarded; if the new array is bigger, the extra elements will be initialized to the default value of the element 
type of the array. For example, consider the following code: 

Module Test 

    Sub Main() 

        Dim x(5, 5) As Integer 

 



Visual Basic Language Specification 

208 Copyright © Microsoft Corporation 2005. All rights reserved. 

        x(3, 3) = 3 

 

        ReDim Preserve x(3, 6) 

        Console.WriteLine(x(3, 3) & ", " & x(3, 6)) 

    End Sub 

End Module 

It prints the following result: 

3, 0 

If the existing array reference is null at run time, no error is given. Other than the rightmost dimension, if the 
size of a dimension changes, a System.ArrayTypeMismatchException will be thrown. 

RedimStatement  ::=  ReDim  [  Preserve  ]  RedimClauses  StatementTerminator 

RedimClauses  ::= 
 RedimClause  | 
 RedimClauses  ,  RedimClause 

RedimClause  ::=  Expression  ArraySizeInitializationModifier 

10.12.2 Erase Statement 

An Erase statement sets each of the array variables or properties specified in the statement to Nothing. Each 
expression in the statement must be classified as a variable or property access whose type is an array type or 
Object. For example: 

Module Test 

    Sub Main() 

        Dim x() As Integer = New Integer(5) {} 

 

        ' The following two statements are equivalent. 

        Erase x 

        x = Nothing 

    End Sub 

End Module 

EraseStatement  ::=  Erase  EraseExpressions  StatementTerminator 

EraseExpressions  ::= 
 Expression  | 
 EraseExpressions  ,  Expression 

10.13 Using statement 
Instances of types are automatically released by the garbage collector when a collection is run and no live 
references to the instance are found. If a type holds on a particularly valuable and scarce resource (such as 
database connections or file handles), it may not be desirable to wait until the next garbage collection to clean up 
a particular instance of the type that is no longer in use. To provide a lightweight way of releasing resources 
before a collection, a type may implement the System.IDisposable interface. A type that does so exposes a 
Dispose method that can be called to force valuable resources to be released immediately, as such: 

Module Test 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 209 

 Sub Main() 

  Dim x As DBConnection = New DBConnection("foo") 

 

  ' Do some work 

  ... 

 

  x.Dispose()  ' Free the connection 

 End Sub 

End Module 

The Using statement automates the process of acquiring a resource, executing a set of statements, and then 
disposing of the resource. The statement can take two forms: in one, the resource is a local declared as a part of 
the statement itself; in the other, the resource is the result of an expression. 

If the resource is local variable declaration statement then the type of the local variable declaration must be a 
type that can be implicitly converted to System.IDisposable. The declared local variables are read only, 
scoped to the Using statement block and must include an initializer. If the resource is the result of an expression 
then the expression must be classified as a value and must be of a type that can be implicitly converted to 
System.IDisposable. The expression is only evaluated once, at the beginning of the statement. 

The Using block is implicitly contained by a Try statement whose finally block calls the method 
IDisposable.Dispose on the resource. This ensures the resource is disposed even when an exception is 
thrown. As a result, it is invalid to branch into a Using block from outside of the block, and a Using block is 
treated as a single statement for the purposes of Resume and Resume Next. If the resource is Nothing, then no 
call to Dispose is made. Thus, the example: 

Using f As Foo = New Foo() 

 ... 

End Using 

is equivalent to: 

Dim f As Foo = New Foo() 

Try 

 ... 

Finally 

 If f IsNot Nothing Then 

  f.Dispose() 

 End If 

End Try 

A Using statement that has a local variable declaration statement may acquire multiple resources at a time, 
which is equivalent to nested Using statements.  For example, a Using statement of the form: 

Using r1 As R = New R(), r2 As R = New R() 

 r1.F() 

 r2.F() 

End Using 

is equivalent to: 

Using r1 As R = New R() 



Visual Basic Language Specification 

210 Copyright © Microsoft Corporation 2005. All rights reserved. 

 Using r2 As R = New R() 

  r1.F() 

  r2.F() 

 End Using 

End Using 

UsingStatement  ::= 
 Using  UsingResources  StatementTerminator 
  [  Block  ] 
 End  Using  StatementTerminator 

UsingResources  ::=  VariableDeclarators  |  Expression 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 211 

11. Expressions 

An expression is a sequence of operators and operands that specifies a computation of a value, or that designates 
a variable or constant. This chapter defines the syntax, order of evaluation of operands and operators, and 
meaning of expressions. 

Expression  ::= 
 SimpleExpression  | 
 TypeExpression  | 
 MemberAccessExpression  | 
 DictionaryAccessExpression  | 
 IndexExpression  | 
 NewExpression  | 
 CastExpression  | 
 OperatorExpression 

11.1 Expression Classifications 
Every expression is classified as one of the following: 

• A value. Every value has an associated type. 

• A variable. Every variable has an associated type, namely the declared type of the variable. 

• A namespace. An expression with this classification can only appear as the left side of a member access. In 
any other context, an expression classified as a namespace causes a compile-time error. 

• A type. An expression with this classification can only appear as the left side of a member access. In any 
other context, an expression classified as a type causes a compile-time error. 

• A method group, which is a set of methods overloaded on the same name. A method group may have an 
associated instance expression and an associated type argument list. 

• A method pointer, which represents the location of a method. A method pointer may have an associated 
instance expression and an associated type argument list. 

• A property group, which is a set of properties overloaded on the same name. A property group may have an 
associated instance expression. 

• A property access. Every property access has an associated type, namely the type of the property. A 
property access may have an associated instance expression. 

• A late-bound access, which represents a method or property access deferred until run-time. A late-bound 
access may have an associated instance expression and an associated type argument list. The type of a late-
bound access is always Object. 

• An event access. Every event access has an associated type, namely the type of the event. An event access 
may have an associated instance expression. An event access may appear as the first argument of the 
RaiseEvent, AddHandler, and RemoveHandler statements. In any other context, an expression 
classified as an event access causes a compile-time error. 

• Void. This occurs when the expression is an invocation of a subroutine. An expression classified as void is 
only valid in the context of an invocation statement. 



Visual Basic Language Specification 

212 Copyright © Microsoft Corporation 2005. All rights reserved. 

The final result of an expression is never a namespace, type, method group, or property group. Rather, as noted 
above, these categories of expressions are intermediate constructs that are only permitted in certain contexts. 

Note that expressions whose type is a type parameter can be used in statements and expressions that require the 
type of an expression to have certain characteristics (such as being a reference type, value type, deriving from 
some type, etc.) if the constraints imposed on the type parameter satisfy those characteristics. 

11.1.1 Expression Reclassification 

Normally, when an expression is used in a context that requires a classification different from that of the 
expression, a compile-time error occurs — for example, attempting to assign a value to a literal. However, in 
many cases it is possible to change an expression's classification through the process of reclassification. The 
following types of expressions can be reclassified: 

• A variable can be reclassified as a value. The value stored in the variable is fetched. 

• A method group can be reclassified as a value. The method group expression is interpreted as an invocation 
expression with the associated type parameter list and empty parentheses (that is, f is interpreted as f() and 
f(Of Integer) is interpreted as f(Of Integer)()). This reclassification may actually result in the 
expression being reclassified as void. 

• A method pointer can be reclassified as a value. This reclassification can only occur in assignment 
statements or as a part of interpreting a parameter list, where the target type is known. The method pointer 
expression is interpreted as the argument to a delegate instantiation expression of the appropriate type with 
the associated type argument list. For example: 

Delegate Sub D(ByVal i As Integer) 

 

Module Test 

    Sub F(ByVal i As Integer) 

    End Sub 

 

    Sub Main() 

        Dim del As D 

 

        ' The next two lines are equivalent. 

        del = AddressOf F 

        del = New D(AddressOf F) 

    End Sub 

End Module 

• A property group can be reclassified as a property access. The property group expression is interpreted as an 
index expression with empty parentheses (that is, f is interpreted as f()). 

• A property access can be reclassified as a value. The property access expression is interpreted as an 
invocation expression of the Get accessor of the property. If the property has no getter, then a compile-time 
error occurs. 

• A late-bound access can be reclassified as a late-bound method or late-bound property access. In a situation 
where a late-bound access can be reclassified both as a method access and as a property access, 
reclassification to a property access is preferred. 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 213 

• A late-bound access can be reclassified as a value. 

A namespace expression, type expression, event access expression, or void expression cannot be reclassified. 
Multiple reclassifications can be done at the same time. For example: 

Module Test 

    Sub F(ByVal i As Integer) 

    End Sub 

 

    ReadOnly Property P() As Integer 

        Get 

        End Get 

    End Sub 

 

    Sub Main() 

        F(P) 

    End Sub 

End Module 

In this case, the property group expression P is first reclassified from a property group to a property access and 
then reclassified from a property access to a value. The fewest number of reclassifications are performed to 
reach a valid classification in the context. 

11.2 Constant Expressions 
A constant expression is an expression whose value can be fully evaluated at compile time. The type of a 
constant expression can be Byte, SByte, UShort, Short, UInteger, Integer, ULong, Long, Char, 
Single, Double, Decimal, Boolean, String, or any enumeration type. The following constructs are 
permitted in constant expressions: 

• Literals (including Nothing). 

• References to constant type members or constant locals. 

• References to members of enumeration types. 

• Parenthesized subexpressions. 

• Coercion expressions, provided the target type is one of the types listed above. Coercions to and from 
String are an exception to this rule and not allowed because String conversions are always done in the 
current culture of the execution environment at run time. 

• The +, – and Not unary operators. 

• The +, –, *, ̂ , Mod, /, \, <<, >>, &, And, Or, Xor, AndAlso, OrElse, =, <, >, <>, <=, and => binary 
operators, provided each operand is of a type listed above. 

• The following run-time functions: 

• Microsoft.VisualBasic.Strings.ChrW 

• Microsoft.VisualBasic.Strings.Chr, if the constant value is between 0 and 128 

• Microsoft.VisualBasic.Strings.AscW, if the constant string is not empty 



Visual Basic Language Specification 

214 Copyright © Microsoft Corporation 2005. All rights reserved. 

• Microsoft.VisualBasic.Strings.Asc, if the constant string is not empty 

Constant expressions of an integral type (ULong, Long, UInteger, Integer, UShort, Short, SByte, or 
Byte) can be implicitly converted to a narrower integral type, and constant expressions of type Double can be 
implicitly converted to Single, provided the value of the constant expression is within the range of the 
destination type. These narrowing conversions are allowed regardless of whether permissive or strict semantics 
are being used. 

ConstantExpression  ::=  Expression 

11.3 Late-Bound Expressions 
When the target of a member access expression or index expression is of type Object, the processing of the 
expression may be deferred until run time. Deferring processing this way is called late binding. Late binding 
allows Object variables to be used in a typeless way, where all resolution of members is based on the actual 
run-time type of the value in the variable. If strict semantics are specified by the compilation environment or by 
Option Strict, late binding causes a compile-time error. Non-public members are ignored when doing late-
binding, including for the purposes of overload resolution. Note that, unlike the early-bound case, invoking or 
accessing a Shared member late-bound will cause the invocation target to be evaluated at run time. If the 
expression is an invocation expression for a member defined on System.Object, late binding will not take 
place. 

In general, late-bound accesses are resolved at run time by looking up the identifier on the actual run-time type 
of the expression. If late-bound member lookup fails at run time, a System.MissingMemberException 
exception is thrown. Because late-bound member lookup is done solely off the run-time type of the associated 
instance expression, an object's run-time type is never an interface. Therefore, it is impossible to access interface 
members in a late-bound member access expression. 

Because late-bound overload resolution is done on the run-time type of the arguments, it is possible that an 
expression might produce different results based on whether it is evaluated at compile time or run time. The 
following example illustrates this difference: 

Class Base 

End Class 

 

Class Derived 

    Inherits Base 

End Class 

 

Module Test 

    Sub F(ByVal b As Base) 

        Console.WriteLine("F(Base)") 

    End Sub 

 

    Sub F(ByVal d As Derived) 

        Console.WriteLine("F(Derived)") 

    End Sub 

 

    Sub Main() 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 215 

        Dim b As Base = New Derived() 

        Dim o As Object = b 

 

        F(b) 

        F(o) 

    End Sub 

End Module 

This code displays: 

F(Base) 

F(Derived) 

11.4 Simple Expressions 
Simple expressions are literals, parenthesized expressions, instance expressions, or simple name expressions. 

SimpleExpression  ::= 
 LiteralExpression  | 
 ParenthesizedExpression  | 
 InstanceExpression  | 
 SimpleNameExpression  | 
 AddressOfExpression 

11.4.1 Literal Expressions 

Literal expressions evaluate to the value represented by the literal. A literal expression is classified as a value. 

LiteralExpression  ::=  Literal 

11.4.2 Parenthesized Expressions 

A parenthesized expression consists of an expression enclosed in parentheses. A parenthesized expression is 
classified as a value, and the enclosed expression must be classified as a value. A parenthesized expression 
evaluates to the value of the expression within the parentheses.  

ParenthesizedExpression  ::=  (  Expression  ) 

11.4.3 Instance Expressions 

An instance expression is the keyword Me, MyClass, or MyBase. An instance expression, which may only be 
used within the body of a non-shared method, constructor, or property accessor, is classified as a value. Instance 
expressions cannot be used in the arguments to constructor invocations. The three different instance expression 
types are: 

• The keyword Me represents the instance of the type containing the method or property accessor being 
executed. 

• The keyword MyClass is equivalent to Me, but all method invocations on it are treated as if the method 
being invoked is non-overridable. Thus, the method called will not be affected by the run-time type of the 
value on which the method is being called. MyClass can only be used as the target expression of a member 
access. 

• The keyword MyBase represents the instance of the type containing the method or property accessor being 
executed cast to its direct base type. All method invocations on it are treated as if the method being invoked 



Visual Basic Language Specification 

216 Copyright © Microsoft Corporation 2005. All rights reserved. 

is non-overridable. MyBase can only be used as the target expression of a member access. A member access 
using MyBase is called a base access. 

The following example demonstrates how instance expressions can be used: 

Class Base 

    Public Overridable Sub F() 

        Console.WriteLine("Base.F") 

    End Sub 

End Class 

 

Class Derived 

    Inherits Base 

 

    Public Overrides Sub F() 

        Console.WriteLine("Derived.F") 

    End Sub 

 

    Public Sub G() 

        MyClass.F() 

    End Sub 

End Class 

 

Class MoreDerived 

    Inherits Derived 

 

    Public Overrides Sub F() 

        Console.WriteLine("MoreDerived.F") 

    End Sub 

 

    Public Sub H() 

        MyBase.F() 

    End Sub 

End Class 

 

Module Test 

    Sub Main() 

        Dim x As MoreDerived = new MoreDerived() 

 

        x.F() 

        x.G() 

        x.H() 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 217 

    End Sub 

 

End Module 

This code prints out: 

MoreDerived.F 

Derived.F 

Derived.F 

InstanceExpression  ::=  Me 

11.4.4 Simple Name Expressions 

A simple name expression consists of a single identifier followed by an optional type argument list. The name is 
resolved and classified as follows: 

• Starting with the immediately enclosing block and continuing with each enclosing outer block (if any), if the 
identifier matches the name of a local variable, static variable, constant local, method type parameter, or 
parameter, then the identifier refers to the matching entity. The expression is classified as a variable if it is a 
local variable, static variable, or parameter. The expression is classified as a type if it is a method type 
parameter. The expression is classified as a value if it is a constant local with the following exception. If the 
local variable matched is the implicit function or Get accessor return local variable, and the expression is 
part of an invocation expression, invocation statement, or an AddressOf expression, then no match occurs 
and resolution continues. 

• For each nested type containing the expression, starting from the innermost and going to the outermost, if a 
lookup of the identifier in the type produces a match with an accessible member: 

• If the matching type member is a type parameter, then the result is classified as a type and is the 
matching type parameter. 

• Otherwise, if the type is the immediately enclosing type and the lookup identifies a non-shared type 
member, then the result is the same as a member access of the form Me.E, where E is the identifier. 

• Otherwise, the result is exactly the same as a member access of the form T.E, where T is the type 
containing the matching member and E is the identifier. In this case, it is an error for the identifier to 
refer to a non-shared member. 

• For each nested namespace, starting from the innermost and going to the outermost namespace, do the 
following: 

• If the namespace contains an accessible namespace member with the given name, then the identifier 
refers to that member and, depending on the member, is classified as a namespace or a type. 

• Otherwise, if the namespace contains one or more accessible standard modules, and a member name 
lookup of the identifier produces an accessible match in exactly one standard module, then the result is 
exactly the same as a member access of the form M.E, where M is the standard module containing the 
matching member and E is the identifier. If the identifier matches accessible type members in more than 
one standard module, a compile-time error occurs. 

• If the source file has one or more import aliases, and the identifier matches the name of one of them, then 
the identifier refers to that namespace or type. 

• If the source file containing the name reference has one or more imports: 



Visual Basic Language Specification 

218 Copyright © Microsoft Corporation 2005. All rights reserved. 

• If the identifier matches the name of an accessible type or type member in exactly one import, then the 
identifier refers to that type or type member. If the identifier matches the name of an accessible type or 
type member in more than one import, a compile-time error occurs. 

• If the identifier matches the name of a namespace in exactly one import, then the identifier refers to that 
namespace. If the identifier matches the name of a namespace in more than one import, a compile-time 
error occurs. 

• Otherwise, if the imports contain one or more accessible standard modules, and a member name lookup 
of the identifier produces an accessible match in exactly one standard module, then the result is exactly 
the same as a member access of the form M.E, where M is the standard module containing the matching 
member and E is the identifier. If the identifier matches accessible type members in more than one 
standard module, a compile-time error occurs. 

• If the compilation environment defines one or more import aliases, and the identifier matches the name of 
one of them, then the identifier refers to that namespace or type. 

• If the compilation environment defines one or more imports: 

• If the identifier matches the name of an accessible type or type member in exactly one import, then the 
identifier refers to that type or type member. If the identifier matches the name of an accessible type or 
type member in more than one import, a compile-time error occurs. 

• If the identifier matches the name of a namespace in exactly one import, then the identifier refers to that 
namespace. If the identifier matches the name of a namespace in more than one import, a compile-time 
error occurs. 

• Otherwise, if the imports contain one or more accessible standard modules, and a member name lookup 
of the identifier produces an accessible match in exactly one standard module, then the result is exactly 
the same as a member access of the form M.E, where M is the standard module containing the matching 
member and E is the identifier. If the identifier matches accessible type members in more than one 
standard module, a compile-time error occurs. 

• Otherwise, the name given by the identifier is undefined and a compile-time error occurs. 

If a simple name with a type argument list resolves to anything other than a type or method, a compile time error 
occurs. If a type argument list is supplied, only types with the same arity as the type argument list are considered 
but type members, including methods with different arities, are still considered. This is because type inference 
can be used to fill in missing type arguments. As a result, names with type arguments may bind differently to 
types and methods: 

Class Outer 

    Class C1(Of T) 

    End Class 

 

    Shared Sub S1(Of T)() 

    End Sub 

 

    Class Inner 

        Class C1 

        End Class 

 

        Sub S1() 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 219 

        End Sub 

 

        Sub Test() 

            Dim x As C1(Of Integer)    ' Binds to Outer.C1(Of T) 

            S1(Of Integer)()           ' Error: Outer.Inner.S1 takes  

                                       '        no type arguments 

        End Sub 

    End Class 

End Class 

Normally, a name can only occur once in a particular namespace. However, because namespaces can be 
declared across multiple .NET assemblies, it is possible to have a situation where two assemblies define a type 
with the same fully qualified name. In that case, a type declared in the current set of source files is preferred 
over a type declared in an external .NET assembly. Otherwise, the name is ambiguous and there is no way to 
disambiguate the name. 

SimpleNameExpression  ::=  Identifier  [  (  Of  TypeArgumentList  )  ] 

11.4.5 AddressOf Expressions 

An AddressOf expression is used to produce a method pointer. The expression consists of the AddressOf 
keyword and an expression that must be classified as a method group. The method group cannot be late-bound 
and it cannot refer to constructors. 

The result is classified as a method pointer and the associated instance expression and type argument list (if any) 
is the same as the associated instance expression and type argument list of the method group. 

AddressOfExpression  ::=  AddressOf  Expression 

11.5 Type Expressions 
A type expression is a GetType expression, a TypeOf...Is expression, or an Is expression. 

TypeExpression  ::= 
 GetTypeExpression  | 
 TypeOfIsExpression  | 
 IsExpression 

11.5.1 GetType Expressions 

A GetType expression consists of the keyword GetType and the name of a type. A type expression is classified 
as a value, and the value of the expression is the reflection (System.Type) class that represents that type. If the 
expression is a type parameter, the expression will return the System.Type object that corresponds to the type 
argument supplied for the type parameter at run-time. 

The type name in a GetType expression is special in two ways: 

• The type name is allowed to be System.Void, the only place in the language where this type name may be 
referenced. 

• The type name may be a constructed generic type with the type arguments omitted. This allows the 
GetType expression to return the System.Type object that corresponds to the generic type itself. 

The following example demonstrates the GetType expression: 

Module Test 



Visual Basic Language Specification 

220 Copyright © Microsoft Corporation 2005. All rights reserved. 

    Sub Main() 

        Dim t As Type() = { GetType(Integer), GetType(System.Int32), _ 

            GetType(String), GetType(Double()) } 

        Dim i As Integer 

 

        For i = 0 To t.Length – 1 

            Console.WriteLine(t(i).Name) 

        Next i 

    End Sub 

End Module 

The resulting output is:  

Int32 

Int32 

String 

Double() 

GetTypeExpression  ::=  GetType  (  GetTypeTypeName  ) 

GetTypeTypeName  ::= 
 TypeName  | 
 QualifiedIdentifier  (  Of  [  TypeArityList  ]  ) 

TypeArityList  ::= 
 ,  | 
 TypeParameterList  , 

11.5.2 TypeOf...Is Expressions 

A TypeOf...Is expression is used to check whether the run-time type of a value is compatible with a given 
type. The first operand must be classified as a value and must be of a reference type or an unconstrained type 
parameter type. The second operand must be a type name. The result of the expression is classified as a value 
and is a Boolean value. The expression evaluates to True if the run-time type of the operand is derived from or 
implements the type, False otherwise. 

TypeOfIsExpression  ::=  TypeOf  Expression  Is  TypeName 

11.5.3 Is Expressions 

An Is or IsNot expression is used to do a reference equality comparison. Each expression must be classified as 
a value and the type of each expression must be a reference type or an unconstrained type parameter type. If the 
type of one expression is an unconstrained type parameter type, however, the other expression must be the literal 
Nothing. 

The result is classified as a value and is typed as Boolean. An Is operation evaluates to True if both values 
refer to the same instance or False otherwise. An IsNot operation evaluates to False if both values refer to 
the same instance or True otherwise. 

IsExpression  ::= 
 Expression  Is  Expression  | 
 Expression  IsNot  Expression 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 221 

11.6 Member Access Expressions 
A member access expression is used to access a member of an entity. A member access of the form E.I, where 
E is an expression, a built-in type, the keyword Global, or omitted and I is an identifier with an optional type 
argument list, is evaluated and classified as follows: 

• If E is omitted, then the expression from the immediately containing With statement is substituted for E and 
the member access is performed. If there is no containing With statement, a compile-time error occurs. 

• If E is a type parameter, then a compile-time error results. 

• If E is the keyword Global, and I is the name of an accessible type in the global namespace, then the result 
is that type. 

• If E is classified as a namespace and I is the name of an accessible member of that namespace, then the 
result is that member. The result is classified as a namespace or a type depending on the member. 

• If E is a built-in type or an expression classified as a type, and I is the name of an accessible member of E, 
then E.I is evaluated and classified as follows: 

• If I is the keyword New, then a compile-time error occurs. 

• If I identifies a type, then the result is that type. 

• If I identifies one or more methods, then the result is a method group with the associated type argument 
list and no associated instance expression. 

• If I identifies one or more properties, then the result is a property group with no associated instance 
expression. 

• If I identifies a shared variable, and if the variable is read-only, and the reference occurs outside the 
shared constructor of the type in which the variable is declared, then the result is the value of the shared 
variable I in E. Otherwise, the result is the shared variable I in E. 

• If I identifies a shared event, the result is an event access with no associated instance expression. 

• If I identifies a constant, then the result is the value of that constant. 

• If I identifies an enumeration member, then the result is the value of that enumeration member. 

• Otherwise, E.I is an invalid member reference, and a compile-time error occurs. 

• If E is classified as a variable or value, the type of which is T, and I is the name of an accessible member of 
E, then E.I is evaluated and classified as follows: 

• If I is the keyword New and E is an instance expression (Me, MyBase, or MyClass), then the result is a 
method group representing the instance constructors of the type of E with an associated instance 
expression of E and no type argument list. Otherwise, a compile-time error occurs. 

• If I identifies one or more methods, then the result is a method group with the associated type argument 
list and an associated instance expression of E. 

• If I identifies one or more properties, then the result is a property group with an associated instance 
expression of E. 

• If I identifies a shared variable or an instance variable, and if the variable is read-only, and the reference 
occurs outside a constructor of the class in which the variable is declared appropriate for the kind of 
variable (shared or instance), then the result is the value of the variable I in the object referenced by E. 
If T is a reference type, then the result is the variable I in the object referenced by E. Otherwise, if T is a 



Visual Basic Language Specification 

222 Copyright © Microsoft Corporation 2005. All rights reserved. 

value type and the expression E is classified as a variable, the result is a variable; otherwise the result is 
a value. 

• If I identifies an event, the result is an event access with an associated instance expression of E. 

• If I identifies a constant, then the result is the value of that constant. 

• If I identifies an enumeration member, then the result is the value of that enumeration member. 

• If T is Object, then the result is a late-bound member lookup classified as a late-bound access with an 
associated instance expression of E. 

• Otherwise, E.I is an invalid member reference, and a compile-time error occurs. 

If the member access expression includes a type argument list, then only types or methods with the same arity as 
the type argument list are considered. 

When a member access expression begins with the keyword Global, the keyword represents the outermost 
unnamed namespace, which is useful in situations where a declaration shadows an enclosing namespace. The 
Global keyword allows “escaping” out to the outermost namespace in that situation. For example: 

Class System 

End Class 

 

Module Test 

 Sub Main() 

  ' Error: Class System does not contain Console 

  System.Console.WriteLine("Hello, world!")  

 

 

  ' Legal, binds to System in outermost namespace 

  Global.System.Console.WriteLine("Hello, world!")  

 End Sub 

End Module 

In the above example, the first method call is invalid because the identifier System binds to the class System, 
not the namespace System. The only way to access the System namespace is to use Global to escape out to 
the outermost namespace. 

If the member being accessed is shared, any expression on the left side of the period is superfluous and is not 
evaluated unless the member access is done late-bound. For example, consider the following code: 

Class C 

    Public Shared F As Integer = 10 

End Class 

 

Module Test 

    Public Function ReturnC() As C 

        Console.WriteLine("Returning a new instance of C.") 

        Return New C() 

    End Function 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 223 

 

    Public Sub Main() 

        Console.WriteLine("The value of F is: " & ReturnC().F) 

    End Sub 

End Module 

It prints The value of F is: 10 because the function ReturnC does not need to be called to provide an 
instance of C to access the shared member F. 

MemberAccessExpression  ::= 
 [  [  MemberAccessBase  ]  .  ]  IdentifierOrKeyword 

MemberAccessBase  ::= 
 Expression  | 
 BuiltInTypeName  | 
 Global  | 
 MyClass  | 
 MyBase 

11.6.1 Identical Type and Member Names 

It is not uncommon to name members using the same name as their type. In that situation, however, 
inconvenient name hiding can occur: 

Enum Color 

    Red 

    Green 

    Yellow 

End Enum 

 

Class Test 

    ReadOnly Property Color() As Color 

        Get 

            Return Color.Red 

        End Get 

    End Property 

 

    Shared Function DefaultColor() As Color 

        Return Color.Green    ' Binds to the instance property! 

    End Function 

End Class 

In the previous example, the simple name Color in DefaultColor binds to the instance property instead of 
the type. Because an instance member cannot be referenced in a shared member, this would normally be an 
error. 

However, a special rule allows access to the type in this case. If the base expression of a member access 
expression is a simple name and binds to a constant, field, property, local variable or parameter whose type has 
the same name, then the base expression can refer either to the member or the type. This can never result in 
ambiguity because the members that can be accessed off of either one are the same. 



Visual Basic Language Specification 

224 Copyright © Microsoft Corporation 2005. All rights reserved. 

11.6.2 Default Instances 

In some situations, classes derived from a common base class usually or always have only a single instance. For 
example, most windows shown in a user interface only ever have one instance showing on the screen at any 
time. To simplify working with these types of classes, Visual Basic can automatically generate default instances 
of the classes that provide a single, easily referenced instance for each class. 

Default instances are always created for a family of types rather than for one particular type. So instead of 
creating a default instance for a class Form1 that derives from Form, default instances are created for all classes 
derived from Form. This means that each individual class that derives from the base class does not have to be 
specially marked to have a default instance. 

The default instance of a class is represented by a compiler-generated property that returns the default instance 
of that class. The property generated as a member of a class called the group class that manages allocating and 
destroying default instances for all classes derived from the particular base class. For example, all of the default 
instance properties of classes derived from Form may be collected in the MyForms class. If an instance of the 
group class is returned by the expression My.Forms, then the following code accesses the default instances of 
derived classes Form1 and Form2: 

Class Form1 

    Inherits Form 

    Public x As Integer 

End Class 

 

Class Form2 

    Inherits Form 

    Public y As Integer 

End Class 

 

Module Main 

    Sub Main() 

        My.Forms.Form1.x = 10 

        Console.WriteLine(My.Forms.Form2.y) 

    End Sub 

End Class 

Default instances will not be created until the first reference to them; fetching the property representing the 
default instance causes the default instance to be created if it has not already been created or has been set to 
Nothing. To allow testing for the existence of a default instance, when a default instance is the target of an Is 
or IsNot operator, the default instance will not be created. Thus, it is possible to test whether a default instance 
is Nothing or some other reference without causing the default instance to be created. 

Default instances are intended to make it easy to refer to the default instance from outside of the class that has 
the default instance. Using a default instance from within a class that defines it might cause confusion as to 
which instance is being referred to, i.e. the default instance or the current instance. For example, the following 
code modifies only the value x in the default instance, even though it is being called from another instance. Thus 
the code prints the value 5 instead of 10: 

Class Form1 

    Inherits Form 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 225 

 

    Public x As Integer = 5 

 

    Public Sub ChangeX() 

        Form1.x = 10 

    End Sub 

End Class 

 

Module Main 

    Sub Main() 

        Dim f As Form1 = New Form1() 

        f.ChangeX() 

        Console.WriteLine(f.x) 

    End Sub 

End Class 

To prevent this kind of confusion, it is not valid to refer to a default instance from within an instance method of 
the default instance’s type. 

11.6.2.1 Default Instances and Type Names 

A default instance may also be accessible directly through its type’s name. In this case, in any expression 
context where the type name is not allowed the expression E, where E represents the fully qualified name of the 
class with a default instance, is changed to E’, where E’ represents an expression that fetches the default 
instance property. For example, if default instances for classes derived from Form allow accessing the default 
instance through the type name, then the following code is equivalent to the code in the previous example: 

Module Main 

    Sub Main() 

        Form1.x = 10 

        Console.WriteLine(Form2.y) 

    End Sub 

End Class 

This also means that a default instance that is accessible through its type’s name is also assignable through the 
type name. For example, the following code sets the default instance of Form1 to Nothing: 

Module Main 

    Sub Main() 

        Form1 = Nothing 

    End Sub 

End Class 

Note that the meaning of E.I were E represents a class and I represents a shared member does not change. Such 
an expression still accesses the shared member directly off of the class instance and does not reference the 
default instance. 



Visual Basic Language Specification 

226 Copyright © Microsoft Corporation 2005. All rights reserved. 

11.6.2.2 Group Classes 

The Microsoft.VisualBasic.MyGroupCollectionAttribute attribute indicates the group class for a 
family of default instances. The attribute has four parameters: 

• The parameter TypeToCollect specifies the base class for the group. All non-generic classes that are 
declared as deriving from the group’s base type will automatically have a default instance. 

• The parameter CreateInstanceMethodName specifies the method to call in the group class to create a 
new instance in a default instance property. 

• The parameter DisposeInstanceMethodName specifies the method to call in the group class to dispose 
of a default instance property if the default instance property is assigned the value Nothing. 

• The parameter DefaultInstanceAlias specifics the expression E’ to substitute for the class name if the 
default instances are accessible directly through their type name. If this parameter is Nothing or an empty 
string, default instances on this group type are not accessible directly through their type’s name. 

The signature of the create method must be of the form Shared Function <Name>(Of T As {New, 
<Type>})(ByVal Instance Of T) As T. The dispose method must be of the form Shared Sub 

<Name>(Of T As <Type>)(ByRef Instance Of T). Thus, the group class for the example in the 
preceding section could be declared as follows: 

<Microsoft.VisualBasic.MyGroupAttribute("Form", "Create", _ 

    "Dispose", "My.Forms")> _ 

Public NotInheritable Class MyForms 

    Private Shared Function Create(Of T As {New, Form}) _ 

        (ByVal Instance Of T) As T 

        If Instance Is Nothing Then 

            Return New T() 

        Else 

            Return Instance 

        End If 

    End Function 

 

    Private Shared Sub Dispose(Of T As Form)(ByRef Instance Of T) 

        Instance.Close() 

        Instance = Nothing 

    End Sub 

End Class 

If a source file declared a derived class Form1, the generated group class would be equivalent to: 

<Microsoft.VisualBasic.MyGroupAttribute("Form", "Create", _ 

    "Dispose", "My.Forms")> _ 

Public NotInheritable Class MyForms 

    Private Shared Function Create(Of T As {New, Form}) _ 

        (ByVal Instance Of T) As T 

        If Instance Is Nothing Then 

            Return New T() 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 227 

        Else 

            Return Instance 

        End If 

    End Function 

 

    Private Shared Sub Dispose(Of T As Form)(ByRef Instance Of T) 

        Instance.Close() 

        Instance = Nothing 

    End Sub 

 

    Private m_Form1 As Form1 

 

    Public Property Form1() As Form1 

        Get 

            Return CreateInstance(m_Form1) 

        End Get 

        Set (ByVal Value As Form1) 

            If Value IsNot Nothing AndAlso Value IsNot m_Form1 Then 

                Throw New ArgumentException( _ 

                    "Property can only be set to Nothing.") 

            End If 

            DisposeInstance(m_Form1) 

        End Set 

    End Property 

End Class 

11.7 Dictionary Member Access 
A dictionary member access expression is used to look up a member of a collection. A dictionary member 
access takes the form of E!I, where E is an expression that is classified as a value and I is an identifier. The 
type of the expression must have a default property indexed by a single String parameter. The dictionary 
member access expression E!I is transformed into the expression E.D("I"), where D is the default property of 
E. For example: 

Class Keys 

    Public ReadOnly Default Property Item(ByVal s As String) As Integer 

        Get 

            Return 10 

        End Get 

    End Property  

End Class 

 

Module Test 



Visual Basic Language Specification 

228 Copyright © Microsoft Corporation 2005. All rights reserved. 

    Sub Main() 

        Dim x As Keys = new Keys() 

        Dim y As Integer 

        ' The two statements are equivalent. 

        y = x!abc 

        y = x("abc") 

    End Sub 

End Module 

If an exclamation point is specified with no expression, the expression from the immediately containing With 
statement is assumed. If there is no containing With statement, a compile-time error occurs. 

DictionaryAccessExpression  ::=  [  Expression  ]  !  IdentifierOrKeyword 

11.8 Invocation Expressions 
An invocation expression consists of an invocation target and an optional argument list. The target expression 
must be classified as a method group or a value whose type is a delegate type. If the target expression is a value 
whose type is a delegate type, then the target of the invocation expression becomes the method group referring 
to the Invoke member of the delegate type. 

An argument list has two sections: positional arguments and named arguments. Positional arguments are 
expressions and must precede any named arguments. Named arguments start with an identifier that can match 
keywords, followed by := and an expression. 

Given a method group, overload resolution is applied to pick a single method applicable to the given argument 
list(s). If the method group only contains one method and that method takes no arguments and is a function, then 
the method group is interpreted as an invocation expression with an empty argument list and the result is used as 
the target of an index expression. If no method is applicable, a compile-time error occurs. If the applicable 
method is a function, then the result of the invocation expression is classified as a value typed as the return type 
of the function. If the applicable method is a subroutine, then the result is classified as void. 

InvocationExpression  ::=  Expression  [  (  [  ArgumentList  ]  )  ] 

ArgumentList  ::= 
 PositionalArgumentList  ,  NamedArgumentList  | 
 PositionalArgumentList  | 
 NamedArgumentList 

PositionalArgumentList  ::= 
 Expression  | 
 PositionalArgumentList  ,  [  Expression  ] 

NamedArgumentList  ::= 
 IdentifierOrKeyword  :=  Expression  | 
 NamedArgumentList  ,  IdentifierOrKeyword  :=  Expression 

11.8.1 Overloaded Method Resolution 

Given a method group, the applicable method in the group for an argument list is determined as follows: 

• Eliminate all inaccessible members from the set. 

• Eliminate all members from the set that are not applicable to the argument list. If the set is empty, a 
compile-time error results. If only one member remains in the set, that is the applicable member. 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 229 

• Eliminate all members from the set that require narrowing coercions to be applicable to the argument list, 
except for the case where the argument expression type is Object. If the set is empty, a compile-time error 
results. If only one member remains in the set, that is the applicable member. 

• Eliminate all remaining members from the set that require narrowing coercions to be applicable to the 
argument list. If the set is empty, the type containing the method group is not an interface, and strict 
semantics are not being used, the invocation target expression is reclassified as a late-bound method access. 
If strict semantics are being used or the method group is contained in an interface and the set is empty, a 
compile-time error results. If only one member remains in the set, that is the applicable member. 

Annotation 

The justification for this rule is that if a program is loosely-typed (that is, most or all variables are declared as 
Object), overload resolution can be difficult because all conversions from Object are narrowing. Rather than 
have the overload resolution fail in many situations (requiring strong typing of the arguments to the method 
call), resolution the appropriate overloaded method to call is deferred until run time. This allows the loosely-
typed call to succeed without additional casts. 

An unfortunate side-effect of this, however, is that performing the late-bound call requires casting the call target 
to Object. In the case of a structure value, this means that the value must be boxed to a temporary. If the 
method eventually called tries to change a field of the structure, this change will be lost once the method returns. 

Interfaces are excluded from this special rule because late binding always resolves against the members of the 
runtime class or structure type, which may have different names than the members of the interfaces they 
implement. 

• Given any two members of the set, M and N, if M is more applicable than N to the argument list, eliminate N 
from the set. If only one member remains in the set, that is the applicable member. If the remaining 
members do not all have the same signature, a compile-time error results. 

• Otherwise, it must be the case that the remaining members have the same signature because of type 
parameters. Given any two members of the set, M and N, if M is less generic than N, eliminate N from the set. 
If only one member remains in the set, that is the applicable member. Otherwise, a compile-time error 
results.  

A member M is considered more applicable than N if their signatures are different and, for each pair of 
parameters Mj and Nj that matches an argument Aj, one of the following conditions is true: 

• Mj and Nj have identical types, or 

• There exists a widening conversion from the type of Mj to the type Nj, or 

Annotation 

Note that because parameters types are being compared without regard to the actual argument in this case, the 
widening conversion from constant expressions to a numeric type the value fits into is not considered in this 
case. 

• Aj is the literal 0, Mj is a numeric type and Nj is an enumerated type, or 

Annotation 

This rule is necessary because the literal 0 widens to any enumerated type. Since an enumerated type widens to 
its underlying type, this means that overload resolution on 0 will, by default, prefer enumerated types over 
numeric types. We received a lot of feedback that this behavior was counterintuitive. 

• Mj is Byte and Nj is SByte, or 

• Mj is Short and Nj is UShort, or 



Visual Basic Language Specification 

230 Copyright © Microsoft Corporation 2005. All rights reserved. 

• Mj is Integer and Nj is UInteger, or  

• Mj is Long and Nj is ULong. 

Annotation 

The rules about the numeric types are necessary because the signed and unsigned numeric types of a particular 
size only have narrowing conversions between them. Thus, the above rules break the tie between the two types 
in favor of the more “natural” numeric type. This is particularly important when doing overload resolution on a 
type that widens to both the signed and unsigned numeric types of a particular size (for example, a numeric 
literal that fits into both). 

A member M is determined to be less generic than a member N using the following steps: 

• If M has fewer method type parameters than N, then M is less generic than N. 

• Otherwise, if for each pair of matching parameters Mj and Nj, Mj and Nj are equally generic with respect to 
type parameters on the method, or Mj is less generic with respect to type parameters on the method, and at 
least one Mj is less generic than Nj, then M is less generic than N. 

• Otherwise, if for each pair of matching parameters Mj and Nj, Mj and Nj are equally generic with respect to 
type parameters on the type, or Mj is less generic with respect to type parameters on the type, and at least 
one Mj is less generic than Nj, then M is less generic than N. 

For example: 

Class C1(Of T) 

    Sub S1(x As T) 

    End Sub 

 

    Sub S1(Of U)(x As T) 

    End Sub 

 

    Sub S2(x As Integer) 

    End Sub 

 

    Sub S2(x As T) 

    End Sub 

 

    Sub S2(Of U)(x As U) 

    End Sub 

 

    Sub S3(x As T) 

    End Sub 

 

    Sub S3(Of U)(x As U) 

    End Sub 

End Class 

 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 231 

Module Test 

    Sub Main() 

        Dim x As C1(Of Integer) = New C1(Of Integer) 

 

        x.S1(10)    ' Calls S1(T), as it has fewer type parameters 

        x.S2(10)    ' Calls S2(Integer), as it is less generic 

        x.S3(10)    ' Calls S3(T), as it is less generic than S3(Of U)(U) 

    End Sub 

End Module 

In practice, the rules for determining whether one method is more applicable than another method are intended 
to find the overload that is “closest” to the actual arguments supplied. If there is a method whose parameter 
types match the argument types, then that method is obviously the closest. Barring that, one method is closer 
than another if all of its parameter types are wider than (or the same as) the parameter types of the other method. 
If neither method’s parameters are wider than the other, then there is no way for to determine which method is 
closer to the arguments. 

Note   The context of the method usage is not used in overload resolution (except for determining 
accessibility). 

Annotation 

The context of the method call is not generally considered when doing overload resolution to avoid adding even 
more complexity to an already complex algorithm. The ability for mere mortals to grasp the results of overload 
resolution is already tenuous one, but adding a myriad of contextual clues would make it impossible. This does 
mean that in some situations overload resolution will choose the “wrong” overload, such as when it picks an 
instance method when doing overload resolution off of a type name. 

Also note that because of the named parameter syntax, the ordering of the actual and formal parameters may not 
be the same.  

11.8.2 Applicable Methods 

A method is applicable to a set of type arguments, positional arguments, and named arguments if the method 
can be invoked using the two argument lists. The argument lists are matched against the parameter lists as 
follows: 

• First, match each positional argument in order to the list of method parameters. If there are more positional 
arguments than parameters and the last parameter is not a paramarray, the method is not applicable. 
Otherwise, the paramarray parameter is expanded with parameters of the paramarray element type to match 
the number of positional arguments. If a positional argument is omitted, the method is not applicable. 

• Next, match each named argument to a parameter with the given name. If one of the named arguments fails 
to match, matches a paramarray parameter, or matches an argument already matched with another positional 
or named argument, the method is not applicable. 

• Next, if parameters that have not been matched are not optional, the method is not applicable. If optional 
parameters remain, the default value specified in the optional parameter declaration is matched to the 
parameter. If an Object parameter does not specify a default value, then the expression 
System.Reflection.Missing.Value is used. If an optional Integer parameter has the 
Microsoft.VisualBasic.CompilerServices.OptionCompareAttribute attribute, then the literal 
1 is supplied for text comparisons and the literal 0 otherwise. 



Visual Basic Language Specification 

232 Copyright © Microsoft Corporation 2005. All rights reserved. 

• Finally, if type arguments have been specified, they are matched against the type parameter list. If the two 
lists do not have the same number of elements, the method is not applicable, unless the type argument list is 
empty. If the type argument list is empty, type inferencing is used to try and infer the type argument list. If 
type inferencing fails, the method is not applicable. Otherwise, the type arguments are filled in the place of 
the type parameters in the signature. 

The type of each argument expression must be implicitly convertible to the type of the parameter it matches. If 
the parameter is a reference parameter, the argument expression must be also implicitly convertible from the 
type of the parameter. Note that constraints placed on type parameters are not considered when determining 
applicability. 

It is possible for two applicable methods to have the same signature if one or both contains an expanded 
paramarray parameter. In that case, the member with the fewest number of arguments matching expanded 
paramarray parameters is considered more applicable.  

Module Test 

    Sub F(ByVal ParamArray a As Object()) 

        Console.WriteLine("F(Object())") 

    End Sub 

 

    Sub F() 

        Console.WriteLine("F()") 

    End Sub 

 

    Sub F(ByVal a As Object, ByVal b As Object) 

        Console.WriteLine("F(Object, Object)") 

    End Sub 

 

    Sub F(ByVal a As Object, ByVal b As object, _ 

          ByVal ParamArray c As Object()) 

        Console.WriteLine("F(Object, Object, Object())") 

    End Sub 

 

    Sub Main() 

        F() 

        F(1) 

        F(1, 2) 

        F(1, 2, 3) 

    End Sub 

End Module 

The above example produces the following output: 

F() 

F(Object()) 

F(Object, Object) 

F(Object, Object, Object()) 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 233 

In the example, the first and third calls to F prefer F() and F(Object, Object) because they match no 
arguments to expanded paramarray parameters. The fourth call to F prefers F(Object, Object, Object()) 
because two arguments match non-expanded paramarray parameters. When a class declares a method with a 
paramarray parameter, it is not uncommon to also include some of the expanded forms as regular methods. By 
doing so it is possible to avoid the allocation of an array instance that occurs when an expanded form of a 
method with a paramarray parameter is invoked. 

If a single argument expression matches a paramarray parameter and the type of the argument expression is 
convertible to both the type of the paramarray parameter and the paramarray element type, the method is 
applicable in both its expanded and unexpanded forms, with two exceptions. If the conversion from the type of 
the argument expression to the paramarray type is narrowing, then the method is only applicable in its expanded 
form. If the argument expression is the null literal Nothing, then the method is only applicable in its 
unexpanded form. For example: 

Module Test 

    Sub F(ParamArray a As Object()) 

        Dim o As Object 

 

        For Each o In a 

            Console.Write(o.GetType().FullName) 

            Console.Write(" ") 

        Next o 

        Console.WriteLine() 

    End Sub 

 

    Sub Main() 

        Dim a As Object() = { 1, "Hello", 123.456 } 

        Dim o As Object = a 

 

        F(a) 

        F(CType(a, Object)) 

        F(o) 

        F(CType(o, Object())) 

    End Sub 

End Module 

The above example produces the following output: 

System.Int32 System.String System.Double 

System.Object[] 

System.Object[] 

System.Int32 System.String System.Double 

In the first and last invocations of F, the normal form of F is applicable because a widening conversion exists 
from the argument type to the parameter type (both are of type Object()), and the argument is passed as a 
regular value parameter. In the second and third invocations, the normal form of F is not applicable because no 
widening conversion exists from the argument type to the parameter type (conversions from Object to 
Object() are narrowing). However, the expanded form of F is applicable, and a one-element Object() is 



Visual Basic Language Specification 

234 Copyright © Microsoft Corporation 2005. All rights reserved. 

created by the invocation. The single element of the array is initialized with the given argument value (which 
itself is a reference to an Object()). 

11.8.3 Passing Parameters 

If a parameter is a value parameter, the matching argument expression must be classified as a value. The value is 
converted to the type of the parameter and passed in as the parameter at run time. If the parameter is a reference 
parameter and the matching argument expression is classified as a variable whose type is the same as the 
parameter, then a reference to the variable is passed in as the parameter at run time. 

Otherwise, if the matching argument expression is classified as a variable, value, or property access, then a 
temporary variable of the type of the parameter is allocated. Before the method invocation at run time, the 
argument expression is reclassified as a value, converted to the type of the parameter, and assigned to the 
temporary variable. Then a reference to the temporary variable is passed in as the parameter. After the method 
invocation is evaluated, if the argument expression is classified as a variable or property access, the temporary 
variable is assigned to the variable expression or the property access expression. If the property access 
expression has no Set accessor, then the assignment is not performed. 

11.8.4 Conditional Methods 

If the target method to which an invocation expression refers is a subroutine that is not a member of an interface 
and if the method has one or more System.Diagnostics.ConditionalAttribute attributes, evaluation of 
the expression depends on the conditional compilation constants defined at that point in the source file. Each 
instance of the attribute specifies a string, which names a conditional compilation constant. Each conditional 
compilation constant is evaluated as if it were part of a conditional compilation statement. If the constant 
evaluates to True, the expression is evaluated normally at run time. If the constant evaluates to False, the 
expression is not evaluated at all. 

When looking for the attribute, the most derived declaration of an overridable method is checked. 

Note   The attribute is not valid on functions or interface methods and is ignored if specified on either kind 
of method. Thus, conditional methods will only appear in invocation statements. 

11.8.5 Type Argument Inference 

When a method with type parameters is called without specifying type arguments, type inference is used to try 
and infer type arguments for the call. This allows a more natural syntax to be used for calling a method with 
type parameters when the type arguments can be trivially inferred. For example, given the following method 
declaration:  

Module Util 

    Function Choose(Of T)(ByVal b As Boolean, ByVal first As T, _ 

        ByVal second As T) As T 

        If b Then 

            Return first 

        Else 

            Return second 

        End If 

    End Function 

End Class 

it is possible to invoke the Choose method without explicitly specifying a type argument: 

' calls Choose(Of Integer) 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 235 

Dim i As Integer = Util.Choose(True, 5, 213) 

' calls Choose(Of String) 

Dim s As String = Util.Choose(False, "foo", "bar")   

Through type inference, the type arguments Integer and String are determined from the arguments to the 
method. 

Given a set of regular arguments matched to regular parameters, type inference inspects each argument type A 
and its corresponding parameter type P to infer type arguments. Each pair (A, P) is analyzed as follows: 

• Nothing is inferred from the argument (but type inference succeeds) if any of the following are true: 

• P does not involve any method type parameters. 

• The argument is the Nothing literal. 

• The argument is a method group. 

• If P is an array type and A is an instantiation of IList(Of T), ICollection(Of T), or 
IEnumerable(Of T), then replace P with the element type of P, and A with the type argument of A and 
restart the process. 

• If P is an array type and A is an array type of the same rank, then replace A and P respectively with the 
element types of A and P and restart this process. 

• If P is an array type and A is not an array type of the same rank, then type inference fails for the generic 
method. 

• If P is a method type parameter, then type inference succeeds for this argument, and A is the type inferred 
for that type parameter. 

• Otherwise, P must be a constructed type. If, for each method type parameter MX that occurs in P, exactly one 
type TX can be determined such that replacing each MX with each TX produces a type to which A is 
convertible by a standard implicit conversion, then inference succeeds for this argument, and each TX is the 
type inferred for each MX. Method type parameter constraints, if any, are ignored for the purpose of type 
inference. If, for a given MX, no TX exists or more than one TX exists, then type inference fails for the 
generic method (a situation where more than one TX exists can only occur if P is a generic interface type and 
A implements multiple constructed versions of that interface). 

If a parameter is a paramarray, then type inference is first performed against the parameter in its normal form. If 
type inference fails, then type inference is performed against the parameter in its expanded form. 

If all of the method arguments have been processed successfully by the above algorithm, all inferences that were 
produced from the arguments are pooled. This pooled set of inferences must have the following properties: 

• Every type parameter of the method must have a matching inferred type argument. 

• If a type parameter occurred more than once, all of the inferences about that type parameter must infer the 
same type argument. 

If these two properties hold, then type inference succeeds, else it fails. The success of type inference does not, in 
and of itself, guarantee that the method is applicable. 

11.9 Index Expressions 
An index expression results in an array element or reclassifies a property group into a property access. An index 
expression consists of, in order, an expression, an opening parenthesis, an index argument list, and a closing 
parenthesis. The target of the index expression must be classified as either a property group or a value. An index 
expression is processed as follows: 



Visual Basic Language Specification 

236 Copyright © Microsoft Corporation 2005. All rights reserved. 

• If the target expression is classified as a value and if its type is not an array type, Object, or 
System.Array, the type must have a default property. The index is performed on a property group that 
represents all of the default properties of the type. Although it is not valid to declare a parameterless default 
property in Visual Basic, other languages may allow declaring such a property. Consequently, indexing a 
property with no arguments is allowed. 

• If the expression results in a value of an array type, the number of arguments in the argument list must be 
the same as the rank of the array type and may not include named arguments. If any of the indexes are 
invalid at run time, a System.IndexOutOfRangeException exception is thrown. Each expression must 
be implicitly convertible to type Integer. The result of the index expression is the variable at the specified 
index and is classified as a variable. 

• If the expression is classified as a property group, overload resolution is used to determine whether one of 
the properties is applicable to the index argument list. If the property group only contains one property that 
has a Get accessor and if that accessor takes no arguments, then the property group is interpreted as an 
index expression with an empty argument list. The result is used as the target of the current index 
expression. If no properties are applicable, then a compile-time error occurs. Otherwise, the expression 
results in a property access with the associated instance expression (if any) of the property group. 

• If the expression is classified as a late-bound property group or as a value whose type is Object or 
System.Array, the processing of the index expression is deferred until run time and the indexing is late-
bound. The expression results in a late-bound property access typed as Object. The associated instance 
expression is either the target expression, if it is a value, or the associated instance expression of the 
property group. At run time the expression is processed as follows: 

• If the expression is classified as a late-bound property group, the expression may result in a method 
group, a property group, or a value (if the member is an instance or shared variable). If the result is a 
method group or property group, overload resolution is applied to the group to determine the correct 
method for the argument list. If overload resolution fails, a 
System.Reflection.AmbiguousMatchException exception is thrown. Then the result is 
processed either as a property access or as an invocation and the result is returned. If the invocation is of 
a subroutine, the result is Nothing. 

• If the run-time type of the target expression is an array type or System.Array, the result of the index 
expression is the value of the variable at the specified index.  

• Otherwise, the run-time type of the expression must have a default property and the index is performed 
on the property group that represents all of the default properties on the type. If the type has no default 
property, then a System.MissingMemberException exception is thrown. 

IndexExpression  ::=  Expression  (  [  ArgumentList  ]  ) 

11.10 New Expressions 
The New operator is used to create new instances of types. There are three forms of New expressions: 

• Object-creation expressions are used to create new instances of class types and value types. 

• Array-creation expressions are used to create new instances of array types. 

• Delegate-creation expressions are used to create new instances of delegate types. 

A New expression is classified as a value and the result is the new instance of the type. 

NewExpression  ::= 
 ObjectCreationExpression  | 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 237 

 ArrayCreationExpression  | 
 DelegateCreationExpression 

11.10.1 Object-Creation Expressions 

An object-creation expression is used to create a new instance of a class type or a structure type. The type of an 
object creation expression must be a class type, a structure type, or a type parameter with a New constraint and 
cannot be a MustInherit class. Given an object creation expression of the form New T(A), where T is a class 
type or structure type and A is an optional argument list, overload resolution determines the correct constructor 
of T to call. A type parameter with a New constraint is considered to have a single, parameterless constructor. If 
no constructor is callable, a compile-time error occurs; otherwise the expression results in the creation of a new 
instance of T using the chosen constructor. If there are no arguments, the parentheses may be omitted. 

Where an instance is allocated depends on whether the instance is a class type or a value type. New instances of 
class types are created on the system heap, while new instances of value types are created directly on the stack. 

ObjectCreationExpression  ::= 
 New  NonArrayTypeName  [  (  [  ArgumentList  ]  )  ] 

11.10.2 Array-Creation Expressions 

An array-creation expression is used to create a new instance of an array type. If an array size initialization 
modifier is supplied, the resulting array type is derived by deleting each of the individual arguments from the 
array size initialization argument list. The value of each argument determines the upper bound of the 
corresponding dimension in the newly allocated array instance. If the array-element initializer in the expression 
is not empty, each argument in the argument list must be a constant, and the rank and dimension lengths 
specified by the expression list must match those of the array element initializer. 

Dim a() As Integer = New Integer(2) {} 

Dim b() As Integer = New Integer(2) { 1, 2, 3 } 

Dim c() As Integer = New Integer(2, 2) { { 1, 2, 3 } , { 4, 5, 6 } } 

If an array size initialization modifier is not supplied, then the type name must be an array type and the array 
element initializer must be empty or the rank of the specified array type must match that of the array element 
initializer. The individual dimension lengths are inferred from the number of elements in each of the 
corresponding nesting levels of the array element initializer. If the array-element initializer is empty, the length 
of each dimension is zero. 

Dim d() As Integer = New Integer() { 1, 2, 3 } 

Dim e() As Integer = New Integer(,) { { 1, 2, 3 } , { 4, 5, 6 } } 

An array instance's rank and length of each dimension are constant for the entire lifetime of the instance. In 
other words, it is not possible to change the rank of an existing array instance, nor is it possible to resize its 
dimensions. Elements of arrays created by array-creation expressions are always initialized to their default 
value. 

ArrayCreationExpression  ::= 
 New  NonArrayTypeName  ArraySizeInitializationModifier  ArrayElementInitializer 

11.10.3 Delegate-Creation Expressions 

A delegate-creation expression is used to create a new instance of a delegate type. The argument of a delegate-
creation expression must be an expression classified as a method pointer. 

One of the methods referenced by the method pointer must exactly match the signature of the delegate type. A 
method matches the delegate type if the method is not declared MustOverride and if both their signatures and 



Visual Basic Language Specification 

238 Copyright © Microsoft Corporation 2005. All rights reserved. 

return types match. In the following example, the A.f variable is initialized with a delegate that refers to the 
second Square method because that method exactly matches the signature and return type of DoubleFunc. 

Delegate Function DoubleFunc(x As Double) As Double 

Class A 

    Private f As New DoubleFunc(AddressOf Square) 

    Overloads Shared Function Square(x As Single) As Single 

        Return x * x 

    End Function  

    Overloads Shared Function Square(x As Double) As Double 

        Return x * x 

    End Function  

End Class 

Had the second Square method not been present, a compile-time error would have occurred. 

If type arguments are associated with the method pointer, only methods with the same number of type 
arguments are considered. If no type arguments are associated with the method pointer, type inference is used 
when matching signatures against a generic method. Unlike other normal type inference, the return type of the 
delegate is used when inferring type arguments, but return types are still not considered when determining the 
least generic overload. The following example shows both ways of supplying a type argument to a delegate-
creation expression: 

Delegate Function D(ByVal s As String, ByVal i As Integer) As Integer 

Delegate Function E() As Integer 

 

Module Test 

    Public Function F(Of T)(ByVal s As String, ByVal t1 As T) As T 

    End Function 

   

    Public Function G(Of T)() As T 

    End Function 

 

    Sub Main() 

        Dim d1 As D = AddressOf f(Of Integer)    ' OK, type arg explicit 

        Dim d2 As D = AddressOf f                ' OK, type arg inferred 

 

        Dim e1 As E = AddressOf g(Of Integer)    ' OK, type arg explicit 

        Dim e2 As E = AddressOf g                ' OK, infer from return 

  End Sub 

End Module 

In the above example, a non-generic delegate type was instantiated using a generic method. It is also possible to 
create an instance of a constructed delegate type using a generic method. For example: 

Delegate Function Predicate(Of U)(ByVal u1 As U, ByVal u2 As U) As Boolean 

 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 239 

Module Test 

    Function Compare(Of T)(t1 As List(of T), t2 As List(of T)) As Boolean 

        ... 

    End Function 

   

    Sub Main() 

        Dim p As Predicate(Of List(Of Integer)) 

        p = AddressOf Compare(Of Integer) 

    End Sub 

End Module 

The result of a delegate-creation expression is a delegate instance that refers to the matching method with the 
associated instance expression (if any) from the method pointer expression. If the instance expression is typed as 
a value type, then the value type is copied onto the system heap because a delegate can only point to a method of 
an object on the heap. The method and object to which a delegate refers remain constant for the entire lifetime 
of the delegate. In other words, it is not possible to change the target or object of a delegate after it has been 
created. 

DelegateCreationExpression  ::=  New  NonArrayTypeName  (  Expression  ) 

11.11 Cast Expressions 
A cast expression coerces an expression to a given type. Specific cast keywords coerce expressions into the 
primitive types. Three general cast keywords, CType, TryCast and DirectCast, coerce an expression into a 
type. 

DirectCast and TryCast have special behaviors. Because of their special behavior, they only support a 
subset of the conversions supported by the language. Specifically, the conversions supported by DirectCast 
are: 

• Conversions from any type to itself. 

• Conversions from the literal Nothing to any type. 

• Conversions from any derived type to one of its base types, and vice versa. 

• Conversions from any interface type to any class type, and vice versa.  

• Conversions from any interface type to any value type that implements the interface type, and vice versa. 

• Conversions from any interface type to any other interface type. 

• Conversions from any enumerated type to its underlying type, and vice versa. 

• Conversions from an array type S with an element type SE to a covariant-array type T with an element type 
TE, provided all of the following are true: 

• S and T differ only in element type. 

• Both SE and TE are reference types. 

• A conversion exists from SE to TE. 

• Conversions from an array type S with an enumerated element type SE to an array type T with an element 
type TE, provided all of the following are true: 

• S and T differ only in element type. 



Visual Basic Language Specification 

240 Copyright © Microsoft Corporation 2005. All rights reserved. 

• TE is the underlying type of SE. 

• Conversions from an array type S with an element type SE to an array type T with an enumerated element 
type TE, provided all of the following are true: 

• S and T differ only in element type. 

• SE is the underlying type of TE. 

The conversions supported by TryCast are the same as DirectCast, except the type of the expression or the 
target type cannot be a value type. User-defined conversion operators are not considered when DirectCast or 
DirectCast is used. 

Annotation 

The conversion set that DirectCast and TryCast support are restricted because they implement “native 
CLR” conversions. The purpose of DirectCast is to provide the functionality of the “unbox” instruction, 
while the purpose of TryCast is to provide the functionality of the “isinst” instruction. Since they map onto 
CLR instructions, supporting conversions not directly supported by the CLR would defeat the intended purpose. 

DirectCast converts expressions that are typed as Object differently than CType. When converting an 
expression of type Object whose run-time type is a primitive value type, DirectCast throws a 
System.InvalidCastException exception if the specified type is not the same as the run-time type of the 
expression or a System.NullReferenceException if the expression evaluates to Nothing.  

Annotation 

As noted above, DirectCast maps directly onto the CLR instruction “unbox” when the type of the expression 
is Object. In contrast, CType turns into a call to a runtime helper to do the conversion so that conversions 
between primitive types can be supported. In the case when an Object expression is being converted to a 
primitive value type and the type of the actual instance match the target type, DirectCast will be significantly 
faster than CType. 

TryCast converts expressions but does not throw an exception if the expression cannot be converted to the 
target type. Instead, TryCast will result in Nothing if the expression cannot be converted at runtime. For 
example: 

Interface ITest 

    Sub Test() 

End Interface 

 

Module Test 

    Sub Convert(ByVal o As Object) 

        Dim i As ITest = TryCast(o, ITest) 

 

        If i IsNot Nothing Then 

            i.Test() 

        End If 

    End Sub 

End Module 

Annotation 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 241 

As noted above, TryCast maps directly onto the CLR instruction “isinst”. By combining the type check and the 
conversion into a single operation, TryCast can be cheaper than doing a TypeOf…Is and then a CType. 

If no conversion exists from the type of the expression to the specified type, a compile-time error occurs. 
Otherwise, the expression is classified as a value and the result is the value produced by the conversion. 

CastExpression  ::= 
 DirectCast  (  Expression  ,  TypeName  )  | 
 TryCast  (  Expression  ,  TypeName  )  | 
 CType  (  Expression  ,  TypeName  )  | 
 CastTarget  (  Expression  ) 

CastTarget  ::= 
 CBool  |  CByte  |  CChar  |  CDate  |  CDec  |  CDbl  |  CInt  |  CLng  |  CObj  |  CSByte  |  CShort  | 
 CSng  | CStr  |  CUInt  |  CULng  |  CUShort 

11.12 Operator Expressions 
There are two kinds of operators. Unary operators take one operand and use prefix notation (for example, –x). 
Binary operators take two operands and use infix notation (for example, x + y). With the exception of the 
relational operators, which always result in Boolean, an operator defined for a particular type results in that 
type. The operands to an operator must always be classified as a value; the result of an operator expression is 
classified as a value. 

OperatorExpression  ::= 
 ArithmeticOperatorExpression  | 
 RelationalOperatorExpression  | 
 LikeOperatorExpression  | 
 ConcatenationOperatorExpression  | 
 ShortCircuitLogicalOperatorExpression  | 
 LogicalOperatorExpression  | 
 ShiftOperatorExpression 

11.12.1 Operator Precedence and Associativity 

When an expression contains multiple binary operators, the precedence of the operators controls the order in 
which the individual binary operators are evaluated. For example, the expression x + y * z is evaluated as x 
+ (y * z) because the * operator has higher precedence than the + operator. The following table lists the 
binary operators in descending order of precedence: 
 

Category Operators 

Primary All non-operator expressions 

Exponentiation ^ 

Unary negation +, - 

Multiplicative *, / 

Integer division \ 

Modulus Mod 

Additive +, - 

Concatenation & 



Visual Basic Language Specification 

242 Copyright © Microsoft Corporation 2005. All rights reserved. 

Shift <<, >> 

Relational =, <>, <, >, <=, >=, Like, Is 

Logical NOT Not 

Logical AND And, AndAlso 

Logical OR Or, OrElse 

Logical XOR Xor 

 

When an expression contains two operators with the same precedence, the associativity of the operators controls 
the order in which the operations are performed. All binary operators are left-associative, meaning that 
operations are performed from left to right. Precedence and associativity can be controlled using parenthetical 
expressions. 

11.12.2 Object Operands 

In addition to the regular types supported by each operator, all operators support operands of type Object. 
Operators applied to Object operands are handled similarly to late-bound method calls made on Object 
values: the run-time type of the operands, rather than the compile-time type, determines the validity and type of 
the operation. If strict semantics are specified by the compilation environment or by Option Strict, any 
operators with operands of type Object cause a compile-time error, except for the equality (=), inequality (<>), 
TypeOf...Is, and Is operators. 

When given one or more operands of type Object, the outcome of the operation is the result of applying the 
operator to the operand types if the run-time types of the operands are types that are supported by the operator. 
The value Nothing is treated as the default value of the type of the other operand in a binary operator 
expression. In a unary operator expression, or if both operands are Nothing in a binary operator expression, the 
type of the operation is Integer or the only result type of the operator, if the operator does not result in 
Integer. The result of the operation is always then cast back to Object. If the operand types have no valid 
operator, a System.InvalidCastException exception is thrown. Conversions at run time are done without 
regard to whether they are implicit or explicit. 

If the result of a numeric binary operation would produce an overflow exception (regardless of whether integer 
overflow checking is on or off), then the result type is promoted to the next wider numeric type, if possible. For 
example, consider the following code: 

Module Test 

    Sub Main() 

        Dim o As Object = CObj(CByte(2)) * CObj(CByte(255)) 

 

        Console.WriteLine(o.GetType().ToString() & " = " & o) 

    End Sub 

End Module 

It prints the following result: 

Short = 512 

If no wider numeric type is available to hold the number, a System.OverflowException exception is 
thrown. 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 243 

11.12.3 Operator Resolution 

Given an operator type and a set of operands, operator resolution determines which operator to use for the 
operands. When resolving operators, user-defined operators will be considered first, using the following steps: 

• First, all of the candidate operators are collected. The candidate operators are all of the user-defined 
operators of the particular operator type in the source type and all of the user-defined operators of the 
particular type in the target type. If the source type and destination type are related, common operators are 
only considered once. 

• Then, overload resolution is applied to the operators and operands to select the most specific operator. 

When resolving overloaded operators, there may be differences between classes defined in Visual Basic and 
those defined in other languages: 

• In other languages, Not, And, and Or may be overloaded both as logical operators and bitwise operators. 
Upon import from an external assembly, either form is accepted as a valid overload for these operators. 
However, for a type which defines both logical and bitwise operators, only the bitwise implementation will 
be considered. 

• In other languages, >> and << may be overloaded both as signed operators and unsigned operators. Upon 
import from an external assembly, either form is accepted as a valid overload. However, for a type which 
defines both signed and unsigned operators, only the signed implementation will be considered. 

If no user-defined operator is most specific to the operands, then pre-defined operators will be considered. If no 
pre-defined operator is defined for the operands, then a compile-time error results. 

Each operator lists the pre-defined types it is defined for and the type of the operation performed given the 
operand types. The result of type of a pre-defined operation follows these general rules: 

• If all operands are of the same type, and the operator is defined for the type, then no conversion occurs and 
the operator for that type is used. 

• Any operand whose type is not defined for the operator is converted using the following steps and the 
operator is resolved against the new types: 

• The operand is converted to the next widest type that is defined for both the operator and the operand 
and to which it is implicitly convertible.  

• If there is no such type, then the operand is converted to the next narrowest type that is defined for both 
the operator and the operand and to which it is implicitly convertible. 

• If there is no such type or the conversion cannot occur, a compile-time error occurs. 

• Otherwise, the operands are converted to the wider of the operand types and the operator for that type is 
used. If the narrower operand type cannot be implicitly converted to the wider operator type, a compile-time 
error occurs. 

Despite these general rules, however, there are a number of special cases called out in the operator results tables. 

Note For formatting reasons, the operator type tables abbreviate the predefined names to their first two 
characters. So “By” is Byte, “UI” is UInteger, “St” is String, etc. “Err” means that there is no operation 
defined for the given operand types. 

11.13 Arithmetic Operators 
The *, /, \, ̂ , Mod, +, and – operators are the arithmetic operators.  

Floating-point arithmetic operations may be performed with higher precision than the result type of the 
operation. For example, some hardware architectures support an "extended" or "long double" floating-point type 



Visual Basic Language Specification 

244 Copyright © Microsoft Corporation 2005. All rights reserved. 

with greater range and precision than the Double type, and implicitly perform all floating-point operations 
using this higher-precision type. Hardware architectures can be made to perform floating-point operations with 
less precision only at excessive cost in performance; rather than require an implementation to forfeit both 
performance and precision, Visual Basic allows the higher-precision type to be used for all floating-point 
operations. Other than delivering more precise results, this rarely has any measurable effects. However, in 
expressions of the form x * y / z, where the multiplication produces a result that is outside the Double 
range, but the subsequent division brings the temporary result back into the Double range, the fact that the 
expression is evaluated in a higher-range format may cause a finite result to be produced instead of infinity. 

ArithmeticOperatorExpression  ::= 
 UnaryPlusExpression  | 
 UnaryMinusExpression  | 
 AdditionOperatorExpression  | 
 SubtractionOperatorExpression  | 
 MultiplicationOperatorExpression  | 
 DivisionOperatorExpression  | 
 ModuloOperatorExpression  | 
 ExponentOperatorExpression 

11.13.1 Unary Plus Operator 

The unary plus operator is defined for the Byte, SByte, UShort, Short, UInteger Integer, ULong, Long, 
Single, Double, and Decimal types. 
 

Operation Type: 

Bo SB By Sh US In UI Lo UL De Si Do Da Ch St Ob 

SB SB By Sh US In UI Lo UL De Si Do Err Err Do Ob 
 

UnaryPlusExpression  ::=  +  Expression 

11.13.2 Unary Minus Operator 

The unary minus operator is defined for the following types: 

• SByte, Short, Integer, and Long. The result is computed by subtracting the operand from zero. If 
integer overflow checking is on and the value of the operand is the maximum negative SByte, Short, 
Integer, or Long, a System.OverflowException exception is thrown. Otherwise, if the value of the 
operand is the maximum negative SByte, Short, Integer, or Long, the result is that same value, and the 
overflow is not reported. 

• Single and Double. The result is the value of the operand with its sign inverted, including the values 0 
and Infinity. If the operand is NaN, the result is also NaN. 

• Decimal. The result is computed by subtracting the operand from zero. 
 

Operation Type: 

Bo SB By Sh US In UI Lo UL De Si Do Da Ch St Ob 

SB SB Sh Sh In In Lo Lo De De Si Do Err Err Do Ob 
 

UnaryMinusExpression  ::=  -  Expression 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 245 

11.13.3 Addition Operator 

The addition operator computes the sum of the two operands. The addition operator is defined for the following 
types: 

• Byte, SByte, UShort, Short, UInteger, Integer, ULong, and Long. If integer overflow checking is on 
and the sum is outside the range of the result type, a System.OverflowException exception is thrown. 
Otherwise, overflows are not reported, and any significant high-order bits of the result are discarded. 

• Single and Double. The sum is computed according to the rules of IEEE 754 arithmetic. 

• Decimal. If the resulting value is too large to represent in the decimal format, a 
System.OverflowException exception is thrown. If the result value is too small to represent in the 
decimal format, the result is 0. 

• String. The two String operands are concatenated together. 

Note     The System.DateTime type defines overloaded addition operators. Because System.DateTime 
is equivalent to the intrinsic Date type, these operators is also available on the Date type. 

 

Operation Type: 

 Bo SB By Sh US In UI Lo UL De Si Do Da Ch St Ob 

Bo SB SB Sh Sh In In Lo Lo De De Si Do Err Err Do Ob 

SB  SB Sh Sh In In Lo Lo De De Si Do Err Err Do Ob 

By   By Sh US In UI Lo UL De Si Do Err Err Do Ob 

Sh    Sh In In Lo Lo De De Si Do Err Err Do Ob 

US     US In UI Lo UL De Si Do Err Err Do Ob 

In      In Lo Lo De De Si Do Err Err Do Ob 

UI       UI Lo UL De Si Do Err Err Do Ob 

Lo        Lo De De Si Do Err Err Do Ob 

UL         UL De Si Do Err Err Do Ob 

De          De Si Do Err Err Do Ob 

Si           Si Do Err Err Do Ob 

Do            Do Err Err Do Ob 

Da             St Err St Ob 

Ch              St St Ob 

St               St Ob 

Ob                Ob 
 

AdditionOperatorExpression  ::=  Expression  +  Expression 

11.13.4 Subtraction Operator 

The subtraction operator subtracts the second operand from the first operand. The subtraction operator is defined 
for the following types: 



Visual Basic Language Specification 

246 Copyright © Microsoft Corporation 2005. All rights reserved. 

• Byte, SByte, UShort, Short, UInteger, Integer, ULong, and Long. If integer overflow checking is on 
and the difference is outside the range of the result type, a System.OverflowException exception is 
thrown. Otherwise, overflows are not reported, and any significant high-order bits of the result are 
discarded. 

• Single and Double. The difference is computed according to the rules of IEEE 754 arithmetic.  

• Decimal. If the resulting value is too large to represent in the decimal format, a 
System.OverflowException exception is thrown. If the result value is too small to represent in the 
decimal format, the result is 0. 

Note     The System.DateTime type defines overloaded subtraction operators. Because 
System.DateTime is equivalent to the intrinsic Date type, these operators is also available on the Date 
type. 

 

Operation Type: 

 Bo SB By Sh US In UI Lo UL De Si Do Da Ch St Ob 

Bo SB SB Sh Sh In In Lo Lo De De Si Do Err Err Do Ob 

SB  SB Sh Sh In In Lo Lo De De Si Do Err Err Do Ob 

By   By Sh US In UI Lo UL De Si Do Err Err Do Ob 

Sh    Sh In In Lo Lo De De Si Do Err Err Do Ob 

US     US In UI Lo UL De Si Do Err Err Do Ob 

In      In Lo Lo De De Si Do Err Err Do Ob 

UI       UI Lo UL De Si Do Err Err Do Ob 

Lo        Lo De De Si Do Err Err Do Ob 

UL         UL De Si Do Err Err Do Ob 

De          De Si Do Err Err Do Ob 

Si           Si Do Err Err Do Ob 

Do            Do Err Err Do Ob 

Da             Err Err Err Err 

Ch              Err Err Err 

St               Do Ob 

Ob                Ob 
 

SubtractionOperatorExpression  ::=  Expression  -  Expression 

11.13.5 Multiplication Operator 

The multiplication operator computes the product of two operands. The multiplication operator is defined for the 
following types: 

• Byte, SByte, UShort, Short, UInteger, Integer, ULong, and Long. If integer overflow checking is on 
and the product is outside the range of the result type, a System.OverflowException exception is 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 247 

thrown. Otherwise, overflows are not reported, and any significant high-order bits of the result are 
discarded. 

• Single and Double. The product is computed according to the rules of IEEE 754 arithmetic. 

• Decimal. If the resulting value is too large to represent in the decimal format, a 
System.OverflowException exception is thrown. If the result value is too small to represent in the 
decimal format, the result is 0. 

 

Operation Type: 

 Bo SB By Sh US In UI Lo UL De Si Do Da Ch St Ob 

Bo SB SB Sh Sh In In Lo Lo De De Si Do Err Err Do Ob 

SB  SB Sh Sh In In Lo Lo De De Si Do Err Err Do Ob 

By   By Sh US In UI Lo UL De Si Do Err Err Do Ob 

Sh    Sh In In Lo Lo De De Si Do Err Err Do Ob 

US     US In UI Lo UL De Si Do Err Err Do Ob 

In      In Lo Lo De De Si Do Err Err Do Ob 

UI       UI Lo UL De Si Do Err Err Do Ob 

Lo        Lo De De Si Do Err Err Do Ob 

UL         UL De Si Do Err Err Do Ob 

De          De Si Do Err Err Do Ob 

Si           Si Do Err Err Do Ob 

Do            Do Err Err Do Ob 

Da             Err Err Err Err 

Ch              Err Err Err 

St               Do Ob 

Ob                Ob 
 

MultiplicationOperatorExpression  ::=  Expression  *  Expression 

11.13.6 Division Operators 

Division operators compute the quotient of two operands. There are two division operators: the regular (floating-
point) division operator and the integer division operator. 

The regular division operator is defined for the following types: 

• Single and Double. The quotient is computed according to the rules of IEEE 754 arithmetic. 

• Decimal. If the value of the right operand is zero, a System.DivideByZeroException exception is 
thrown. If the resulting value is too large to represent in the decimal format, a 
System.OverflowException exception is thrown. If the result value is too small to represent in the 
decimal format, the result is zero. The scale of the result, before any rounding, is the closest scale to the 
preferred scale which will preserve a result equal to the exact result.  The preferred scale is the scale of the 
first operand less the scale of the second operand. 



Visual Basic Language Specification 

248 Copyright © Microsoft Corporation 2005. All rights reserved. 

According to normal operator resolution rules, regular division purely between operands of types such as Byte, 
Short, Integer, and Long would cause both operands to be converted to type Decimal. However, when 
doing operator resolution on the division operator when neither type is Decimal, Double is considered 
narrower than Decimal. This convention is followed because Double division is more efficient than Decimal 
division. 
 

Operation Type: 

 Bo SB By Sh US In UI Lo UL De Si Do Da Ch St Ob 

Bo Do Do Do Do Do Do Do Do Do De Si Do Err Err Do Ob 

SB  Do Do Do Do Do Do Do Do De Si Do Err Err Do Ob 

By   Do Do Do Do Do Do Do De Si Do Err Err Do Ob 

Sh    Do Do Do Do Do Do De Si Do Err Err Do Ob 

US     Do Do Do Do Do De Si Do Err Err Do Ob 

In      Do Do Do Do De Si Do Err Err Do Ob 

UI       Do Do Do De Si Do Err Err Do Ob 

Lo        Do Do De Si Do Err Err Do Ob 

UL         Do De Si Do Err Err Do Ob 

De          De Si Do Err Err Do Ob 

Si           Si Do Err Err Do Ob 

Do            Do Err Err Do Ob 

Da             Err Err Err Err 

Ch              Err Err Err 

St               Do Ob 

Ob                Ob 
 

The integer division operator is defined for Byte, SByte, UShort, Short, UInteger, Integer, ULong, and 
Long. If the value of the right operand is zero, a System.DivideByZeroException exception is thrown. The 
division rounds the result towards zero, and the absolute value of the result is the largest possible integer that is 
less than the absolute value of the quotient of the two operands. The result is zero or positive when the two 
operands have the same sign, and zero or negative when the two operands have opposite signs. If the left 
operand is the maximum negative SByte, Short, Integer, or Long, and the right operand is –1, an overflow 
occurs; if integer overflow checking is on, a System.OverflowException exception is thrown. Otherwise, 
the overflow is not reported and the result is instead the value of the left operand. 

Annotation 

As the two operands for unsigned types will always be zero or positive, the result is always zero or positive.  As 
the result of the expression will always be less than or equal to the largest of the two operands, it is not possible 
for an overflow to occur.  As such integer overflow checking is not performed for integer divide with two 
unsigned integers. The result is the type as that of the left operand. 
 

Operation Type: 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 249 

 Bo SB By Sh US In UI Lo UL De Si Do Da Ch St Ob 

Bo SB SB Sh Sh In In Lo Lo Lo Lo Lo Lo Err Err Lo Ob 

SB  SB Sh Sh In In Lo Lo Lo Lo Lo Lo Err Err Lo Ob 

By   By Sh US In UI Lo UL Lo Lo Lo Err Err Lo Ob 

Sh    Sh In In Lo Lo Lo Lo Lo Lo Err Err Lo Ob 

US     US In UI Lo UL Lo Lo Lo Err Err Lo Ob 

In      In Lo Lo Lo Lo Lo Lo Err Err Lo Ob 

UI       UI Lo UL Lo Lo Lo Err Err Lo Ob 

Lo        Lo Lo Lo Lo Lo Err Err Lo Ob 

UL         UL Lo Lo Lo Err Err Lo Ob 

De          Lo Lo Lo Err Err Lo Ob 

Si           Lo Lo Err Err Lo Ob 

Do            Lo Err Err Lo Ob 

Da             Err Err Err Err 

Ch              Err Err Err 

St               Lo Ob 

Ob                Ob 
 

DivisionOperatorExpression  ::= 
 FPDivisionOperatorExpression  | 
 IntegerDivisionOperatorExpression 

FPDivisionOperatorExpression  ::=  Expression  /  Expression 

IntegerDivisionOperatorExpression  ::=  Expression  \  Expression 

11.13.7 Mod Operator 

The Mod (modulo) operator computes the remainder of the division between two operands. The Mod operator is 
defined for the following types: 

• Byte, SByte, UShort, Short, UInteger, Integer, ULong and Long. The result of x Mod y is the 
value produced by x – (x \ y) * y. If y is zero, a System.DivideByZeroException exception is 
thrown. The modulo operator never causes an overflow. 

• Single and Double. The remainder is computed according to the rules of IEEE 754 arithmetic. 

• Decimal. If the value of the right operand is zero, a System.DivideByZeroException exception is 
thrown. If the resulting value is too large to represent in the decimal format, a 
System.OverflowException exception is thrown. If the result value is too small to represent in the 
decimal format, the result is zero. 

 

Operation Type: 

 Bo SB By Sh US In UI Lo UL De Si Do Da Ch St Ob 



Visual Basic Language Specification 

250 Copyright © Microsoft Corporation 2005. All rights reserved. 

Bo SB SB Sh Sh In In Lo Lo De De Si Do Err Err Do Ob 

SB  SB Sh Sh In In Lo Lo De De Si Do Err Err Do Ob 

By   By Sh US In UI Lo UL De Si Do Err Err Do Ob 

Sh    Sh In In Lo Lo De De Si Do Err Err Do Ob 

US     US In UI Lo UL De Si Do Err Err Do Ob 

In      In Lo Lo De De Si Do Err Err Do Ob 

UI       UI Lo UL De Si Do Err Err Do Ob 

Lo        Lo De De Si Do Err Err Do Ob 

UL         UL De Si Do Err Err Do Ob 

De          De Si Do Err Err Do Ob 

Si           Si Do Err Err Do Ob 

Do            Do Err Err Do Ob 

Da             Err Err Err Err 

Ch              Err Err Err 

St               Do Ob 

Ob                Ob 
 

ModuloOperatorExpression  ::=  Expression  Mod  Expression 

11.13.8 Exponentiation Operator 

The exponentiation operator computes the first operand raised to the power of the second operand. The 
exponentiation operator is defined for type Double. The value is computed according to the rules of IEEE 754 
arithmetic. 
 

Operation Type: 

 Bo SB By Sh US In UI Lo UL De Si Do Da Ch St Ob 

Bo Do Do Do Do Do Do Do Do Do Do Do Do Err Err Do Ob 

SB  Do Do Do Do Do Do Do Do Do Do Do Err Err Do Ob 

By   Do Do Do Do Do Do Do Do Do Do Err Err Do Ob 

Sh    Do Do Do Do Do Do Do Do Do Err Err Do Ob 

US     Do Do Do Do Do Do Do Do Err Err Do Ob 

In      Do Do Do Do Do Do Do Err Err Do Ob 

UI       Do Do Do Do Do Do Err Err Do Ob 

Lo        Do Do Do Do Do Err Err Do Ob 

UL         Do Do Do Do Err Err Do Ob 

De          Do Do Do Err Err Do Ob 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 251 

Si           Do Do Err Err Do Ob 

Do            Do Err Err Do Ob 

Da             Err Err Err Err 

Ch              Err Err Err 

St               Do Ob 

Ob                Ob 
 

ExponentOperatorExpression  ::=  Expression  ̂   Expression 

11.14 Relational Operators 
The relational operators compare values to one other. The comparison operators are =, <>, <, >, <=, and >=. All 
of the relational operators result in a Boolean value. 

The relational operators have the following general meaning: 

• The = operator tests whether the two operands are equal. 

• The <> operator tests whether the two operands are not equal. 

• The < operator tests whether the first operand is less than the second operand. 

• The > operator tests whether the first operand is greater than the second operand. 

• The <= operator tests whether the first operand is less than or equal to the second operand. 

• The >= operator tests whether the first operand is greater than or equal to the second operand. 

The relational operators are defined for the following types: 

• Boolean. The operators compare the truth values of the two operands. True is considered to be less than 
False, which matches with their numeric values. 

• Byte, SByte, UShort, Short, UInteger, Integer, ULong, and Long. The operators compare the 
numeric values of the two integral operands. 

• Single and Double. The operators compare the operands according to the rules of the IEEE 754 standard. 

• Decimal. The operators compare the numeric values of the two decimal operands. 

• Date. The operators return the result of comparing the two date/time values. 

• Char. The operators return the result of comparing the two Unicode values. 

• String. The operators return the result of comparing the two values using either a binary comparison or a 
text comparison. The comparison used is determined by the compilation environment and the Option 

Compare statement. A binary comparison determines whether the numeric Unicode value of each character 
in each string is the same. A text comparison does a Unicode text comparison based on the current culture in 
use on the .NET Framework. When doing a string comparison, a null reference is equivalent to the string 
literal "". 

 

Operation Type: 

 Bo SB By Sh US In UI Lo UL De Si Do Da Ch St Ob 

Bo Bo SB Sh Sh In In Lo Lo De De Si Do Err Err Bo Ob 



Visual Basic Language Specification 

252 Copyright © Microsoft Corporation 2005. All rights reserved. 

SB  SB Sh Sh In In Lo Lo De De Si Do Err Err Do Ob 

By   By Sh US In UI Lo UL De Si Do Err Err Do Ob 

Sh    Sh In In Lo Lo De De Si Do Err Err Do Ob 

US     US In UI Lo UL De Si Do Err Err Do Ob 

In      In Lo Lo De De Si Do Err Err Do Ob 

UI       UI Lo UL De Si Do Err Err Do Ob 

Lo        Lo De De Si Do Err Err Do Ob 

UL         UL De Si Do Err Err Do Ob 

De          De Si Do Err Err Do Ob 

Si           Si Do Err Err Do Ob 

Do            Do Err Err Do Ob 

Da             Da Err Da Ob 

Ch              Ch St Ob 

St               St Ob 

Ob                Ob 
 

RelationalOperatorExpression  ::= 
 Expression  =  Expression  | 
 Expression  <>  Expression  | 
 Expression  <  Expression  | 
 Expression  >  Expression  | 
 Expression  <=  Expression  | 
 Expression  >=  Expression 

11.15 Like Operator 
The Like operator is defined for the String type and determines whether a string matches a given pattern. The 
first operand is the string being matched, and the second operand is the pattern to match against. The pattern is 
made up of Unicode characters. The following character sequences have special meanings: 

• The character ? matches any single character.  

• The character * matches zero or more characters.  

• The character # matches any single digit (0–9).  

• A list of characters surrounded by brackets ([ab...]) matches any single character in the list. 

• A list of characters surrounded by brackets and prefixed by an exclamation point ([!ab...]) matches any 
single character not in the character list. 

Two characters in a character list separated by a hyphen (-) specify a range of Unicode characters starting with 
the first character and ending with the second character. If the second character is not later in the sort order than 
the first character, a run-time exception occurs. A hyphen that appears at the beginning or end of a character list 
specifies itself. 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 253 

Note   To match the special characters left bracket ([), question mark (?), number sign (#), and asterisk (*), 
brackets must enclose them. The right bracket (]) can not be used within a group to match itself, but it can 
be used outside a group as an individual character. The character sequence [] is considered to be the string 
literal "".  

Also note that character comparisons and ordering for character lists are dependent on the type of comparisons 
being used. If binary comparisons are being used, character comparisons and ordering are based on the numeric 
Unicode values. If text comparisons are being used, character comparisons and ordering are based on the current 
locale being used on the .NET Framework. 

In some languages, special characters in the alphabet represent two separate characters and vice versa. For 
example, several languages use the character æ to represent the characters a and e when they appear together, 
while the characters ˆ and O can be used to represent the character Ô. When using text comparisons, the Like 
operator recognizes such cultural equivalences. In that case, an occurrence of the single special character in 
either pattern or string matches the equivalent two-character sequence in the other string. Similarly, a single 
special character in pattern enclosed in brackets (by itself, in a list, or in a range) matches the equivalent two-
character sequence in the string and vice versa. 

In a Like expression where both operands are Nothing or one operand has a predefined conversion to String 
and the other operand is Nothing, Nothing is treated as if it were the empty string literal "". 
 

Operation Type: 

 Bo SB By Sh US In UI Lo UL De Si Do Da Ch St Ob 

Bo St St St St St St St St St St St St St St St Ob 

SB  St St St St St St St St St St St St St St Ob 

By   St St St St St St St St St St St St St Ob 

Sh    St St St St St St St St St St St St Ob 

US     St St St St St St St St St St St Ob 

In      St St St St St St St St St St Ob 

UI       St St St St St St St St St Ob 

Lo        St St St St St St St St Ob 

UL         St St St St St St St Ob 

De          St St St St St St Ob 

Si           St St St St St Ob 

Do            St St St St Ob 

Da             St St St Ob 

Ch              St St Ob 

St               St Ob 

Ob                Ob 
 

LikeOperatorExpression  ::=  Expression  Like  Expression 



Visual Basic Language Specification 

254 Copyright © Microsoft Corporation 2005. All rights reserved. 

11.16 Concatenation Operator 
The concatenation operator is defined for the String type. To make string concatenation simpler, for the 
purposes of operator resolution, all conversions to String are considered to be widening, regardless of whether 
strict semantics are used. A concatenation operation results in a string that is the concatenation of the two 
operands in order from left to right.  

In a concatenation expression where both operands are Nothing or one operand has a predefined conversion to 
String and the other operand is Nothing, Nothing is treated as if it were the empty string literal "". Also, if 
only one operand is typed as System.DBNull, that operand is treated as if it was the literal Nothing. 
 

Operation Type: 

 Bo SB By Sh US In UI Lo UL De Si Do Da Ch St Ob 

Bo St St St St St St St St St St St St St St St Ob 

SB  St St St St St St St St St St St St St St Ob 

By   St St St St St St St St St St St St St Ob 

Sh    St St St St St St St St St St St St Ob 

US     St St St St St St St St St St St Ob 

In      St St St St St St St St St St Ob 

UI       St St St St St St St St St Ob 

Lo        St St St St St St St St Ob 

UL         St St St St St St St Ob 

De          St St St St St St Ob 

Si           St St St St St Ob 

Do            St St St St Ob 

Da             St St St Ob 

Ch              St St Ob 

St               St Ob 

Ob                Ob 
 

ConcatenationOperatorExpression  ::=  Expression  &  Expression 

11.17 Logical Operators 
The And, Not, Or, and Xor operators, which are called the logical operators, are evaluated as follows: 

• For the Boolean type: 

• A logical And operation is performed on its two operands. 

• A logical Not operation is performed on its operand. 

• A logical Or operation is performed on its two operands. 

• A logical exclusive-Or operation is performed on its two operands. 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 255 

• For Byte, SByte, UShort, Short, UInteger, Integer, ULong, Long, and all enumerated types, the 
specified operation is performed on each bit of the binary representation of the two operand(s): 

• And: The result bit is 1 if both bits are 1; otherwise the result bit is 0. 

• Not: The result bit is 1 if the bit is 0; otherwise the result bit is 1. 

• Or: The result bit is 1 if either bit is 1; otherwise the result bit is 0. 

• Xor: The result bit is 1 if either bit is 1 but not both bits; otherwise the result bit is 0 (that is, 1 Xor 0 = 
1, 1 Xor 1 = 0). 

No overflows are possible from these operations. The enumerated type operators do the bitwise operation on the 
underlying type of the enumerated type, but the return value is the enumerated type.  
 

Not Operation Type: 

Bo SB By Sh US In UI Lo UL De Si Do Da Ch St Ob 

Bo SB By Sh US In UI Lo UL Lo Lo Lo Err Err Lo Ob 
 

And, Or, Xor Operation Type: 

 Bo SB By Sh US In UI Lo UL De Si Do Da Ch St Ob 

Bo Bo SB Sh Sh In In Lo Lo Lo Lo Lo Lo Err Err Bo Ob 

SB  SB Sh Sh In In Lo Lo Lo Lo Lo Lo Err Err Lo Ob 

By   By Sh US In UI Lo UL Lo Lo Lo Err Err Lo Ob 

Sh    Sh In In Lo Lo Lo Lo Lo Lo Err Err Lo Ob 

US     US In UI Lo UL Lo Lo Lo Err Err Lo Ob 

In      In Lo Lo Lo Lo Lo Lo Err Err Lo Ob 

UI       UI Lo UL Lo Lo Lo Err Err Lo Ob 

Lo        Lo Lo Lo Lo Lo Err Err Lo Ob 

UL         UL Lo Lo Lo Err Err Lo Ob 

De          Lo Lo Lo Err Err Lo Ob 

Si           Lo Lo Err Err Lo Ob 

Do            Lo Err Err Lo Ob 

Da             Err Err Err Err 

Ch              Err Err Err 

St               Lo Ob 

Ob                Ob 
 

LogicalOperatorExpression  ::= 
 Not  Expression  | 
 Expression  And  Expression  | 
 Expression  Or  Expression  | 
 Expression  Xor  Expression 



Visual Basic Language Specification 

256 Copyright © Microsoft Corporation 2005. All rights reserved. 

11.17.1 Short-circuiting Logical Operators 

The AndAlso and OrElse operators are the short-circuiting versions of the And and Or logical operators. 
Because of their short circuiting behavior, the second operand is not evaluated at run time if the operator result 
is known after evaluating the first operand.  

The short-circuiting logical operators are evaluated as follows: 

• If the first operand in an AndAlso operation evaluates to False, the expression returns False. Otherwise, 
the second operand is evaluated and a logical And operation is performed on the two results. 

• If the first operand in an OrElse operation evaluates to True, the expression returns True. Otherwise, the 
second operand is evaluated and a logical Or operation is performed on its two results. 

The AndAlso and OrElse operators are defined for the type Boolean, or for any type T that overloads the 
following operators: 

Public Shared Operator IsTrue(ByVal op As T) As Boolean 

Public Shared Operator IsFalse(ByVal op As T) As Boolean 

as well as overloading the corresponding And or Or operator: 

Public Shared Operator And(ByVal op1 As T, ByVal op2 As T) As T 

Public Shared Operator Or(ByVal op1 As T, ByVal op2 As T) As T 

When evaluating the AndAlso or OrElse operators, the first operand is evaluated only once, and the second 
operand is either not evaluated or evaluated exactly once. For example, consider the following code: 

Module Test 

    Function TrueValue() As Boolean 

        Console.Write(" True") 

        Return True 

    End Function 

 

    Function FalseValue() As Boolean 

        Console.Write(" False") 

        Return False 

    End Function 

 

    Sub Main() 

        Console.Write("And:") 

        If FalseValue() And TrueValue() Then 

        End If 

        Console.WriteLine() 

 

        Console.Write("Or:") 

        If TrueValue() Or FalseValue() Then 

        End If 

        Console.WriteLine() 

 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 257 

        Console.Write("AndAlso:") 

        If FalseValue() AndAlso TrueValue() Then 

        End If 

        Console.WriteLine() 

 

        Console.WriteLine("OrElse:") 

        If TrueValue() OrElse FalseValue() Then 

        End If 

        Console.WriteLine() 

    End Sub 

End Module 

It prints the following result: 

And: False True 

Or: True False 

AndAlso: False 

OrElse: True 

 

Operation Type: 

 Bo SB By Sh US In UI Lo UL De Si Do Da Ch St Ob 

Bo Bo Bo Bo Bo Bo Bo Bo Bo Bo Bo Bo Bo Err Err Bo Ob 

SB  Bo Bo Bo Bo Bo Bo Bo Bo Bo Bo Bo Err Err Bo Ob 

By   Bo Bo Bo Bo Bo Bo Bo Bo Bo Bo Err Err Bo Ob 

Sh    Bo Bo Bo Bo Bo Bo Bo Bo Bo Err Err Bo Ob 

US     Bo Bo Bo Bo Bo Bo Bo Bo Err Err Bo Ob 

In      Bo Bo Bo Bo Bo Bo Bo Err Err Bo Ob 

UI       Bo Bo Bo Bo Bo Bo Err Err Bo Ob 

Lo        Bo Bo Bo Bo Bo Err Err Bo Ob 

UL         Bo Bo Bo Bo Err Err Bo Ob 

De          Bo Bo Bo Err Err Bo Ob 

Si           Bo Bo Err Err Bo Ob 

Do            Bo Err Err Bo Ob 

Da             Err Err Err Err 

Ch              Err Err Err 

St               Bo Ob 

Ob                Ob 
 



Visual Basic Language Specification 

258 Copyright © Microsoft Corporation 2005. All rights reserved. 

ShortCircuitLogicalOperatorExpression  ::= 
 Expression  AndAlso  Expression  | 
 Expression  OrElse  Expression 

11.18 Shift Operators 
The binary operators << and >> perform bit shifting operations. The operators are defined for the Byte, SByte, 
UShort, Short, UInteger, Integer, ULong and Long types. Unlike the other binary operators, the result 
type of a shift operation is determined as if the operator was a unary operator with just the left operand. The type 
of the right operand must be implicitly convertible to Integer and is not used in determining the result type of 
the operation. 

The << operator causes the bits in the first operand to be shifted left the number of places specified by the shift 
amount. The high-order bits outside the range of the result type are discarded and the low-order vacated bit 
positions are zero-filled. 

The >> operator causes the bits in the first operand to be shifted right the number of places specified by the shift 
amount. The low-order bits are discarded and the high-order vacated bit positions are set to zero if the left 
operand is positive or to one if negative. If the left operand is of type Byte, UShort, UInteger, or ULong the 
vacant high-order bits are zero-filled. 

The shift operators shift the bits of the underlying representation of the first operand by the amount of the 
second operand. If the value of the second operand is greater than the number of bits in the first operand, or is 
negative, then the shift amount is computed as RightOperand And SizeMask where SizeMask is: 
 

LeftOperand Type SizeMask 

Byte, SByte 7 (&H7) 

UShort, Short 15 (&HF) 

UInteger, Integer 31 (&H1F) 

ULong, Long 63 (&H3F) 
 

If the shift amount is zero, the result of the operation is identical to the value of the first operand. No overflows 
are possible from these operations. 
 

Operation Type: 

Bo SB By Sh US In UI Lo UL De Si Do Da Ch St Ob 

SB SB By Sh US In UI Lo UL Lo Lo Lo Err Err Lo Ob 
 

ShiftOperatorExpression  ::= 
 Expression  <<  Expression  | 
 Expression  >>  Expression 

11.19 Boolean Operators 
The Visual Basic language defines two pseudo operators, IsTrue and IsFalse. These two operators are used 
to determine the result of the Boolean expression in an If, While or Do statement, the When clause of a Catch 
statement, or the result of the AndAlso and OrElse operators if the result type of the expression does not have 
a widening conversion to Boolean. 

Annotation 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 259 

It is interesting to note that if Option Strict is off, an expression that has a narrowing conversion to Boolean 
will be accepted without a compile-time error but the language will still prefer an IsTrue operator if it exists. 
This is because Option Strict only changes what is and isn’t accepted by the language, and never changes 
the actual meaning of an expression. Thus, IsTrue has to always be preferred over a narrowing conversion, 
regardless of Option Strict. 

For example, the following class does not define a widening conversion to Boolean. As a result, it’s use in the 
If statement causes a call to the IsTrue operator. 

Class MyBool 

    Public Shared Widening Operator CType(ByVal b As Boolean) As MyBool 

        ... 

    End Operator 

 

    Public Shared Narrowing Operator CType(ByVal b As MyBool) As Boolean 

        ... 

    End Operator 

 

    Public Shared Operator IsTrue(ByVal b As MyBool) As Boolean 

        ... 

    End Operator 

 

    Public Shared Operator IsFalse(ByVal b As MyBool) As Boolean 

        ... 

    End Operator 

End Class 

 

Module Test 

    Sub Main() 

        Dim b As New MyBool 

 

        If b Then Console.WriteLine("True") 

    End Sub 

End Module 

BooleanExpression  ::=  Expression 





 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 261 

12. Documentation Comments 

Documentation comments are specially formatted comments in the source that can be analyzed to produce 
documentation about the code they are attached to. The basic format for documentation comments is XML. 
When the compiling code with documentation comments, the compiler may optionally emit an XML file that 
represents the sum total of the documentation comments in the source. This XML file can then be used by other 
tools to produce printed or online documentation. 

This chapter describes document comments and recommended XML tags to use with document comments. 

12.1 Documentation Comment Format 
Document comments are special comments that begin with ''', three single quote marks. They must immediately 
precede the type (such as a class, delegate, or interface) or type member (such as a field, event, property, or 
method) that they document. All adjacent document comments are appended together to produce a single 
document comment. If there is a whitespace character following the ''' characters, then that whitespace character 
is not included in the concatenation. For example: 

''' <remarks>Class <c>Point</c> models a point in a two-dimensional 

''' plane.</remarks> 

Public Class Point  

    ''' <remarks>method <c>draw</c> renders the point.</remarks> 

    Sub Draw() 

    End Sub 

End Class 

Documentation comments must be well formed XML according to http://www.w3.org/TR/REC-xml. If the 
XML is not well formed, a warning is generated and the documentation file will contain a comment saying that 
an error was encountered.  

Although developers are free to create their own set of tags, a recommended set is defined in the next section. 
Some of the recommended tags have special meanings:  

• The <param> tag is used to describe parameters. The parameter specified by a <param> tag must exist and 
all parameters of the type member must be described in the documentation comment. If either condition is 
not true, the compiler issues a warning.  

• The cref attribute can be attached to any tag to provide a reference to a code element. The code element 
must exist; at compile-time the compiler replaces the name with the ID string representing the member. If 
the code element does not exist, the compiler issues a warning. When looking for a name described in a 
cref attribute, the compiler respects Imports statements that appear within the containing source file. 

• The <summary> tag is intended to be used by a documentation viewer to display additional information 
about a type or member.  

Note that the documentation file does not provide full information about a type and members, only what is 
contained in the document comments. To get more information about a type or member, the documentation file 
must be used in conjunction with reflection on the actual type or member. 



Visual Basic Language Specification 

262 Copyright © Microsoft Corporation 2005. All rights reserved. 

12.2 Recommended tags 
The documentation generator must accept and process any tag that is valid according to the rules of XML. The 
following tags provide commonly used functionality in user documentation: 

• <c> Sets text in a code-like font 

• <code> Sets one or more lines of source code or program output in a code-like font 

• <example> Indicates an example 

• <exception> Identifies the exceptions a method can throw 

• <include> Includes an external XML document 

• <list> Creates a list or table 

• <para> Permits structure to be added to text 

• <param> Describes a parameter for a method or constructor 

• <paramref> Identifies that a word is a parameter name 

• <permission> Documents the security accessibility of a member 

• <remarks> Describes a type 

• <returns> Describes the return value of a method 

• <see> Specifies a link 

• <seealso> Generates a See Also entry 

• <summary> Describes a member of a type 

• <typeparam> Describes a type parameter 

• <value> Describes a property 

12.2.1 <c> 

This tag specifies that a fragment of text within a description should use a font like that used for a block of code. 
(For lines of actual code, use <code>.)  

Syntax: 

    <c>text to be set like code</c> 

Example: 

    ''' <remarks>Class <c>Point</c> models a point in a two-dimensional 

    ''' plane.</remarks> 

    Public Class Point  

    End Class 

12.2.2 <code> 

This tag specifies that one or more lines of source code or program output should use a fixed-width font. (For 
small code fragments, use <c>.) 

Syntax: 

    <code>source code or program output</code> 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 263 

Example: 

    ''' <summary>This method changes the point's location by 

    ''' the given x- and y-offsets. 

    ''' <example>For example: 

    ''' <code> 

    '''     Dim p As Point = New Point(3,5) 

    '''     p.Translate(-1,3) 

    ''' </code> 

    ''' results in <c>p</c>'s having the value (2,8). 

    ''' </example> 

    ''' </summary> 

    Public Sub Translate(ByVal x As Integer, ByVal y As Integer) 

        Me.x += x 

        Me.y += y 

    End Sub 

12.2.3 <example> 

This tag allows example code within a comment to show how an element can be used. Ordinarily, this will 
involve use of the tag <code> as well. 

Syntax: 

    <example>description</example> 

Example: 

    See <code> for an example. 

12.2.4 <exception> 

This tag provides a way to document the exceptions a method can throw. 

Syntax: 

    <exception cref="member">description</exception> 

Example: 

    Public Module DataBaseOperations 

        ''' <exception cref="MasterFileFormatCorruptException"> 

        ''' </exception> 

        ''' <exception cref="MasterFileLockedOpenException"> 

        ''' </exception> 

        Public Sub ReadRecord(ByVal flag As Integer) 

            If Flag = 1 Then 

                Throw New MasterFileFormatCorruptException() 

            ElseIf Flag = 2 Then 

                Throw New MasterFileLockedOpenException() 

            End If 



Visual Basic Language Specification 

264 Copyright © Microsoft Corporation 2005. All rights reserved. 

            ' ... 

        End Sub 

    End Module 

12.2.5 <include> 

This tag is used to include information from an external well-formed XML document. An XPath expression is 
applied to the XML document to specify what XML should be included from the document. The <include> 
tag is then replaced with the selected XML from the external document. 

Syntax: 

    <include file="filename" path="xpath"> 

Example: 

If the source code contained a declaration like the following: 

    ''' <include file="docs.xml" path="extra/class[@name="IntList"]/*" /> 

and the external file docs.xml had the following contents 

    <?xml version="1.0"?> 

    <extra> 

        <class name="IntList"> 

            <summary> 

                Contains a list of integers. 

            </summary> 

        </class> 

        <class name="StringList"> 

            <summary> 

                Contains a list of strings. 

            </summary> 

        </class> 

    </extra> 

then the same documentation is output as if the source code contained: 

    ''' <summary> 

    ''' Contains a list of integers. 

    ''' </summary> 

12.2.6 <list> 

This tag is used to create a list or table of items. It may contain a <listheader> block to define the heading 
row of either a table or definition list. (When defining a table, only an entry for term in the heading need be 
supplied.) 

Each item in the list is specified with an <item> block. When creating a definition list, both term and 
description must be specified. However, for a table, bulleted list, or numbered list, only description need be 
specified. 

Syntax: 

    <list type="bullet" | "number" | "table"> 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 265 

        <listheader> 

            <term>term</term> 

            <description>description</description> 

        </listheader> 

        <item> 

            <term>term</term> 

            <description>description</description> 

        </item> 

        … 

        <item> 

            <term>term</term> 

            <description>description</description> 

        </item> 

    </list> 

Example: 

    Public Class MyClass 

        ''' <remarks>Here is an example of a bulleted list: 

        ''' <list type="bullet"> 

        ''' <item> 

        ''' <description>Item 1.</description> 

        ''' </item> 

        ''' <item> 

        ''' <description>Item 2.</description> 

        ''' </item> 

        ''' </list> 

        ''' </remarks> 

        Public Shared Sub Main() 

        End Sub 

    End Class 

12.2.7 <para> 

This tag is for use inside other tags, such as <remarks> or <returns>, and permits structure to be added to 
text. 

Syntax: 

    <para>content</para> 

Example: 

    ''' <summary>This is the entry point of the Point class testing 

    ''' program. 

    ''' <para>This program tests each method and operator, and 

    ''' is intended to be run after any non-trvial maintenance has 



Visual Basic Language Specification 

266 Copyright © Microsoft Corporation 2005. All rights reserved. 

    ''' been performed on the Point class.</para></summary> 

    Public Shared Sub Main() 

    End Sub 

12.2.8 <param> 

This tag describes a parameter for a method, constructor, or indexed property. 

Syntax: 

    <param name="name">description</param> 

Example: 

    ''' <summary>This method changes the point's location to 

    ''' the given coordinates.</summary> 

    ''' <param name="x"><c>x</c> is the new x-coordinate.</param> 

    ''' <param name="y"><c>y</c> is the new y-coordinate.</param> 

    Public Sub Move(ByVal x As Integer, ByVal y As Integer) 

        Me.x = x 

        Me.y = y 

    End Sub 

12.2.9 <paramref> 

This tag indicates that a word is a parameter. The documentation file can be processed to format this parameter 
in some distinct way. 

Syntax: 

    <paramref name="name"/> 

Example: 

    ''' <summary>This constructor initializes the new Point to 

    ''' (<paramref name="x"/>,<paramref name="y"/>).</summary> 

    ''' <param name="x"><c>x</c> is the new Point's x-coordinate.</param> 

    ''' <param name="y"><c>y</c> is the new Point's y-coordinate.</param> 

    Public Sub New(ByVal x As Integer, ByVal y As Integer) 

        Me.x = x 

        Me.y = y 

    End Sub 

12.2.10 <permission> 

This tag documents the security accessibility of a member  

Syntax: 

    <permission cref="member">description</permission> 

Example: 

    ''' <permission cref="System.Security.PermissionSet">Everyone can 

    ''' access this method.</permission> 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 267 

    Public Shared Sub Test() 

    End Sub 

12.2.11 <remarks> 

This tag specifies overview information about a type. (Use <summary> to describe the members of a type.) 

Syntax: 

    <remarks>description</remarks> 

Example: 

    ''' <remarks>Class <c>Point</c> models a point in a two-dimensional 

    ''' plane.</remarks> 

    Public Class Point  

    End Class 

12.2.12 <returns> 

This tag describes the return value of a method. 

Syntax: 

    <returns>description</returns> 

Example: 

    ''' <summary>Report a point's location as a string.</summary> 

    ''' <returns>A string representing a point's location, in the form 

    ''' (x,y), without any leading, training, or embedded 

    ''' whitespace.</returns> 

    Public Overrides Function ToString() As String 

        Return "(" & x & "," & y & ")" 

    End Sub 

12.2.13 <see> 

This tag allows a link to be specified within text. (Use <seealso> to indicate text that is to appear in a See 
Also section.) 

Syntax: 

    <see cref="member"/> 

Example: 

    ''' <summary>This method changes the point's location to 

    ''' the given coordinates.</summary> 

    ''' <see cref="Translate"/> 

    Public Sub Move(ByVal x As Integer, ByVal y As Integer) 

        Me.x = x 

        Me.y = y 

    End Sub 

 



Visual Basic Language Specification 

268 Copyright © Microsoft Corporation 2005. All rights reserved. 

    ''' <summary>This method changes the point's location by 

    ''' the given x- and y-offsets. 

    ''' </summary> 

    ''' <see cref="Move"/> 

    Public Sub Translate(ByVal x As Integer, ByVal y As Integer) 

        Me.x += x 

        Me.y += y 

    End Sub 

12.2.14 <seealso> 

This tag generates an entry for the See Also section. (Use <see> to specify a link from within text.) 

Syntax: 

    <seealso cref="member"/> 

Example: 

    ''' <summary>This method determines whether two Points have the same 

    ''' location.</summary> 

    ''' <seealso cref="operator=="/> 

    ''' <seealso cref="operator!="/> 

    Public Overrides Function Equals(ByVal o As Object) As Boolean 

        ' ... 

    End Function 

12.2.15 <summary> 

This tag describes a type member. (Use <remarks> to describe a type itself.) 

Syntax: 

    <summary>description</summary> 

Example: 

    ''' <summary>This constructor initializes the new Point to 

    ''' (0,0).</summary> 

    Public Sub New() 

        Me.New(0,0) 

    End Sub 

12.2.16 <typeparam> 

This tag describes a type parameter. 

Syntax: 

    <typeparam name="name">description</typeparam> 

Example: 

    ''' <typeparam name="T"> 

    ''' The base item type. Must implement IComparable. 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 269 

    ''' </typeparam> 

    Public Class ItemManager(Of T As IComparable) 

    End Class 

12.2.17 <value> 

This tag describes a property. 

Syntax: 

    <value>property description</value> 

Example: 

    ''' <value>Property <c>X</c> represents the point's 

    ''' x-coordinate.</value> 

    Public Property X() As Integer 

        Get 

            Return _x 

        End Get 

        Set (Value As Integer) 

            _x = Value 

        End Set 

    End Property 

12.3 ID Strings 
When generating the documentation file, the compiler generates an ID string for each element in the source code 
that is tagged with a documentation comment that uniquely identifies it. This ID string can be used by external 
tools to identify which element in a compiled assembly corresponds to the document comment. 

ID strings are generated as follows:  

• No white space is placed in the string.  

• The first part of the string identifies the kind of member being documented, via a single character followed 
by a colon. The following kinds of members are defined, with the corresponding character in parenthesis 
after it: events (E), fields (F), methods including constructors and operators (M), namespaces (N), properties 
(P) and types (T). An exclamation point (!) indicates an error occurred while generating the ID string, and 
the rest of the string provides information about the error. 

• The second part of the string is the fully qualified name of the element, starting at the global namespace. 
The name of the element, its enclosing type(s), and namespace are separated by periods. If the name of the 
item itself has periods, they are replaced by the pound sign (#). (It is assumed that no element has this 
character in its name.) The name of a type with type parameters ends with a backquote (`) followed by a 
number that represents the number of type parameters on the type. It is important to remember that because 
nested types have access to the type parameters of the types containing them, nested types implicitly contain 
the type parameters of their containing types, and those types are counted in their type parameter totals in 
this case. 

• For methods and properties with arguments, the argument list follows, enclosed in parentheses. For those 
without arguments, the parentheses are omitted. The arguments are separated by commas. The encoding of 
each argument is the same as a CLI signature, as follows: Arguments are represented by their fully qualified 
name. For example, Integer becomes System.Int32, String becomes System.String, Object 



Visual Basic Language Specification 

270 Copyright © Microsoft Corporation 2005. All rights reserved. 

becomes System.Object, and so on. Arguments having the ByRef modifier have a '@' following their 
type name. Arguments having the ByVal, Optional or ParamArray modifier have no special notation. 
Arguments that are arrays are represented as [lowerbound:size, …, lowerbound:size] where the number of 
commas is the rank – 1, and the lower bounds and size of each dimension, if known, are represented in 
decimal. If a lower bound or size is not specified, it is omitted. If the lower bound and size for a particular 
dimension are omitted, the ':' is omitted as well. Arrays or arrays are represented by one "[]" per level. 

12.3.1 ID string examples 

The following examples each show a fragment of VB code, along with the ID string produced from each source 
element capable of having a documentation comment: 

• Types are represented using their fully qualified name.  

Enum Color 

    Red 

    Blue 

    Green 

End Enum 

 

Namespace Acme 

    Interface IProcess 

    End Interface 

 

    Structure ValueType 

    End Structure 

 

    Class Widget 

        Public Class NestedClass 

        End Class 

 

        Public Interface IMenuItem 

        End Interface 

 

        Public Delegate Sub Del(ByVal i As Integer) 

 

        Public Enum Direction 

            North 

            South 

            East 

            West 

        End Enum 

    End Class 

End Namespace 

 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 271 

"T:Color" 

"T:Acme.IProcess" 

"T:Acme.ValueType" 

"T:Acme.Widget" 

"T:Acme.Widget.NestedClass" 

"T:Acme.Widget.IMenuItem" 

"T:Acme.Widget.Del" 

"T:Acme.Widget.Direction" 

• Fields are represented by their fully qualified name. 

Namespace Acme 

    Structure ValueType 

        Private total As Integer 

    End Structure 

 

    Class Widget 

        Public Class NestedClass 

            Private value As Integer 

        End Class 

 

        Private message As String 

        Private Shared defaultColor As Color 

        Private Const PI As Double = 3.14159 

        Protected ReadOnly monthlyAverage As Double 

        Private array1() As Long 

        Private array2(,) As Widget 

    End Class 

End Namespace 

 

"F:Acme.ValueType.total" 

"F:Acme.Widget.NestedClass.value" 

"F:Acme.Widget.message" 

"F:Acme.Widget.defaultColor" 

"F:Acme.Widget.PI" 

"F:Acme.Widget.monthlyAverage" 

"F:Acme.Widget.array1" 

"F:Acme.Widget.array2" 

• Constructors.  

Namespace Acme 

    Class Widget 

        Shared Sub New Widget() 



Visual Basic Language Specification 

272 Copyright © Microsoft Corporation 2005. All rights reserved. 

        End Sub 

 

        Public Sub New() 

        End Sub 

 

        Public Sub New(ByVal s As String) 

        End Sub 

    End Class 

End Namespace 

 

"M:Acme.Widget.#cctor" 

"M:Acme.Widget.#ctor" 

"M:Acme.Widget.#ctor(System.String)" 

• Methods. 

Namespace Acme 

    Structure ValueType 

        Public Sub M(ByVal i As Integer) 

        End Sub 

    End Structure 

 

    Class Widget 

        Public Class NestedClass 

            Public Sub M(ByVal i As Integer) 

            End Sub 

        End Class 

 

        Public Shared Sub M0() 

        End Sub 

 

        Public Sub M1(ByVal c As Char, ByRef f As Float, _ 

            ByRef v As ValueType) 

        End Sub 

 

        Public Sub M2(ByVal x1() As Short, ByVal x2(,) As Integer, _ 

            ByVal x3()() As Long) 

        End Sub 

 

        Public Sub M3(ByVal x3()() As Long, ByVal x4()(,,) As Widget) 

        End Sub 

 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 273 

        Public Sub M4(ByVal Optional i As Integer = 1, _ 

            ByVal ParamArray args() As Object) 

        End Sub 

    End Class 

End Namespace 

 

"M:Acme.ValueType.M(System.Int32)" 

"M:Acme.Widget.NestedClass.M(System.Int32)" 

"M:Acme.Widget.M0" 

"M:Acme.Widget.M1(System.Char,System.Single@,Acme.ValueType@)" 

"M:Acme.Widget.M2(System.Int16[],System.Int32[0:,0:],System.Int64[][])" 

"M:Acme.Widget.M3(System.Int64[][],Acme.Widget[0:,0:,0:][])" 

"M:Acme.Widget.M4(System.Int32,System.Object[])" 

• Properties. 

Namespace Acme 

    Class Widget 

        Public Property Width() As Integer 

            Get 

            End Get 

            Set (Value As Integer) 

            End Set 

        End Property 

 

        Public Default Property Item(ByVal i As Integer) As Integer 

            Get 

            End Get 

            Set (Value As Integer) 

            End Set 

        End Property 

 

        Public Default Property Item(ByVal s As String, _ 

            ByVal i As Integer) As Integer 

            Get 

            End Get 

            Set (Value As Integer) 

            End Set 

        End Property 

    End Class 

End Namespace 

 



Visual Basic Language Specification 

274 Copyright © Microsoft Corporation 2005. All rights reserved. 

"P:Acme.Widget.Width" 

"P:Acme.Widget.Item(System.Int32)" 

"P:Acme.Widget.Item(System.String,System.Int32)" 

• Events  

Namespace Acme 

    Class Widget 

        Public Event AnEvent As Del 

        Public Event AnotherEvent() 

    End Class 

End Namespace 

 

"E:Acme.Widget.AnEvent" 

"E:Acme.Widget.AnotherEvent" 

• Operators. 

Namespace Acme 

    Class Widget 

        Public Shared Operator +(ByVal x As Widget) As Widget 

        End Operator 

 

        Public Shared Operator +(ByVal x1 As Widget, ByVal x2 As Widget) 

        End Operator 

    End Class 

End Namespace 

 

"M:Acme.Widget.op_UnaryPlus(Acme.Widget)" 

"M:Acme.Widget.op_Addition(Acme.Widget,Acme.Widget)" 

• Conversion operators have a trailing '~' followed by the return type. 

Namespace Acme 

    Class Widget 

        Public Shared Narrowing Operator CType(ByVal x As Widget) As _ 

            Integer 

        End Operator 

 

        Public Shared Widening Operator CType(ByVal x As Widget) As Long 

        End Operator 

    End Class 

End Namespace 

 

"M:Acme.Widget.op_Explicit(Acme.Widget)~System.Int32" 

"M:Acme.Widget.op_Implicit(Acme.Widget)~System.Int64" 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 275 

12.4 Documentation comments example 
The following example shows the source code of a Point class: 

Namespace Graphics 

    ''' <remarks>Class <c>Point</c> models a point in a two-dimensional 

    ''' plane.</remarks> 

    Public Class Point 

        ''' <summary>Instance variable <c>x</c> represents the point's 

        ''' x-coordinate.</summary> 

        Private _x As Integer 

 

        ''' <summary>Instance variable <c>y</c> represents the point's 

        ''' y-coordinate.</summary> 

        Private _y As Integer 

 

        ''' <value>Property <c>X</c> represents the point's 

        ''' x-coordinate.</value> 

        Public Property X() As Integer 

            Get 

                Return _x 

            End Get 

            Set(ByVal Value As Integer) 

                _x = Value 

            End Set 

        End Property 

 

        ''' <value>Property <c>Y</c> represents the point's 

        ''' y-coordinate.</value> 

        Public Property Y() As Integer 

            Get 

                Return _y 

            End Get 

            Set(ByVal Value As Integer) 

                _y = Value 

            End Set 

        End Property 

 

        ''' <summary>This constructor initializes the new Point to 

        ''' (0,0).</summary> 

        Public Sub New() 

            Me.New(0, 0) 



Visual Basic Language Specification 

276 Copyright © Microsoft Corporation 2005. All rights reserved. 

        End Sub 

 

        ''' <summary>This constructor initializes the new Point to 

        ''' (<paramref name="x"/>,<paramref name="y"/>).</summary> 

        ''' <param name="x"><c>x</c> is the new Point's 

        ''' x-coordinate.</param> 

        ''' <param name="y"><c>y</c> is the new Point's 

        ''' y-coordinate.</param> 

        Public Sub New(ByVal x As Integer, ByVal y As Integer) 

            Me.X = x 

            Me.Y = y 

        End Sub 

 

        ''' <summary>This method changes the point's location to 

        ''' the given coordinates.</summary> 

        ''' <param name="x"><c>x</c> is the new x-coordinate.</param> 

        ''' <param name="y"><c>y</c> is the new y-coordinate.</param> 

        ''' <see cref="Translate"/> 

        Public Sub Move(ByVal x As Integer, ByVal y As Integer) 

            Me.X = x 

            Me.Y = y 

        End Sub 

 

        ''' <summary>This method changes the point's location by 

        ''' the given x- and y-offsets. 

        ''' <example>For example: 

        ''' <code> 

        '''    Dim p As Point = New Point(3, 5) 

        '''    p.Translate(-1, 3) 

        ''' </code> 

        ''' results in <c>p</c>'s having the value (2,8). 

        ''' </example> 

        ''' </summary> 

        ''' <param name="x"><c>x</c> is the relative x-offset.</param> 

        ''' <param name="y"><c>y</c> is the relative y-offset.</param> 

        ''' <see cref="Move"/> 

        Public Sub Translate(ByVal x As Integer, ByVal y As Integer) 

            Me.X += x 

            Me.Y += y 

        End Sub 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 277 

 

        ''' <summary>This method determines whether two Points have the 

        ''' same location.</summary> 

        ''' <param name="o"><c>o</c> is the object to be compared to the 

        ''' current object.</param> 

        ''' <returns>True if the Points have the same location and they 

        ''' have the exact same type; otherwise, false.</returns> 

        ''' <seealso cref="Operator ="/> 

        ''' <seealso cref="Operator <>"/> 

        Public Overrides Function Equals(ByVal o As Object) As Boolean 

            If o Is Nothing Then 

                Return False 

            End If 

            If o Is Me Then 

                Return True 

            End If 

            If Me.GetType() Is o.GetType() Then 

                Dim p As Point = CType(o, Point) 

                Return (X = p.X) AndAlso (Y = p.Y) 

            End If 

            Return False 

        End Function 

 

        ''' <summary>Report a point's location as a string.</summary> 

        ''' <returns>A string representing a point's location, in the form 

        ''' (x,y), without any leading, training, or embedded whitespace. 

        ''' </returns> 

        Public Overrides Function ToString() As String 

            Return "(" & X & "," & Y & ")" 

        End Function 

 

        ''' <summary>This operator determines whether two Points have the 

        ''' same location.</summary> 

        ''' <param name="p1"><c>p1</c> is the first Point to be compared. 

        ''' </param> 

        ''' <param name="p2"><c>p2</c> is the second Point to be compared. 

        ''' </param> 

        ''' <returns>True if the Points have the same location and they  

        ''' have the exact same type; otherwise, false.</returns> 

        ''' <seealso cref="Equals"/> 



Visual Basic Language Specification 

278 Copyright © Microsoft Corporation 2005. All rights reserved. 

        ''' <seealso cref="op_Inequality"/> 

        Public Shared Operator =(ByVal p1 As Point, _ 

          ByVal p2 As Point) As Boolean 

            If p1 Is Nothing OrElse p2 Is Nothing Then 

                Return False 

            End If 

            If p1.GetType() Is p2.GetType() Then 

                Return (p1.X = p2.X) AndAlso (p1.Y = p2.Y) 

            End If 

            Return False 

        End Operator 

 

        ''' <summary>This operator determines whether two Points have the 

        ''' same location.</summary> 

        ''' <param name="p1"><c>p1</c> is the first Point to be comapred. 

        ''' </param> 

        ''' <param name="p2"><c>p2</c> is the second Point to be compared. 

        ''' </param> 

        ''' <returns>True if the Points do not have the same location and 

        ''' the exact same type; otherwise, false.</returns> 

        ''' <seealso cref="Equals"/> 

        ''' <seealso cref="op_Equality"/> 

        Public Shared Operator <>(ByVal p1 As Point, _ 

          ByVal p2 As Point) As Boolean 

            Return Not p1 = p2 

        End Operator 

 

        ''' <summary>This is the entry point of the Point class testing 

        ''' program. 

        ''' <para>This program tests each method and operator, and 

        ''' is intended to be run after any non-trvial maintenance has 

        ''' been performed on the Point class. 

        ''' </para> 

        ''' </summary> 

        Public Shared Sub Main() 

            ' class test code goes here 

        End Sub 

    End Class 

End Namespace 

Here is the output produced when given the source code for class Point, shown above: 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 279 

<?xml version="1.0"?> 

<doc> 

    <assembly> 

        <name>Point</name> 

    </assembly> 

    <members> 

        <member name="T:Graphics.Point"> 

            <remarks>Class <c>Point</c> models a point in a 

            two-dimensional plane. </remarks> 

        </member> 

        <member name="F:Graphics.Point.x"> 

            <summary>Instance variable <c>x</c> represents the point's 

            x-coordinate.</summary> 

        </member> 

        <member name="F:Graphics.Point.y"> 

            <summary>Instance variable <c>y</c> represents the point's 

            y-coordinate.</summary> 

        </member> 

        <member name="M:Graphics.Point.#ctor"> 

            <summary>This constructor initializes the new Point to 

            (0,0).</summary> 

        </member> 

        <member name="M:Graphics.Point.#ctor(System.Int32,System.Int32)"> 

            <summary>This constructor initializes the new Point to 

            (<paramref name="x"/>,<paramref name="y"/>).</summary> 

            <param><c>x</c> is the new Point's x-coordinate.</param> 

            <param><c>y</c> is the new Point's y-coordinate.</param> 

        </member> 

        <member name="M:Graphics.Point.Move(System.Int32,System.Int32)"> 

            <summary>This method changes the point's location to 

            the given coordinates.</summary> 

            <param><c>x</c> is the new x-coordinate.</param> 

            <param><c>y</c> is the new y-coordinate.</param> 

            <see cref= 

            "M:Graphics.Point.Translate(System.Int32,System.Int32)"/> 

        </member> 

        <member name= 

        "M:Graphics.Point.Translate(System.Int32,System.Int32)"> 

            <summary>This method changes the point's location by the given 

            x- and y-offsets. 



Visual Basic Language Specification 

280 Copyright © Microsoft Corporation 2005. All rights reserved. 

            <example>For example: 

            <code> 

            Point p = new Point(3,5); 

            p.Translate(-1,3); 

            </code> 

            results in <c>p</c>'s having the value (2,8). 

            </example> 

            </summary> 

            <param><c>x</c> is the relative x-offset.</param> 

            <param><c>y</c> is the relative y-offset.</param> 

            <see cref="M:Graphics.Point.Move(System.Int32,System.Int32)"/> 

        </member> 

        <member name="M:Graphics.Point.Equals(System.Object)"> 

            <summary>This method determines whether two Points have the 

            same location.</summary> 

            <param><c>o</c> is the object to be compared to the current 

            object.</param> 

            <returns>True if the Points have the same location and they 

            have the exact same type; otherwise, false.</returns> 

            <seealso cref= 

            "M:Graphics.Point.op_Equality(Graphics.Point,Graphics.Point)" 

            /> 

            <seealso cref= 

           "M:Graphics.Point.op_Inequality(Graphics.Point,Graphics.Point)" 

            /> 

        </member> 

        <member name="M:Graphics.Point.ToString"> 

            <summary>Report a point's location as a string.</summary> 

            <returns>A string representing a point's location, in the form 

            (x,y), without any leading, training, or embedded 

            whitespace.</returns> 

        </member> 

        <member name= 

        "M:Graphics.Point.op_Equality(Graphics.Point,Graphics.Point)"> 

            <summary>This operator determines whether two Points have the 

            same location.</summary> 

            <param><c>p1</c> is the first Point to be compared.</param> 

            <param><c>p2</c> is the second Point to be compared.</param> 

            <returns>True if the Points have the same location and they 

            have the exact same type; otherwise, false.</returns> 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 281 

            <seealso cref="M:Graphics.Point.Equals(System.Object)"/> 

            <seealso cref= 

           "M:Graphics.Point.op_Inequality(Graphics.Point,Graphics.Point)" 

            /> 

        </member> 

        <member name= 

        "M:Graphics.Point.op_Inequality(Graphics.Point,Graphics.Point)"> 

            <summary>This operator determines whether two Points have the 

            same location.</summary> 

            <param><c>p1</c> is the first Point to be compared.</param> 

            <param><c>p2</c> is the second Point to be compared.</param> 

            <returns>True if the Points do not have the same location and 

            the exact same type; otherwise, false.</returns> 

            <seealso cref="M:Graphics.Point.Equals(System.Object)"/> 

            <seealso cref= 

            "M:Graphics.Point.op_Equality(Graphics.Point,Graphics.Point)" 

            /> 

        </member> 

        <member name="M:Graphics.Point.Main"> 

            <summary>This is the entry point of the Point class testing 

            program. 

            <para>This program tests each method and operator, and 

            is intended to be run after any non-trvial maintenance has 

            been performed on the Point class.</para> 

            </summary> 

        </member> 

        <member name="P:Graphics.Point.X"> 

            <value>Property <c>X</c> represents the point's 

            x-coordinate.</value> 

        </member> 

        <member name="P:Graphics.Point.Y"> 

            <value>Property <c>Y</c> represents the point's 

            y-coordinate.</value> 

        </member> 

    </members> 

</doc> 





 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 283 

13. Grammar Summary 

This section summarizes the Visual Basic language grammar. For information on how to read the grammar, see 
Grammar Notation. 

13.1 Lexical Grammar 
Start  ::=  [  LogicalLine+  ] 

LogicalLine  ::=  [  LogicalLineElement+  ]  [  Comment  ]  LineTerminator 

LogicalLineElement  ::=  WhiteSpace  |  LineContinuation  |  Token 

Token  ::=  Identifier  |  Keyword  |  Literal  |  Separator  |  Operator 

13.1.1 Characters and Lines 

Character  ::=  < any Unicode character except a LineTerminator > 

LineTerminator  ::= 
 < Unicode carriage return character (0x000D) >  | 
 < Unicode linefeed character (0x000A) >  | 
 < Unicode carriage return character >  < Unicode linefeed character >  | 
 < Unicode line separator character (0x2028) >  | 
 < Unicode paragraph separator character (0x2029) > 

LineContinuation  ::=  WhiteSpace  _  [  WhiteSpace+  ]  LineTerminator 

WhiteSpace  ::= 
 < Unicode blank characters (class Zs) >  | 
 < Unicode tab character (0x0009) > 

Comment  ::=  CommentMarker  [  Character+  ] 

CommentMarker  ::=  SingleQuoteCharacter  |  REM 

SingleQuoteCharacter  ::= 
 '  | 
 < Unicode left single-quote character (0x2018) >  | 
 < Unicode right single-quote character (0x2019) > 

13.1.2 Identifiers 

Identifier  ::= 
 NonEscapedIdentifier  [  TypeCharacter  ]  | 
 Keyword  TypeCharacter  | 
 EscapedIdentifier 

NonEscapedIdentifier  ::=  < IdentifierName but not Keyword > 

EscapedIdentifier  ::=  [  IdentifierName  ]  

IdentifierName  ::=  IdentifierStart  [  IdentifierCharacter+  ] 



Visual Basic Language Specification 

284 Copyright © Microsoft Corporation 2005. All rights reserved. 

IdentifierStart  ::= 
 AlphaCharacter  | 
 UnderscoreCharacter  IdentifierCharacter 

IdentifierCharacter  ::= 
 UnderscoreCharacter  | 
 AlphaCharacter  | 
 NumericCharacter  | 
 CombiningCharacter  | 
 FormattingCharacter 

AlphaCharacter  ::= 
 < Unicode alphabetic character (classes Lu, Ll, Lt, Lm, Lo, Nl) > 

NumericCharacter  ::=  < Unicode decimal digit character (class Nd) > 

CombiningCharacter  ::=  < Unicode combining character (classes Mn, Mc) > 

FormattingCharacter  ::=  < Unicode formatting character (class Cf) > 

UnderscoreCharacter  ::=  < Unicode connection character (class Pc) > 

IdentifierOrKeyword  ::=  Identifier  |  Keyword 

TypeCharacter  ::= 
 IntegerTypeCharacter  | 
 LongTypeCharacter  | 
 DecimalTypeCharacter  | 
 SingleTypeCharacter  | 
 DoubleTypeCharacter  | 
 StringTypeCharacter 

IntegerTypeCharacter  ::=  % 

LongTypeCharacter  ::=  & 

DecimalTypeCharacter  ::=  @ 

SingleTypeCharacter  ::=  ! 

DoubleTypeCharacter  ::=  # 

StringTypeCharacter  ::=  $ 

13.1.3 Keywords 

Keyword  ::=  < member of keyword table in 2.3 > 

13.1.4 Literals 

Literal  ::= 
 BooleanLiteral  | 
 IntegerLiteral  | 
 FloatingPointLiteral  | 
 StringLiteral  | 
 CharacterLiteral  | 
 DateLiteral  | 
 Nothing 

BooleanLiteral  ::=  True  |  False 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 285 

IntegerLiteral  ::=  IntegralLiteralValue  [  IntegralTypeCharacter  ] 

IntegralLiteralValue  ::=  IntLiteral  |  HexLiteral  |  OctalLiteral 

IntegralTypeCharacter  ::= 
 ShortCharacter  | 
 UnsignedShortCharacter  | 
 IntegerCharacter  | 
 UnsignedIntegerCharacter 
 LongCharacter  | 
 UnsignedLongCharacter  | 
 IntegerTypeCharacter  | 
 LongTypeCharacter 

ShortCharacter  ::=  S 

UnsignedShortCharacter  ::=  US 

IntegerCharacter  ::=  I 

UnsignedIntegerCharacter  ::=  UI 

LongCharacter  ::=  L 

UnsignedLongCharacter  ::=  UL 

IntLiteral  ::=  Digit+ 

HexLiteral  ::=  &  H  HexDigit+ 

OctalLiteral  ::=  &  O  OctalDigit+ 

Digit  ::=  0  |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9 

HexDigit  ::=  0  |  1  |  2  |  3  |  4  |  5  |  6  |  7  |  8  |  9  |  A  |  B  |  C  |  D  |  E  |  F 

OctalDigit  ::=  0  |  1  |  2  |  3  |  4  |  5  |  6  |  7 

FloatingPointLiteral  ::= 
 FloatingPointLiteralValue  [  FloatingPointTypeCharacter  ]  | 
 IntLiteral  FloatingPointTypeCharacter 

FloatingPointTypeCharacter  ::= 
 SingleCharacter  | 
 DoubleCharacter  | 
 DecimalCharacter  | 
 SingleTypeCharacter  | 
 DoubleTypeCharacter  | 
 DecimalTypeCharacter 

SingleCharacter  ::=  F 

DoubleCharacter  ::=  R 

DecimalCharacter  ::=  D 

FloatingPointLiteralValue  ::= 
 IntLiteral  .  IntLiteral  [  Exponent  ]  | 
 .  IntLiteral  [  Exponent  ]  | 
 IntLiteral  Exponent 

Exponent  ::=  E  [  Sign  ]  IntLiteral 



Visual Basic Language Specification 

286 Copyright © Microsoft Corporation 2005. All rights reserved. 

Sign  ::=  +  |  - 

StringLiteral  ::= 
 DoubleQuoteCharacter  [  StringCharacter+  ]  DoubleQuoteCharacter 

DoubleQuoteCharacter  ::= 
 "  | 
 < Unicode left double-quote character (0x201C) >  | 
 < Unicode right double-quote character (0x201D) > 

StringCharacter  ::= 
 < Character except for DoubleQuoteCharacter >  | 
 DoubleQuoteCharacter  DoubleQuoteCharacter 

CharacterLiteral  ::=  DoubleQuoteCharacter  StringCharacter  DoubleQuoteCharacter  C 

DateLiteral  ::=  #  [  Whitespace+  ]  DateOrTime  [  Whitespace+  ]  # 

DateOrTime  ::= 
 DateValue  Whitespace+  TimeValue  | 
 DateValue  | 
 TimeValue 

DateValue  ::= 
 MonthValue  /  DayValue  /  YearValue  | 
 MonthValue  –  DayValue  -  YearValue 

TimeValue  ::= 
 HourValue  :  MinuteValue  [  :  SecondValue  ]  [  WhiteSpace+  ]  [  AMPM  ] 

MonthValue  ::=  IntLiteral 

DayValue  ::=  IntLiteral 

YearValue  ::=  IntLiteral 

HourValue  ::=  IntLiteral 

MinuteValue  ::=  IntLiteral 

SecondValue  ::=  IntLiteral 

AMPM  ::=  AM  |  PM 

Nothing  ::=  Nothing 

Separator  ::=  (  |  )  |  {  |  }  |  !  |  #  |  ,  |  .  |  :  |  := 

Operator  ::= 
 &  |  *  |  +  |  -  |  /  |  \  |  ̂   |  <  |  =  |  >  |  <=  |  >=  |  <>  |  <<  |  >>  | 
 &=  |  *=  |  +=  |  -=  |  /=  |  \=  |  ̂ =  |  <<=  |  >>= 

13.2 Preprocessing Directives 

13.2.1 Conditional Compilation 

Start  ::=  [  CCStatement+  ] 

CCStatement  ::= 
 CCConstantDeclaration  | 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 287 

 CCIfGroup  | 
 LogicalLine 

CCExpression  ::= 
 LiteralExpression  | 
 CCParenthesizedExpression  | 
 SimpleNameExpression  | 
 CCCastExpression  | 
 CCOperatorExpression 

CCParenthesizedExpression  ::=  (  CCExpression  ) 

CCCastExpression  ::=  CastTarget  (  CCExpression  ) 

CCOperatorExpression  ::= 
 CCUnaryOperator  CCExpression 
 CCExpression  CCBinaryOperator  CCExpression 

CCUnaryOperator  ::=  +  |  -  |  Not 

CCBinaryOperator  ::=  +  |  -  |  *  |  /  |  \  |  Mod  |  ̂   |  =  |  <>  |  <  |  >  | 

 <=  |  >=  |  &  |  And  |  Or  |  Xor  |  AndAlso  |  OrElse  |  <<  |  >> 

CCConstantDeclaration  ::=  #  Const  Identifier  =  CCExpression  LineTerminator 

CCIfGroup  ::= 
 #  If  CCExpression  [  Then  ]  LineTerminator 
 [  CCStatement+  ] 
 [  CCElseIfGroup+  ] 
 [  CCElseGroup  ] 
 #  End  If  LineTerminator 

CCElseIfGroup  ::= 
 #  ElseIf  CCExpression  [  Then  ]  LineTerminator 
 [  CCStatement+  ] 

CCElseGroup  ::= 
 #  Else  LineTerminator 
 [  CCStatement+  ] 

13.2.2 External Source Directives 

Start  ::=  [  ExternalSourceStatement+  ] 

ExternalSourceStatement  ::=  ExternalSourceGroup  |  LogicalLine 

ExternalSourceGroup  ::= 
 #  ExternalSource  (  StringLiteral  ,  IntLiteral  )  LineTerminator 
 [  LogicalLine+  ] 
 #  End  ExternalSource  LineTerminator 

13.2.3 Region Directives 

Start  ::=  [  RegionStatement+  ] 

RegionStatement  ::=  RegionGroup  |  LogicalLine 

RegionGroup  ::= 
 #  Region  StringLiteral  LineTerminator 



Visual Basic Language Specification 

288 Copyright © Microsoft Corporation 2005. All rights reserved. 

 [  LogicalLine+  ] 
 #  End  Region  LineTerminator 

13.2.4 External Checksum Directives 

Start  ::=  [  ExternalChecksumStatement+  ] 

ExternalChecksumStatement  ::= 
 #  ExternalChecksum  (  StringLiteral  ,  StringLiteral  ,  StringLiteral  )  LineTerminator 

13.3 Syntactic Grammar 
AccessModifier  ::=  Public  |  Protected  |  Friend  |  Private  |  Protected  Friend 

QualifiedIdentifier  ::= 
 Identifier  | 
 Global  .  IdentifierOrKeyword    | 
 QualifiedIdentifier  .  IdentifierOrKeyword 

TypeParameterList  ::= 
 (  Of  TypeParameters  ) 

TypeParameters  ::= 
 TypeParameter  | 
 TypeParameters  ,  TypeParameter 

TypeParameter  ::= 
 Identifier  [  TypeParameterConstraints  ] 

TypeParameterConstraints  ::= 
 As  Constraint  | 
 As  {  ConstraintList  } 

ConstraintList  ::= 
 ConstraintList  ,  Constraint  | 
 Constraint 

Constraint  ::=  TypeName  |  New 

13.3.1 Attributes 

Attributes  ::= 
 AttributeBlock  | 
 Attributes  AttributeBlock 

AttributeBlock  ::=  <  AttributeList  > 

AttributeList  ::= 
 Attribute  | 
 AttributeList  ,  Attribute 

Attribute  ::= 
 [  AttributeModifier  :  ]  SimpleTypeName  [  (  [  AttributeArguments  ]  )  ] 

AttributeModifier  ::=  Assembly  |  Module 

AttributeArguments  ::= 
 AttributePositionalArgumentList  | 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 289 

 AttributePositionalArgumentList  ,  VariablePropertyInitializerList  | 
 VariablePropertyInitializerList 

AttributePositionalArgumentList  ::= 
 AttributeArgumentExpression  | 
 AttributePositionalArgumentList  ,  AttributeArgumentExpression 

VariablePropertyInitializerList  ::= 
 VariablePropertyInitializer  | 
 VariablePropertyInitializerList  ,  VariablePropertyInitializer 

VariablePropertyInitializer  ::= 
 IdentifierOrKeyword  :=  AttributeArgumentExpression 

AttributeArgumentExpression  ::= 
 ConstantExpression  | 
 GetTypeExpression  | 
 ArrayCreationExpression 

13.3.2 Source Files and Namespaces 

Start  ::= 
 [  OptionStatement+  ] 
 [  ImportsStatement+  ] 
 [  AttributesStatement+  ] 
 [  NamespaceMemberDeclaration+  ] 

StatementTerminator  ::=  LineTerminator  |  : 

AttributesStatement  ::=  Attributes  StatementTerminator 

OptionStatement  ::= 
 OptionExplicitStatement  | 
 OptionStrictStatement  | 
 OptionCompareStatement 

OptionExplicitStatement  ::=  Option  Explicit  [  OnOff  ]  StatementTerminator 

OnOff  ::=  On  |  Off 

OptionStrictStatement  ::=  Option  Strict  [  OnOff  ]  StatementTerminator 

OptionCompareStatement  ::=  Option  Compare  CompareOption  StatementTerminator 

CompareOption  ::=  Binary  |  Text 

ImportsStatement  ::=  Imports  ImportsClauses  StatementTerminator 

ImportsClauses  ::= 
 ImportsClause  | 
 ImportsClauses  ,  ImportsClause 

ImportsClause  ::=  ImportsAliasClause  |  ImportsNamespaceClause 

ImportsAliasClause  ::= 
 Identifier  =  QualifiedIdentifier  | 
 Identifier  =  ConstructedTypeName 



Visual Basic Language Specification 

290 Copyright © Microsoft Corporation 2005. All rights reserved. 

ImportsNamespaceClause  ::= 
 QualifiedIdentifier  | 
 ConstructedTypeName 

NamespaceDeclaration  ::= 
 Namespace  QualifiedIdentifier  StatementTerminator 
 [  NamespaceMemberDeclaration+  ] 
 End  Namespace  StatementTerminator 

NamespaceMemberDeclaration  ::= 
 NamespaceDeclaration  | 
 TypeDeclaration 

TypeDeclaration  ::= 
 ModuleDeclaration  | 
 NonModuleDeclaration 

NonModuleDeclaration  ::= 
 EnumDeclaration  | 
 StructureDeclaration  | 
 InterfaceDeclaration  | 
 ClassDeclaration  | 
 DelegateDeclaration 

13.3.3 Types 

TypeName  ::= 
 ArrayTypeName  | 
 NonArrayTypeName 

NonArrayTypeName  ::= 
 SimpleTypeName  | 
 ConstructedTypeName 

SimpleTypeName  ::= 
 QualifiedIdentifier  | 
 BuiltInTypeName 

BuiltInTypeName  ::=  Object  |  PrimitiveTypeName 

TypeModifier  ::=  AccessModifier  |  Shadows 

TypeImplementsClause  ::=  Implements  Implements  StatementTerminator 

Implements  ::= 
 NonArrayTypeName  | 
 Implements  ,  NonArrayTypeName 

PrimitiveTypeName  ::=  NumericTypeName  |  Boolean  |  Date  |  Char  |  String 

NumericTypeName  ::=  IntegralTypeName  |  FloatingPointTypeName  |  Decimal 

IntegralTypeName  ::=  Byte  |  SByte  |  UShort  |  Short  |  UInteger  |  Integer  |  ULong  |  Long 

FloatingPointTypeName  ::=  Single  |  Double 

EnumDeclaration  ::= 
 [  Attributes  ]  [  TypeModifier+  ]  Enum  Identifier  [  As  QualifiedName  ]  StatementTerminator 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 291 

 EnumMemberDeclaration+ 
 End  Enum  StatementTerminator 

EnumMemberDeclaration  ::=  [  Attributes  ]  Identifier  [  =  ConstantExpression  ]  StatementTerminator 

ClassDeclaration  ::= 
 [  Attributes  ]  [  ClassModifier+  ]  Class  Identifier  [  TypeParameterList  ]  StatementTerminator 
 [  ClassBase  ] 
 [  TypeImplementsClause+  ] 
 [  ClassMemberDeclaration+  ] 
 End  Class  StatementTerminator 

ClassModifier  ::=  TypeModifier  |  MustInherit  |  NotInheritable  |  Partial 

ClassBase  ::=  Inherits  NonArrayTypeName  StatementTerminator 

ClassMemberDeclaration  ::= 
 NonModuleDeclaration  | 
 EventMemberDeclaration  | 
 VariableMemberDeclaration  | 
 ConstantMemberDeclaration  | 
 MethodMemberDeclaration  | 
 PropertyMemberDeclaration  | 
 ConstructorMemberDeclaration  | 
 OperatorDeclaration 

StructureDeclaration  ::= 
 [  Attributes  ]  [  StructureModifier+  ]  Structure  Identifier  [  TypeParameterList  ] 
  StatementTerminator 
 [  TypeImplementsClause+  ] 
 [  StructMemberDeclaration+  ] 
 End  Structure  StatementTerminator 

StructureModifier  ::=  TypeModifier  |  Partial 

StructMemberDeclaration  ::= 
 NonModuleDeclaration  | 
 VariableMemberDeclaration  | 
 ConstantMemberDeclaration  | 
 EventMemberDeclaration  | 
 MethodMemberDeclaration  | 
 PropertyMemberDeclaration  | 
 ConstructorMemberDeclaration  | 
 OperatorDeclaration 

ModuleDeclaration  ::= 
 [  Attributes  ]  [  TypeModifier+  ]  Module  Identifier  StatementTerminator 
 [  ModuleMemberDeclaration+  ] 
 End  Module  StatementTerminator 

ModuleMemberDeclaration  ::= 
 NonModuleDeclaration  | 
 VariableMemberDeclaration  | 
 ConstantMemberDeclaration  | 
 EventMemberDeclaration  | 
 MethodMemberDeclaration  | 



Visual Basic Language Specification 

292 Copyright © Microsoft Corporation 2005. All rights reserved. 

 PropertyMemberDeclaration  | 
 ConstructorMemberDeclaration 

InterfaceDeclaration  ::= 
 [  Attributes  ]  [  TypeModifier+  ]  Interface  Identifier  [  TypeParameterList  ]  StatementTerminator 
 [  InterfaceBase+  ] 
 [  InterfaceMemberDeclaration+  ] 
 End  Interface  StatementTerminator 

InterfaceBase  ::=  Inherits  InterfaceBases  StatementTerminator 

InterfaceBases  ::= 
 NonArrayTypeName  | 
 InterfaceBases  ,  NonArrayTypeName 

InterfaceMemberDeclaration  ::= 
 NonModuleDeclaration  | 
 InterfaceEventMemberDeclaration  | 
 InterfaceMethodMemberDeclaration  | 
 InterfacePropertyMemberDeclaration 

ArrayTypeName  ::=  NonArrayTypeName  ArrayTypeModifiers 

ArrayTypeModifiers  ::=  ArrayTypeModifier+ 

ArrayTypeModifier  ::=  (  [  RankList  ]  ) 

RankList  ::= 
 ,  | 
 RankList  , 

ArrayNameModifier  ::= 
 ArrayTypeModifiers  | 
 ArraySizeInitializationModifier 

DelegateDeclaration  ::= 
 [  Attributes  ]  [  TypeModifier+  ]  Delegate  MethodSignature  StatementTerminator 

MethodSignature  ::=  SubSignature  |  FunctionSignature 

ConstructedTypeName  ::= 
 QualifiedIdentifier  (  Of  TypeArgumentList  ) 

TypeArgumentList  ::= 
 TypeName  | 
 TypeArgumentList  ,  TypeName 

13.3.4 Type Members 

ImplementsClause  ::=  [  Implements  ImplementsList  ] 

ImplementsList  ::= 
 InterfaceMemberSpecifier  | 
 ImplementsList  ,  InterfaceMemberSpecifier 

InterfaceMemberSpecifier  ::=  NonArrayTypeName  .  IdentifierOrKeyword 

MethodMemberDeclaration  ::=  MethodDeclaration  |  ExternalMethodDeclaration 

InterfaceMethodMemberDeclaration  ::=  InterfaceMethodDeclaration 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 293 

MethodDeclaration  ::= 
 SubDeclaration  | 
 MustOverrideSubDeclaration  | 
 FunctionDeclaration  | 
 MustOverrideFunctionDeclaration 

InterfaceMethodDeclaration  ::= 
 InterfaceSubDeclaration  | 
 InterfaceFunctionDeclaration 

SubSignature  ::=  Identifier  [  TypeParameterList  ]  [  (  [  ParameterList  ]  )  ] 

FunctionSignature  ::=  SubSignature  [  As  [  Attributes  ]  TypeName  ] 

SubDeclaration  ::= 
 [  Attributes  ]  [  ProcedureModifier+  ]  Sub  SubSignature  [  HandlesOrImplements  ]  LineTerminator 
 Block 
 End  Sub  StatementTerminator 

MustOverrideSubDeclaration  ::= 
 [  Attributes  ]  [  MustOverrideProcedureModifier+  ]  Sub  SubSignature  [  HandlesOrImplements  ] 
  StatementTerminator 

InterfaceSubDeclaration  ::= 
 [  Attributes  ]  [  InterfaceProcedureModifier+  ]  Sub  SubSignature  StatementTerminator 

FunctionDeclaration  ::= 
 [  Attributes  ]  [  ProcedureModifier+  ]  Function  FunctionSignature  [  HandlesOrImplements  ] 
  LineTerminator 
 Block 
 End  Function  StatementTerminator 

MustOverrideFunctionDeclaration  ::= 
 [  Attributes  ]  [  MustOverrideProcedureModifier+  ]  Function  FunctionSignature 
  [  HandlesOrImplements  ]  StatementTerminator 

InterfaceFunctionDeclaration  ::= 
 [  Attributes  ]  [  InterfaceProcedureModifier+  ]  Function  FunctionSignature  StatementTerminator 

ProcedureModifier  ::= 
 AccessModifier  | 
 Shadows  | 
 Shared  | 
 Overridable  | 
 NotOverridable  | 
 Overrides  | 
 Overloads 

MustOverrideProcedureModifier  ::=  ProcedureModifier  |  MustOverride 

InterfaceProcedureModifier  ::=  Shadows  |  Overloads 

HandlesOrImplements  ::=  HandlesClause  |  ImplementsClause 

ExternalMethodDeclaration  ::= 
 ExternalSubDeclaration  | 
 ExternalFunctionDeclaration 



Visual Basic Language Specification 

294 Copyright © Microsoft Corporation 2005. All rights reserved. 

ExternalSubDeclaration  ::= 
 [  Attributes  ]  [  ExternalMethodModifier+  ]  Declare  [  CharsetModifier  ]  Sub  Identifier 
  LibraryClause  [  AliasClause  ]  [  (  [  ParameterList  ]  )  ]  StatementTerminator 

ExternalFunctionDeclaration  ::= 
 [  Attributes  ]  [  ExternalMethodModifier+  ]  Declare  [  CharsetModifier  ]  Function  Identifier 
  LibraryClause  [  AliasClause  ]  [  (  [  ParameterList  ]  )  ]  [  As  [  Attributes  ]  TypeName  ] 
  StatementTerminator 

ExternalMethodModifier  ::=  AccessModifier  |  Shadows  |  Overloads 

CharsetModifier  ::=  Ansi  |  Unicode  |  Auto 

LibraryClause  ::=  Lib  StringLiteral 

AliasClause  ::=  Alias  StringLiteral 

ParameterList  ::= 
 Parameter  | 
 ParameterList  ,  Parameter 

Parameter  ::= 
 [  Attributes  ]  ParameterModifier+  ParameterIdentifier  [  As  TypeName  ]  [  =  ConstantExpression  ] 

ParameterModifier  ::=  ByVal  |  ByRef  |  Optional  |  ParamArray 

ParameterIdentifier  ::=  Identifier  [  ArrayNameModifier  ] 

HandlesClause  ::=  [  Handles  EventHandlesList  ] 

EventHandlesList  ::= 
 EventMemberSpecifier  | 
 EventHandlesList  ,  EventMemberSpecifier 

EventMemberSpecifier  ::= 
 QualifiedIdentifier  .  IdentifierOrKeyword  | 
 MyBase  .  IdentifierOrKeyword  | 
 Me  .  IdentifierOrKeyword 

ConstructorMemberDeclaration  ::= 
 [  Attributes  ]  [  ConstructorModifier+  ]  Sub  New  [  (  [  ParameterList  ]  )  ]  LineTerminator 
 [  Block  ] 
 End  Sub  StatementTerminator 

ConstructorModifier  ::=  AccessModifier  |  Shared 

EventMemberDeclaration  ::= 
 RegularEventMemberDeclaration  | 
 CustomEventMemberDeclaration 

RegularEventMemberDeclaration  ::= 
 [  Attributes  ]  [  EventModifiers+  ]  Event  Identifier  ParametersOrType  [  ImplementsClause  ] 
  StatementTerminator 

InterfaceEventMemberDeclaration  ::= 
 [  Attributes  ]  [  InterfaceEventModifiers+  ]  Event  Identifier  ParametersOrType  StatementTerminator 

ParametersOrType  ::= 
 [  (  [  ParameterList  ]  )  ]  | 
 As  NonArrayTypeName 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 295 

EventModifiers  ::=  AccessModifier  |  Shadows  |  Shared 

InterfaceEventModifiers  ::=  Shadows 

CustomEventMemberDeclaration  ::= 
 [  Attributes  ]  [  EventModifiers+  ]  Custom  Event  Identifier  As  TypeName  [  ImplementsClause  ] 
  StatementTerminator 
  EventAccessorDeclaration+ 
 End  Event  StatementTerminator 

EventAccessorDeclaration  ::= 
 AddHandlerDeclaration  | 
 RemoveHandlerDeclaration  | 
 RaiseEventDeclaration 

AddHandlerDeclaration  ::= 
 [  Attributes  ]  AddHandler  (  ParameterList  )  LineTerminator 
 [  Block  ] 
 End  AddHandler  StatementTerminator 

RemoveHandlerDeclaration  ::= 
 [  Attributes  ]  RemoveHandler  (  ParameterList  )  LineTerminator 
 [  Block  ] 
 End  RemoveHandler  StatementTerminator 

RaiseEventDeclaration  ::= 
 [  Attributes  ]  RaiseEvent  (  ParameterList  )  LineTerminator 
 [  Block  ] 
 End  RaiseEvent  StatementTerminator 

ConstantMemberDeclaration  ::= 
 [  Attributes  ]  [  ConstantModifier+  ]  Const  ConstantDeclarators  StatementTerminator 

ConstantModifier  ::=  AccessModifier  |  Shadows 

ConstantDeclarators  ::= 
 ConstantDeclarator  | 
 ConstantDeclarators  ,  ConstantDeclarator 

ConstantDeclarator  ::=  Identifier  [  As  TypeName  ]  =  ConstantExpression  StatementTerminator 

VariableMemberDeclaration  ::= 
 [  Attributes  ]  VariableModifier+  VariableDeclarators  StatementTerminator 

VariableModifier  ::= 
 AccessModifier  | 
 Shadows  | 
 Shared  | 
 ReadOnly  | 
 WithEvents  | 
 Dim 

VariableDeclarators  ::= 
 VariableDeclarator  | 
 VariableDeclarators  ,  VariableDeclarator 



Visual Basic Language Specification 

296 Copyright © Microsoft Corporation 2005. All rights reserved. 

VariableDeclarator  ::= 
 VariableIdentifiers  [  As  [  New  ]  TypeName  [  (  ArgumentList  )  ]  ]  | 
 VariableIdentifier  [  As  TypeName  ]  [  =  VariableInitializer  ] 

VariableIdentifiers  ::= 
 VariableIdentifier  | 
 VariableIdentifiers  ,  VariableIdentifier 

VariableIdentifier  ::=  Identifier  [  ArrayNameModifier  ] 

VariableInitializer  ::=  RegularInitializer  |  ArrayElementInitializer 

RegularInitializer  ::=  Expression 

ArraySizeInitializationModifier  ::= 
 (  BoundList  )  [  ArrayTypeModifiers  ] 

BoundList::= 
 Expression  | 
 0  To  Expression  | 
 UpperBoundList  ,  Expression 

ArrayElementInitializer  ::=  {  [  VariableInitializerList  ]  } 

VariableInitializerList  ::= 
 VariableInitializer  | 
 VariableInitializerList  ,  VariableInitializer 

VariableInitializer  ::=  Expression  |  ArrayElementInitializer 

PropertyMemberDeclaration  ::= 
 RegularPropertyMemberDeclaration  | 
 MustOverridePropertyMemberDeclaration 

RegularPropertyMemberDeclaration  ::= 
 [  Attributes  ]  [  PropertyModifier+  ]  Property  FunctionSignature  [  ImplementsClause  ] 
  LineTerminator 
 PropertyAccessorDeclaration+ 
 End  Property  StatementTerminator 

MustOverridePropertyMemberDeclaration  ::= 
 [  Attributes  ]  [  MustOverridePropertyModifier+  ]  Property  FunctionSignature  [  ImplementsClause  ] 
  StatementTerminator 

InterfacePropertyMemberDeclaration  ::= 
 [  Attributes  ]  [  InterfacePropertyModifier+  ]  Property  FunctionSignature  StatementTerminator 

PropertyModifier  ::=  ProcedureModifier  |  Default  |  ReadOnly  |  WriteOnly 

MustOverridePropertyModifier  ::=  PropertyModifier  |  MustOverride 

InterfacePropertyModifier  ::= 
 Shadows  | 
 Overloads  | 
 Default  | 
 ReadOnly  | 
 WriteOnly 

PropertyAccessorDeclaration  ::=  PropertyGetDeclaration  |  PropertySetDeclaration 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 297 

PropertyGetDeclaration  ::= 
 [  Attributes  ]  [  AccessModifier  ]  Get  LineTerminator 
 [  Block  ] 
 End  Get  StatementTerminator 

PropertySetDeclaration  ::= 
 [  Attributes  ]  [  AccessModifier  ]  Set  [  (  ParameterList  )  ]  LineTerminator 
 [  Block  ] 
 End  Set  StatementTerminator 

OperatorDeclaration  ::= 
 UnaryOperatorDeclaration    | 
 BinaryOperatorDeclaration  | 
 ConversionOperatorDeclaration 

OperatorModifier  ::=  Public  |  Shared  |  Overloads  |  Shadows 

Operand  ::=  [  ByVal  ]  Identifier  [  As  TypeName  ] 

UnaryOperatorDeclaration  ::= 
 [  Attributes  ]  [  OperatorModifier+  ]  Operator  OverloadableUnaryOperator  (  Operand  ) 
  [  As  [  Attributes  ]  TypeName  ]  LineTerminator 
 [  Block  ] 
 End  Operator  StatementTerminator 

OverloadableUnaryOperator  ::=  +  |  -  |  Not  |  IsTrue  |  IsFalse 

BinaryOperatorDeclaration  ::= 
 [  Attributes  ]  [  OperatorModifier+  ]  Operator  OverloadableBinaryOperator 
  (  Operand  ,  Operand  )  [  As  [  Attributes  ]  TypeName  ]  LineTerminator 
 [  Block  ] 
 End  Operator  StatementTerminator 

OverloadableBinaryOperator  ::= 
 +  |  -  |  *  |  /  |  \  |  &  |  Like  |  Mod  |  And  |  Or  |  Xor  | 
 ^  |  <<  |  >>  |  =  |  <>  |  >  |  <  |  >=  |  <= 

ConversionOperatorDeclaration    ::= 
 [  Attributes  ]  [  ConversionOperatorModifier+  ]  Operator  CType  (  Operand  ) 
  [  As  [  Attributes  ]  TypeName  ]  LineTerminator 
 [  Block  ] 
 End  Operator  StatementTerminator 

ConversionOperatorModifier  ::=  Widening  |  Narrowing  |  ConversionModifier 

13.3.5 Statements 

Statement  ::= 
 LabelDeclarationStatement  | 
 LocalDeclarationStatement  | 
 WithStatement  | 
 SyncLockStatement  | 
 EventStatement  | 
 AssignmentStatement  | 
 InvocationStatement  | 
 ConditionalStatement  | 
 LoopStatement  | 



Visual Basic Language Specification 

298 Copyright © Microsoft Corporation 2005. All rights reserved. 

 ErrorHandlingStatement  | 
 BranchStatement  | 
 ArrayHandlingStatement  | 
 UsingStatement 

Block  ::=  [  Statements+  ] 

LabelDeclarationStatement  ::=  LabelName  : 

LabelName  ::=  Identifier  |  IntLiteral 

Statements  ::= 
 [  Statement  ]  | 
 Statements  :  [  Statement  ] 

LocalDeclarationStatement  ::=  LocalModifier  VariableDeclarators  StatementTerminator 

LocalModifier  ::=  Static  |  Dim  |  Const 

WithStatement  ::= 
 With  Expression  StatementTerminator 
 [  Block  ] 
 End  With  StatementTerminator 

SyncLockStatement  ::= 
 SyncLock  Expression  StatementTerminator 
 [  Block  ] 
 End  SyncLock  StatementTerminator 

EventStatement  ::= 
 RaiseEventStatement  | 
 AddHandlerStatement  | 
 RemoveHandlerStatement 

RaiseEventStatement  ::=  RaiseEvent  IdentifierOrKeyword  [  (  [  ArgumentList  ]  )  ] 
 StatementTerminator 

AddHandlerStatement  ::=  AddHandler  Expression  ,  Expression  StatementTerminator 

RemoveHandlerStatement  ::=  RemoveHandler  Expression  ,  Expression  StatementTerminator 

AssignmentStatement  ::= 
 RegularAssignmentStatement  | 
 CompoundAssignmentStatement  | 
 MidAssignmentStatement 

RegularAssignmentStatement  ::=  Expression  =  Expression  StatementTerminator 

CompoundAssignmentStatement  ::=  Expression  CompoundBinaryOperator  Expression  StatementTerminator 

CompoundBinaryOperator  ::=  ̂ =  |  *=  |  /=  |  \=  |  +=  |  -=  |  &=  |  <<=  |  >>= 

MidAssignmentStatement  ::= 
 Mid  [  $  ]  (  Expression  ,  Expression  [  ,  Expression  ]  )  =  Expression  StatementTerminator 

InvocationStatement  ::=  [  Call  ]  InvocationExpression  StatementTerminator 

ConditionalStatement  ::=  IfStatement  |  SelectStatement 

IfStatement  ::=  BlockIfStatement  |  LineIfThenStatement 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 299 

BlockIfStatement  ::= 
 If  BooleanExpression  [  Then  ]  StatementTerminator 
 [  Block  ] 
 [  ElseIfStatement+  ] 
 [  ElseStatement  ] 
 End  If  StatementTerminator 

ElseIfStatement  ::= 
 ElseIf  BooleanExpression  [  Then  ]  StatementTerminator 
 [  Block  ] 

ElseStatement  ::= 
 Else  StatementTerminator 
 [  Block  ] 

LineIfThenStatement  ::= 
 If  BooleanExpression  Then  Statements  [  Else  Statements  ]  StatementTerminator 

SelectStatement  ::= 
 Select  [  Case  ]  Expression  StatementTerminator 
 [  CaseStatement+  ] 
 [  CaseElseStatement  ] 
 End  Select  StatementTerminator 

CaseStatement  ::= 
 Case  CaseClauses  StatementTerminator 
 [  Block  ] 

CaseClauses  ::= 
 CaseClause  | 
 CaseClauses  ,  CaseClause 

CaseClause  ::= 
 [  Is  ]  ComparisonOperator  Expression  | 
 Expression  [  To  Expression  ] 

ComparisonOperator  ::=  =  |  <>  |  <  |  >  |  =>  |  =< 

CaseElseStatement  ::= 
 Case  Else  StatementTerminator 
 [  Block  ] 

LoopStatement  ::= 
 WhileStatement  | 
 DoLoopStatement  | 
 ForStatement  | 
 ForEachStatement 

WhileStatement  ::= 
 While  BooleanExpression  StatementTerminator 
 [  Block  ] 
 End  While  StatementTerminator 

DoLoopStatement  ::=  DoTopLoopStatement  |  DoBottomLoopStatement 

DoTopLoopStatement  ::= 
 Do  [  WhileOrUntil  BooleanExpression  ]  StatementTerminator 



Visual Basic Language Specification 

300 Copyright © Microsoft Corporation 2005. All rights reserved. 

 [  Block  ] 
 Loop  StatementTerminator 

DoBottomLoopStatement  ::= 
 Do  StatementTerminator 
 [  Block  ] 
 Loop  WhileOrUntil  BooleanExpression  StatementTerminator 

WhileOrUntil  ::=  While  |  Until 

ForStatement  ::= 
 For  LoopControlVariable  =  Expression  To  Expression  [  Step  Expression  ]  StatementTerminator 
 [  Block  ] 
 Next  [  NextExpressionList  ]  StatementTerminator 

LoopControlVariable  ::= 
 Identifier  [  ArrayNameModifier  ]  As  TypeName  | 
 Expression 

NextExpressionList  ::= 
 Expression  | 
 NextExpressionList  ,  Expression 

ForEachStatement  ::= 
 For  Each  LoopControlVariable  In  Expression  StatementTerminator 
 [  Block  ] 
 Next  [Expression  ]  StatementTerminator 

ErrorHandlingStatement  ::= 
 StructuredErrorStatement  | 
 UnstructuredErrorStatement 

StructuredErrorStatement  ::= 
 ThrowStatement  | 
 TryStatement 

TryStatement  ::= 
 Try  StatementTerminator 
 [  Block  ] 
 [  CatchStatement+  ] 
 [  FinallyStatement  ] 
 End  Try  StatementTerminator 

FinallyStatement  ::= 
 Finally  StatementTerminator 
 [  Block  ] 

CatchStatement  ::= 
 Catch  [  Identifier  As  NonArrayTypeName  ]  [  When  BooleanExpression  ]  StatementTerminator 
 [  Block  ] 

ThrowStatement  ::=  Throw  [  Expression  ]  StatementTerminator 

UnstructuredErrorStatement  ::= 
 ErrorStatement  | 
 OnErrorStatement  | 
 ResumeStatement 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 301 

ErrorStatement  ::=  Error  Expression  StatementTerminator 

OnErrorStatement  ::=  On  Error  ErrorClause  StatementTerminator 

ErrorClause  ::= 
 GoTo  -  1  | 
 GoTo  0  | 
 GotoStatement  | 
 Resume  Next 

ResumeStatement  ::=  Resume  [  ResumeClause  ]  StatementTerminator 

ResumeClause  ::=  Next  |  LabelName 

BranchStatement  ::= 
 GotoStatement  | 
 ExitStatement  | 
 ContinueStatement  | 
 StopStatement  | 
 EndStatement  | 
 ReturnStatement 

GotoStatement  ::=  GoTo  LabelName  StatementTerminator 

ExitStatement  ::=  Exit  ExitKind  StatementTerminator 

ExitKind  ::=  Do  |  For  |  While  |  Select  |  Sub  |  Function  |  Property  |  Try 

ContinueStatement  ::=  Continue  ContinueKind  StatementTerminator 

ContinueKind  ::=  Do  |  For  |  While 

StopStatement  ::=  Stop  StatementTerminator 

EndStatement  ::=  End  StatementTerminator 

ReturnStatement  ::=  Return  [  Expression  ] 

ArrayHandlingStatement  ::= 
 RedimStatement  | 
 EraseStatement 

RedimStatement  ::=  ReDim  [  Preserve  ]  RedimClauses  StatementTerminator 

RedimClauses  ::= 
 RedimClause  | 
 RedimClauses  ,  RedimClause 

RedimClause  ::=  Expression  ArraySizeInitializationModifier 

EraseStatement  ::=  Erase  EraseExpressions  StatementTerminator 

EraseExpressions  ::= 
 Expression  | 
 EraseExpressions  ,  Expression 

UsingStatement  ::= 
 Using  UsingResources  StatementTerminator 
  [  Block  ] 
 End  Using  StatementTerminator 

UsingResources  ::=  VariableDeclarators  |  Expression 



Visual Basic Language Specification 

302 Copyright © Microsoft Corporation 2005. All rights reserved. 

13.3.6 Expressions 

Expression  ::= 
 SimpleExpression  | 
 TypeExpression  | 
 MemberAccessExpression  | 
 DictionaryAccessExpression  | 
 IndexExpression  | 
 NewExpression  | 
 CastExpression  | 
 OperatorExpression 

ConstantExpression  ::=  Expression 

SimpleExpression  ::= 
 LiteralExpression  | 
 ParenthesizedExpression  | 
 InstanceExpression  | 
 SimpleNameExpression  | 
 AddressOfExpression 

LiteralExpression  ::=  Literal 

ParenthesizedExpression  ::=  (  Expression  ) 

InstanceExpression  ::=  Me 

SimpleNameExpression  ::=  Identifier  [  (  Of  TypeArgumentList  )  ] 

AddressOfExpression  ::=  AddressOf  Expression 

TypeExpression  ::= 
 GetTypeExpression  | 
 TypeOfIsExpression  | 
 IsExpression 

GetTypeExpression  ::=  GetType  (  GetTypeTypeName  ) 

GetTypeTypeName  ::= 
 TypeName  | 
 QualifiedIdentifier  (  Of  [  TypeArityList  ]  ) 

TypeArityList  ::= 
 ,  | 
 TypeParameterList  , 

TypeOfIsExpression  ::=  TypeOf  Expression  Is  TypeName 

IsExpression  ::= 
 Expression  Is  Expression  | 
 Expression  IsNot  Expression 

MemberAccessExpression  ::= 
 [  [  MemberAccessBase  ]  .  ]  IdentifierOrKeyword 

MemberAccessBase  ::= 
 Expression  | 
 BuiltInTypeName  | 
 Global  | 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 303 

 MyClass  | 
 MyBase 

DictionaryAccessExpression  ::=  [  Expression  ]  !  IdentifierOrKeyword 

InvocationExpression  ::=  Expression  [  (  [  ArgumentList  ]  )  ] 

ArgumentList  ::= 
 PositionalArgumentList  ,  NamedArgumentList  | 
 PositionalArgumentList  | 
 NamedArgumentList 

PositionalArgumentList  ::= 
 Expression  | 
 PositionalArgumentList  ,  [  Expression  ] 

NamedArgumentList  ::= 
 IdentifierOrKeyword  :=  Expression  | 
 NamedArgumentList  ,  IdentifierOrKeyword  :=  Expression 

IndexExpression  ::=  Expression  (  [  ArgumentList  ]  ) 

NewExpression  ::= 
 ObjectCreationExpression  | 
 ArrayCreationExpression  | 
 DelegateCreationExpression 

ObjectCreationExpression  ::= 
 New  NonArrayTypeName  [  (  [  ArgumentList  ]  )  ] 

ArrayCreationExpression  ::= 
 New  NonArrayTypeName  ArraySizeInitializationModifier  ArrayElementInitializer 

DelegateCreationExpression  ::=  New  NonArrayTypeName  (  Expression  ) 

CastExpression  ::= 
 DirectCast  (  Expression  ,  TypeName  )  | 
 TryCast  (  Expression  ,  TypeName  )  | 
 CType  (  Expression  ,  TypeName  )  | 
 CastTarget  (  Expression  ) 

CastTarget  ::= 
 CBool  |  CByte  |  CChar  |  CDate  |  CDec  |  CDbl  |  CInt  |  CLng  |  CObj  |  CSByte  |  CShort  | 
 CSng  | CStr  |  CUInt  |  CULng  |  CUShort 

OperatorExpression  ::= 
 ArithmeticOperatorExpression  | 
 RelationalOperatorExpression  | 
 LikeOperatorExpression  | 
 ConcatenationOperatorExpression  | 
 ShortCircuitLogicalOperatorExpression  | 
 LogicalOperatorExpression  | 
 ShiftOperatorExpression 

ArithmeticOperatorExpression  ::= 
 UnaryPlusExpression  | 
 UnaryMinusExpression  | 
 AdditionOperatorExpression  | 



Visual Basic Language Specification 

304 Copyright © Microsoft Corporation 2005. All rights reserved. 

 SubtractionOperatorExpression  | 
 MultiplicationOperatorExpression  | 
 DivisionOperatorExpression  | 
 ModuloOperatorExpression  | 
 ExponentOperatorExpression 

UnaryPlusExpression  ::=  +  Expression 

UnaryMinusExpression  ::=  -  Expression 

AdditionOperatorExpression  ::=  Expression  +  Expression 

SubtractionOperatorExpression  ::=  Expression  -  Expression 

MultiplicationOperatorExpression  ::=  Expression  *  Expression 

DivisionOperatorExpression  ::= 
 FPDivisionOperatorExpression  | 
 IntegerDivisionOperatorExpression 

FPDivisionOperatorExpression  ::=  Expression  /  Expression 

IntegerDivisionOperatorExpression  ::=  Expression  \  Expression 

ModuloOperatorExpression  ::=  Expression  Mod  Expression 

ExponentOperatorExpression  ::=  Expression  ̂   Expression 

RelationalOperatorExpression  ::= 
 Expression  =  Expression  | 
 Expression  <>  Expression  | 
 Expression  <  Expression  | 
 Expression  >  Expression  | 
 Expression  <=  Expression  | 
 Expression  >=  Expression 

LikeOperatorExpression  ::=  Expression  Like  Expression 

ConcatenationOperatorExpression  ::=  Expression  &  Expression 

LogicalOperatorExpression  ::= 
 Not  Expression  | 
 Expression  And  Expression  | 
 Expression  Or  Expression  | 
 Expression  Xor  Expression 

ShortCircuitLogicalOperatorExpression  ::= 
 Expression  AndAlso  Expression  | 
 Expression  OrElse  Expression 

ShiftOperatorExpression  ::= 
 Expression  <<  Expression  | 
 Expression  >>  Expression 

BooleanExpression  ::=  Expression 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 305 

14. Change List 

The following is a list of changes made to the specification between the previous major version and this version. 
The sections affected are listed after each change. 

14.1 Major changes 
• Multiple attribute blocks are now allowed before a declaration (i.e. <a> <b> instead of just <a,b>). [5.2, 6] 

• Added the Continue statement. [2.3, 10.11] 

• Added the Using statement. [2.3, 10, 10.13] 

• Added the IsNot operator. [2.3, 11.5.3] 

• Added the Global qualifier which allows binding in the global namespace. [2.3, 4.7, 11.6] 

• Added XML Documentation comments. [12] 

• Derived classes are allowed to re-implement interfaces implemented by their base class. [4.4, 4.4.1] 

• Added the TryCast operator. [2.3, 11.11] 

• Attributes can have arguments typed as Object or one-dimensional arrays. [5.1, 5.2.2] 

• Added a section on language compatibility [1.2, 1.2.1, 1.2.2, 1.2.3] 

• Added operator overloading. [2.3, 4.1.1, 7.5.2, 7.6.1, 9.8, 9.8.1, 9.8.2, 9.8.3, 10.8.2, 10.9.2, 11.17.1, 11.11, 
8.11, 8.11.1, 8.11.2, 11.12.3] 

• Added pseudo operators IsTrue and IsFalse. [11.19, 10.8.1, 10.9.1, 10.10.1.2] 

• Added unsigned integer types. [2.2.1, 2.3, 2.4.2, 7.3, 11.11, 7.4, 8.2, 8.3, 8.7, 8.8, 8.9, 10.9.2, 11.2, 11.12.3, 
11.13.1, 11.13.2, 11.13.3, 11.13.4, 11.13.5, 11.13.6, 11.13.7, 11.13.8, 11.14, 11.15, 11.16, 11.17, 11.17.1, 
11.18, 11.8.1] 

• Added custom event declarations. [9.4.1] 

• Property accessors can specify a more restrictive access level than their containing property. [9.7, 9.7.1, 
9.7.2, 9.7.3] 

• Added partial types. [2.3, 7.5, 7.6, 7.11] 

• Added default instances. [11.6.2, 11.6.2.1, 11.6.2.2] 

• Added generic types and methods. [2.3, 2.4.7, 4.1.1, 4.4.1, 4.5.1, 4.6, 4.7.1, 4.7.2, 4.9, 4.9.1, 4.9.2, 5.1, 
5.2.2, 6.1, 6.3.1, 6.3.2, 7, 7.2, 7.5, 7.5.1, 7.6, 7.8, 7.8.1, 7.9, 7.11, 7.12, 7.12.1, 8.6, 8.10, 9.1, 9.2.1, 9.2.2, 
9.3.2, 9.4, 9.6, 9.8.1, 9.8.2, 9.8.3, 10.2, 10.9.3, 10.10.1.2, 11.1, 11.4.4, 11.4.5, 11.5.1, 11.5.2, 11.5.3, 11.6, 
11.6.2, 11.8, 11.8.2, 11.8.5, 11.10.1, 11.10.2, 11.10.3, 12.2.16, 12.3] 

14.2 Minor changes 
• Binary string comparisons are always used for conditional compilation. Otherwise, string comparisons 

would not work because text string comparisons depend on the run-time culture. [3.1.2] 



Visual Basic Language Specification 

306 Copyright © Microsoft Corporation 2005. All rights reserved. 

• Types cannot inherit from a type that is directly or indirectly contained within it. Also clarified the 
examples. [4.3] 

• Changed the grammar and spec so that enumerated types can use the System equivalents of the 
fundamental types as an underlying type. [7.4] 

• We now allow a conversion between an array of an enumerated type and an array of the underlying type of 
the enumeration. [8.5, 8.8. 8.9] 

• When overriding a method, you can override it with a MustOverride method, causing it to become 
abstract. [4.5.1] 

• A type member can handle an event in its own class using Handles. [9.2.6] 

• Methods and properties that are declared Overrides now assume Overloads, which is more logical than 
assuming Shadows. [4.3.3] 

• Fields and local variables are allowed to initialize multiple variables as once using the As New syntax. [9.6] 

• Removed the restriction that an inner Catch block cannot branch into an outer Try block. [10.10.1.2] 

• Classes cannot inherit from System.MulticastDelegate. [7.5.1] 

• Shared variables in structures can have initializers. [9.6.3] 

• Added a rule that numeric types are preferred over enumerated types when doing overload resolution against 
the literal 0. [11.8.1] 

• Array size initializers can explicitly state a lower bound of zero. [9.6.3.3] 

• Added an external checksum directive. [3.4] 

• Array-size initializers on fields are allowed to be non-constant expressions. [9.6.3.3] 

• Keywords with type characters are now treated as identifiers. [2.2] 

• Constants, fields, properties, locals and parameters that have the same name as their type can be interpreted 
either as the member or the type for the purposes of member lookup. [11.6.1] 

• Added a section talking about types restricted by the .NET Framework and moved discussion of 
System.Void to that section. [7, 7.13] 

• When dealing with a project and a referenced assembly that define the same fully-qualified name, the 
project’s type is preferred, otherwise the name is ambiguous. [4.7.2, 11.4.4] 

• On Error statements do not extend over the call to New at the beginning of a constructor. [10.10.2] 

• Catch statements can now specify Object as the exception type in a catch. [10.10.1.2] 

• Resolving an overloaded call to a late bound call is disallowed if the containing type is an interface. [11.8.1] 

• Overloads and Shadows are not allowed in a standard module. [4.3.3] 

• When looking up in interfaces, a name shadowed in one path through the hierarchy is shadowed in all paths 
through the hierarchy. Previously, we would give an ambiguity error. [4.3.2] 

• When binding through imports, types and type members are given preference over namespaces. [4.7.2, 11.6] 

• Changing the default property of a type no longer requires Shadows. [9.7.3] 

• Unreserved the contextual keywords Assembly, Ansi, Auto, Preserve, Unicode and Until. [2.3] 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 307 

14.3 Clarifications/Errata 
• Added a note that full-width/half-width equivalence only works on a whole-token basis (i.e. you can’t mix it 

within a token.) [1.1] 

• There are places in the language that allow regular type names but do not allow array type names. Added 
clarification to the grammar to call these out. [5.2, 7, 7.2, 7.5.1, 7.8.1, 7.9, 9.1, 9.2.5, 10.10.1.2, 11.10.1, 
11.10.2, 11.10.3] 

• The spec incorrectly states that colons can only be used as separators at the statement level. In fact, they can 
be used almost anywhere. Clarified the grammar and spec. [6, 6.2.1, 6.2.2, 6.2.3, 6.3, 6.4.1, 7.2, 7.4, 7.4.1, 
7.5, 7.5.1, 7.6, 7.7, 7.8, 7.8.1, 9.2.1, 9.2.2, 9.3, 9.4, 9.5, 9.6, 9.7, 9.7.1, 9.7.2, 10] 

• As a part of the previous bullet point, made labels a statement unto themselves and fixed up the grammar. 
[10, 10.1] 

• Narrowed the scope of the grammar for delegate declarations to be more accurate. [7.10] 

• Array covariance also includes interface implementation in addition to inheritance. [8.5] 

• When implementing an interface or handling an event, identifiers after a period can match keywords. [9.1, 
9.2.6] 

• Split MustOverride declarations out from regular method and property declarations. [9.2.1, 9.7] 

• The grammar was wrong for variable declarations – Dim is a regular modifier, and not a separate element. 
[9.6] 

• Spelled out how attributes on WithEvents fields are transmitted to the underlying synthetic members. 
[9.6.2] 

• Invoking an event won’t throw an exception if there are no listeners. [10.5.1] 

• Expanded the RaiseEvent section to cover the avoidance of race conditions on raising an event. [10.5.1] 

• Clarified that RaiseEvent takes an identifier, not an expression. [10.5.1] 

• Covered a corner case with Mid assignment. [10.6.3] 

• Statements after a line If are not optional. [10.8.1] 

• Expanded the Do…Loop grammar to make it more explicit. [10.9.1] 

• Loop control variables in For loops can be of an array type. [10.9.2] 

• The size modifier is not optional in an array creation expression. [11.10.2] 

• Property return types can have attributes [9.7] 

• Split out the interface versions of event, property and method declarations for grammatical clarity. [7.8.2, 
9.2, 9.2.1, 9.4, 9.7] 

• MyClass and MyBase cannot stand alone and are moved to the qualified expression production. [11.4.3, 
11.6] 

• TypeOf…Is is part of the primary category of operator precedence. [11.12.1] 

• A Handles clause can have more than one identifier, but only two identifiers are legal. [9.2.6] 

• Conditional compilation only supports a subset of constant expressions. [3.1] 

• Corrected references to System.Monitor to System.Threading.Monitor. [10.4] 



Visual Basic Language Specification 

308 Copyright © Microsoft Corporation 2005. All rights reserved. 

• Clarified that a compiler can put declarations into a particular namespace by default. [6.4] 

• Re-throwing an exception (Throw with no argument) cannot occur inside of a Finally block. [10.10.1.3] 

• A conversion from a type to itself is considered widening. [8.8] 

• Tried to clarify the exact behavior of DirectCast a bit better than before. [11.11] 

• The element type of a collection in a For Each statement does not have to have an implicit conversion to 
the loop control variable/expression: the conversion can be of any kind. [10.9.3] 

• Clarified decimal division behavior. [11.13.6] 

• Clarified that overloaded operators are not considered when converting Nothing to an empty string for the & 
operator. Also clarified the same behavior applies to the Like operator. [11.15, 11.16] 

• Clarified that operations that have Object parameters might result in something other than Integer. 
[11.12.2] 

• Added explicit operator type tables. [11.12.3, 11.13.1, 11.13.2, 11.13.3, 11.13.4, 11.13.5, 11.13.6, 11.13.7, 
11.13.8, 11.14, 11.15, 11.16, 11.17, 11.17.1, 11.18] 

• Tried to make the “most specific” rules more clear in intent. [11.8.1] 

• Clarified that shadowing a ParamArray method by name and signature hides only that signature, even if 
the shadowing method matches the unexpanded signature of the ParamArray method. [4.3.3] 

• Moved the rule about preferring fewer paramarray matches over more during overload resolution earlier in 
the process to match compiler (and desired) behavior. [11.8.1, 11.8.2] 

• Array-size initializers and array-element initializers cannot be combined. [9.6.3.3] 

• When specifying bounds on an array creation expression and supplying an array-element initializer, the 
bounds must be specified using constant expressions. [9.6.3.4] 

• Added a discussion of boxing and unboxing, as well as limitations to our anti-aliasing of boxed types 
design. [8.6] 

• Tried to clarify an obscure rule about enumerated types and For loops with Object loop control variables. 
[10.9.2] 

• Clarified that mucking with the loop control variable during an Object loop doesn’t change the type of the 
loop. [10.9.2] 

• Noted that delegates and external methods can use duplicate parameter names. [9.2.5] 

• Interfaces have a widening conversion to Object. [8.4, 8.8] 

• Interfaces do not inherit from Object. [7.8.1] 

• Object is reference type. It is not a type that is “neither a reference type nor a value type.” [7] 

• Noted the position of System.ValueType and System.Enum in the value type hierarchy. [7.1] 

• Called out the primitive type conversions we allow when boxed as Object. [8.6] 

• Expanded the explanation of a delegate’s members. [7.10] 

• Expanded discussion of implicit locals. [10.1.1, 10.2.1] 

• Clarified how static initializers work. [10.2] 

• Noted which synthetic names are ignored by name binding. [9.4, 9.4.1, 9.7.1, 9.7.2] 



 Chapter Hiba! A stílus nem létezik. – Hiba! A stílus nem létezik. 

Copyright © Microsoft Corporation 2005. All rights reserved. 309 

• Exceptions caught in Try…Catch blocks store their exceptions in the Err object. [10.10.1.2] 

• Called out the presence of the identity conversion. [8] 

• Clarified how late-bound accesses are treated in expression contexts. [11.1, 11.1.1, 11.3, 11.6, 11.8.1, 11.9] 

• Corrected rules on when shared constructors execute. [9.3.2] 

14.4 Miscellaneous 
• Changed references to the name of the language from “Microsoft Visual Basic .NET” to “Microsoft Visual 

Basic.” The official name of the language itself is simply “Visual Basic.” 

• Moved multi-token punctuators and operators such as <= or >>= into the lexical grammar for clarity. [2.5, 
2.6, 5.2.2, 10.6.2, 10.8.2, 11.14] 

• Removed the NamespaceOrTypeName production because it wasn’t really needed. [4.7, 6.3.1, 6.3.2, 7] 

• Removed the local variable productions because they were superfluous. [10.2] 

• Consolidated all the productions that just included access modifiers and Shadows into a single production. 
[7, 7.4, 7.5, 7.6, 7.7, 7.8, 7.10] 

• With the advent of a default response file for the command-line, all projects will import System by default, 
so I removed it from all examples. [Too many to count.] 

• Changed the suffix for preprocessing statement productions from Element to Statement and the prefix 
for conditional compilation statements from Conditional to CC. [3.1, 3.1.1, 3.1.2, 3.2, 3.3] 

• Corrected the example in the Resume statement section. [10.10.2.3] 

• Added Protected Friend to the modifier production. [4.6] 

• Added some examples to array creation expressions. [11.10.2] 


